ИЗУЧЕНИЕ КОСМИЧЕСКИХ ЛУЧЕЙ НА АСТРОФИЗИЧЕСКОМ КОМПЛЕКСЕ TAIGA: РЕЗУЛЬТАТЫ И ПЛАНЫ

И. И. Астапов^а, П. А. Безъязыков^а, М. Бланк^а, Е. А. Бонвеч^а, А. Н. Бородин^а,

М. Брюкнер^а, Н. М. Буднев^а, А. В. Булан^а, А. Вайдянатан^а, Р. Вишневский^а,

Н. В. Волков^а, П. А. Волчугов^а, Д. М. Воронин^а, А. Р. Гафаров^а, О. А. Гресс^а,

Т. И. Гресс^а, О. Г. Гришин^а, А. Ю. Гармаш^а, В. М. Гребенюк^а, А. А. Гринюк^а,

А. Н. Дячок^а, Д. П. Журов^а, А. В. Загородников^а, А. Л. Иванова^а, Н. Н. Калмыков^а,

В. В. Киндин^а, С. Н. Кирюхин^а, Р. П. Кокоулин^а, К. Г. Компаниец^а,

Е. Е. Коростелева^а, В. А. Кожин^а, Е. А. Кравченко^а, А. П. Крюков^а,

Л. А. Кузъмичев^{а*}, А. Къявасса^а, А. А. Лагутин^а, М. В. Лаврова^а, Ю. Е. Лемешев^а,

Б. К. Лубсандоржиев^а, Н. Б. Лубсандоржиев^а, Р. Р. Миргазов^а, Р. Мирзоян^а,

Р. Д. Монхоев^а, Е. А. Осипова^а, А. Л. Пахоруков^а, А. Пан^а, М. И. Панасюк^а,

Л. В. Паньков^а, А. А. Петрухин^а, Д. А. Подгрудков^а, В. А. Полещук^а, Е. Г. Попова^а,

А. Порелли^а, Е. Б. Постников^а, В. В. Просин^а, В. С. Птускин^а, А. А. Пушнин^а,

А. В. Разумов^а, Р. И. Райкин^а, Г. И. Рубцов^а, Е. В. Рябов^а, Я. И. Сагань^а,

В. С. Самолига^a, И. Сатышев^a, А. А. Силаев^a, А. А. Силаев (мл.)^a, А. Ю. Сидоренков^a, А. В. Скурихин^a, А. В. Соколов^a, Л. Г. Свешникова^a, Я. В. Суворкин^a,

В. А. Таболенко^а, А. Б. Танаев^а, Б. А. Таращанский^а, М. Ю. Терновой^а, Л. Г. Ткачев^а,

М. Тлужиконт^а, Н. А. Ушаков^а, Д. Хорнс^а, Д. В. Чернов^а, И. И. Яшин^а

^а Authors and Affiliations see below Поступила в редакцию 14 октября 2021 г., после переработки 13 ноября 2021 г. Принята к публикации 13 ноября 2021 г.

Исследование космических лучей высоких энергий методом регистрации черенковского излучения от широких атмосферных ливней было начато в Тункинской долине (в 50 км к западу от южной оконечности озера Байкал) в начале 1990-х гг. За прошедшее время был создан ряд крупных установок, объединенных в Астрофизический комплекс TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) и предназначенных для изучения гамма-лучей и заряженных космических лучей. Представлены описания установок комплекса и основные результаты, полученные при исследовании космических лучей высоких энергий. Обсуждаются планы дальнейшего развития Астрофизического комплекса.

Статья для специального выпуска ЖЭТФ, посвященного 100-летию А. Е. Чудакова

DOI: 10.31857/S0044451022040095

1. ВВЕДЕНИЕ

Прогресс в понимании природы источников космических лучей высоких и сверхвысоких энергий, расположенных как в нашей Галактике, так и в Метагалактике, идет по трем направлениям:

E-mail: kuz@dec1.sinp.msu.ru

1) изучение вторичных гамма-квантов, производимых космическими лучами (КЛ) в непосредственной близости от источника, где космические лучи ускоряются;

 регистрация нейтрино высоких энергий, образующихся при взаимодействиях частиц высоких энергий в источниках;

3) точное определение энергетического спектра, массового состава и анизотропии КЛ путем регистрации широких атмосферных ливней (ШАЛ).

Астрофизический комплексе ТАІGA [1,2] позволяет проводить исследования природы источников космических лучей в рамках как первого, так и третьего подходов. Уникальная особенность комплекса состоит в объединении в единую систему установок с детекторами разного типа для регистрации всех компонент ШАЛ. Это позволит осуществить поиск Пэватронов — галактических объектов, в которых протоны ускоряются до энергий порядка 10¹⁵–10¹⁷ эВ, найти энергетические пределы ускорения частиц в остатках сверхновых и пульсарных туманностях, осуществить поиск корреляций с нейтринными событиями, регистрируемыми нейтринными обсерваториями IceCube [3] и Baikal-GVD [4]. В этой статье будут обсуждаться только результаты, полученные в рамках третьего из перечисленных подходов при измерениях энергетического спектра и массового состава путем регистрации ШАЛ.

Изучение энергетического спектра и массового состава первичных космических лучей в энергетическом диапазоне 10^{14} – 10^{18} эВ имеет решающее значение для понимания происхождения и распространения космических лучей в Галактике. Возрастающее преобладание тяжелых ядер от энергии «колена» до 10^{17} эВ указывает на энергетический предел ускорения космических лучей в стандартной модели ускорения частиц в остатках сверхновых, см. обзор [5]. При более высоких энергиях массовый состав снова становится легче при энергии $2 \cdot 10^{18}$ эВ. Это может указывать на переход к внегалактическому происхождению космических лучей или на доминирование новых галактических источников неизвестной природы, см. [6,7] для обсуждения.

Статья имеет следующую структуру. В разд. 2 кратко описываются основные установки Астрофизического комплекса, включая установки, уже не работающие в настоящее время. В разд. 3 представлены методы восстановления параметров ШАЛ. В разд. 4 приводятся основные результаты.

2. РАЗВИТИЕ АСТРОФИЗИЧЕСКОГО КОМПЛЕКСА В ТУНКИНСКОЙ ДОЛИНЕ

2.1. Первые эксперименты (1993–2005 гг.)

Эксперименты по регистрации ШАЛ по их черенковскому излучению в Тункинской долине в 50 км к западу от озера Байкал (51.49 N, 103.04 E) были начаты в 1993 г. Первая экспериментальная установка Тунка-4 состояла из четырех оптических детекторов [8]. В оптическом детекторе установки использовались гибридные фотоприемники КВАЗАР-370 с диаметром фотокатода 37 см, разработанные для Байкальского нейтринного телескопа HT200 [9].

Следующая установка Тунка-13 состояла из 13 детекторов на базе фотоприемников такого же типа и проработала с 1996 по 1999 гг. В 2000 г. число детекторов было увеличено до 25. Эта установка, названная Тунка-25 [10], работала до 2005 г. Детекторы установки располагались в узлах квадратной сетки с шагом 85 м на площади около 0.1 км² (рис. 1).

Ниже кратко описаны установки, которые работали и работают в составе астрофического комплекса с 2005 г. В настоящее время в составе комплекса работают следующие установки: Тунка-133, Тунка-Гранде, TAIGA-HiSCORE, TAIGA-MUON, TAIGA-IACT. Все установки ком-

Рис. 1. Расположение детекторов в установке Тунка-25. Черными квадратами показаны детекторы, участвующие в выработке триггера установки

Рис. 2. Расположение детекторов центральной части установки Тунка-133

плекса синхронизованы друг с другом с точностью 10 нс [11].

2.2. Тунка-133

Установка Тунка-133 состоит из 175 черенковских детекторов [12,13], расположенных на площади 3 км² (рис. 2). Детекторы сгруппированы в 25 кластеров по семь детекторов в каждом - шесть детекторов в вершинах правильного шестиугольника и один в центре. Расстояние между детекторами в кластере составляет 85 м. 19 кластеров расположены в виде плотной центральной части массива радиусом около 500 м. Эти 133 детектора дали установке ее название — Тунка-133. Остальные 6 внешних кластеров расположены на расстоянии около 1 км вокруг центра. Каждый кластер является независимой установкой с собственным локальным триггером. Каждый детектор содержит ФЭУ с диаметром фотокатода 20 см, сигнал с которого отправляется в центр кластера, где проводится его оцифровка 12битным АЦП с частотой дискретизации 200 МГц. Главной задачей установки Тунка-133 является исследование энергетического спектра и массового состава космических лучей с энергией выше 10¹⁶ эВ. Методы реконструкции параметров ШАЛ и основные результаты будут приведены в разд. 3 и 4.

2.3. Тунка-Гранде

Установка Тунка-Гранде [14] представляет собой сеть сцинтилляционных счетчиков, объединенных в 19 станций, каждая из которых состоит из наземной и подземной частей. Наземная часть содержит 12 счетчиков общей площадью около 8 м², регистрирующих заряженные частицы ШАЛ. Подземная часть, расположенная под слоем грунта толщиной 1.5 м, состоит из 8 счетчиков общей площадью около 5 м² и предназначена для регистрации мюонной составляющей ШАЛ. Электроника сцинтилляционной станции, аналогичная электронике установки Тунка-133, обеспечивает выработку локального триггера станции, оцифровку формы сигналов с шагом 5 нс и передачу данных в единый центр сбора данных.

2.4. TAIGA-HiSCORE

Установка TAIGA-HiSCORE (High Sensitivity COsmic Rays and gamma Explorer) [15, 16] представляет собой сеть широкоугольных оптических станций для регистрации черенковского излучения ШАЛ. В настоящее время установка состоит из 120 станций, расположенных на площади 1.1 км², расстояние между станциями 106 м (рис. 3). Станции сгруппированы в 4 кластера с независимыми центрами сбора данных. Каждая станция соединена с

Рис. 3. Слева: Расположение оптических станций установки TAIGA-HiSCORE (квадраты) и трех АЧТ установки ТАIGA-IACT (круги). Справа: Оптическая станция TAIGA-HiSCORE и два первых АЧТ

центром сбора данных кластера волоконно-оптическим кабелем для передачи данных и синхронизации [11]. Оптическая станция содержит четыре фотоэлектронных умножителя (ФЭУ) диаметром 20 см (ЕТ 9352 и Hamamatsu R5912). Площадь светосбора каждого ФЭУ увеличена в 4 раза с помощью конуса Уинстона диаметром 0.4 м и углом обзора 30° (телесный угол 0.6 ср). Сигналы с анода и промежуточного динода ФЭУ оцифровываются с шагом 0.5 нс. Эффективный энергетический порог установки при срабатывании четырех и более станций составляет ~ 80 ТэВ для ШАЛ от заряженных частиц космических лучей и ~ 40 ТэВ для ШАЛ от гамма-квантов. Угловое разрешение установки изменяется от 0.4-0.5 град. вблизи порога установки до 0.1 град. при срабатывании более 10 станций [17]. Установка TAIGA-HiSCORE создавалась не только для исследования космических лучей, но и для поиска локальных источников гамма-квантов высоких энергий [18]. Большая угловая апертура установки и хорошее угловое разрешение позволили начать поиск астрофизических источников оптических вспышек наносекундного диапазона [19].

2.5. Tunka-REX

Регистрация радиоизлучения — еще один метод, который может быть использован для восстановле-

ния параметров ШАЛ. Радиоизлучение возникает в основном за счет тока, образуемого разделением релятивистских электронов и позитронов ливня в reomarнитном поле. Установка Тунка-REX (Radio Extension) [20] — это система антенн, которая работала в течение 7 лет (2012–2019 гг.) в Астрофизическом комплексе [21] и использовалась в экспериментах по регистрации радиоизлучения ШАЛ. Установка состояла из 63 радиоантенн, размещенных на площади 3 км². Антенны были подключены к платам FADC в электронике сбора данных установок Тунка-133 и Тунка-Гранде. Сигналы с антенн считывались при выработке локальных триггеров установок Тунка-133 или Тунка-Гранде.

2.6. TAIGA-Muon

Для исследования массового состава космических лучей с энергией выше 10^{16} эВ и подавления адронного фона при регистрации гамма-квантов высоких энергий создается новая установка TAIGA-Muon [22]. Для этой установки были разработаны новые сцинтилляционные счетчики площадью 1 м² [23]. Конструкция счетчиков позволяет закапывать их в грунт без дополнительной защиты. В 2019 г. были развернуты первые три кластера установки TAIGA-Muon. Каждый кластер имеет 8 наземных и столько же подземных детекторов. Счетчики расположены попарно, наземные находятся строго над подземными. Все 8 пар размещены по периметру квадрата со стороной 5 м. Расстояние между соседними парами составляет 1 м. К 2024 г. планируется увеличить площадь мюонных детекторов в установке TAIGA-Muon как минимум до 150 м².

2.7. TAIGA-IACT

В составе Астрофизического комплекса запланировано развертывание пяти атмосферных черенковских телескопов (АЧТ) с восстановлением углового распределения (изображения) черенковского света от ШАЛ. Такие телескопы являются основными инструментами наземной гамма-астрономии высоких энергий, позволяющими отделять события от гамма-квантов от событий от заряженных частиц космических лучей. Первые два телескопа уже работают, третий телескоп начнет работать зимой 2022 г. Четвертый и пятый телескопы начнут работать к 2023 г. Каждый АЧТ установки TAIGA-IACT (Imaging Atmospheric Cherenkov Telescope) имеет составные зеркала системы Дэвиса–Коттона площадью $\sim 10~{\rm m}^2$ и фокусным расстоянием 4.75 м [24]. В фокусе зеркал установлены регистрирующие камеры из 600 ФЭУ с диаметром фотокатода 2 см каждый (ХР1911). Диаметр камер около 110 см. Угол обзора камеры 9.6°, угловой обзор одного пикселя 0.36°, функция рассеяния точки (point spread function, PSF) телескопа $\sim 0.07^{\circ}$ [24]. Регистрирующая камера и система сбора данных подробно описаны в статье [25]. По своим характеристикам наши телескопы соответствуют параметрам малых телескопов (Small Size Telescope — SST) проекта СТА [26]. Угол обзора таких телескопов более чем в 2 раза превышает угол обзора телескопов предыдущего поколения. Такой угол обзора позволяет регистрировать ШАЛ с положением оси до 500 м от телескопа. Энергетический порог телескопа 2-3 ТэВ в зависимости от зенитного угла, под которым виден источник гамма-квантов. При энергиях выше 10 ТэВ становится возможным использовать стереоскопический подход — ШАЛ от гамма-квантов регистрируется двумя и большим числом телескопов [27]. При энергиях выше 40 ТэВ становится возможным новый «гибридный» подход к регистрации гамма-квантов — регистрация ШАЛ как телескопами, так и установкой TAIGA-HiSCORE. Главным преимуществом совместной работы АЧТ и сети широкоугольных черенковских станций является более эффективное выделение событий от гамма-квантов из фона ШАЛ от заряженных космических лучей [28].

2.8. Малые черенковские телескопы

Одним из недостатков совместной работы установки TAIGA-HiSCORE и черенковских телескопов является существенное отличие в апертурах. Апертура АЧТ в 20 раз меньше, чем апертура установки TAIGA-HiSCORE, и соответственно только 5% событий, зарегистрированных установкой TAIGA-HiSCORE, попадают в поле зрения АЧТ. Для исследования области энергий выше 50 ТэВ планируется использовать малые черенковские телескопы с камерами с диаметром поля зрения 25-30 град. и эффективной площадью регистрации $\sim 1 \text{ м}^2$. При работе таких телескопов процент совместных с установкой TAIGA-HiSCORE событий увеличится почти в 10 раз и для совместных событий сохранится высокая эффективность выделения событий от гамма-квантов. В настоящее время в составе комплекса работает прототип такого телескопа — телескоп SIT (Small Imaging Telescope), использующий в качестве регистрирующих детекторов кремниевые фотоумножители [29].

3. МЕТОДЫ ВОССТАНОВЛЕНИЯ ПАРАМЕТРОВ ШАЛ

Для исследования энергетического спектра и массового состава космических лучей методом регистрации ШАЛ измеряются их параметры, отражающие энергию и массу А первичного ядра. Поскольку примерно 80 % энергии первичного ядра в процессе развития каскада в атмосфере переходит в электромагнитную компоненту (электроны и фотоны), полный поток черенковского света от ШАЛ является хорошей мерой первичной энергии, при этом независимой от массового числа. Однако измерение полного потока черенковского света на большинстве установок невозможно, поэтому в качестве меры полного потока выбирается плотность потока на определенном расстоянии от оси. Чувствительным к массовому числу параметром является глубина максимума развития ШАЛ X_{max} . Глубина максимума для индивидуальных ШАЛ сильно флуктуирует $(\sigma(X_{max}))$ для протонов ~ 60–80 г/см² в зависимости от энергии, среднее значение X_{max} ($\langle X_{max} \rangle$) для ШАЛ от ядра с массовым числом А хорошо описывается простой аппроксимацией [30]:

$$\langle X_{max} \rangle = A + B \lg E \ [\text{T} \circ \text{B}] / A,$$
 (1)

 $\lg(Q$ фотон · см⁻² · эВ⁻¹)

с постоянными значениями A и $B~(A=370~{\rm r/cm^2},$ $B=65~{\rm r/cm^2}).$

В принципе, значения этих параметров зависят от исследуемого диапазона энергии, но этой зависимостью в первом приближении можно пренебречь. При изменении энергии в 10 раз $\langle X_{max} \rangle$ увеличивается приблизительно на 65 г/см². Изменение $\langle X_{max} \rangle$ при переходе от протона к ядру железа составляет 110–120 г/см² в диапазоне 10^{16} – 10^{18} эВ. Результаты моделирования, приведенные в разд. 4, качественно совпадают с этой простой аппроксимацией.

3.1. Восстановление энергии первичной частицы по черенковскому свету

Для установок с расстоянием между детекторами около 100 м (Тунка-133 и TAIGA-HiSCORE) энергия первичной частицы восстанавливается по плотности потока черенковского света на расстоянии 200 м от оси ШАЛ (Q_{200}). Для пересчета к расстоянию 200 м используется функция пространственного распределения (ФПР), полученная из расчетов методом Монте-Карло. Как показывают результаты моделирования [10] (рис. 4), на таком расстоянии от оси плотность потока света для фиксированной энергии слабо зависит от глубины максимума X_{max} и зенитного угла ШАЛ.

Связь между энергией первичной частицы и Q_{200} , полученная из расчета методом Монте-Карло (CORSIKA, QGSJET-II-04), может быть выражена следующей формулой [13]:

$$E_0 = CQ_{200}^g, (2)$$

где g = 0.94 для диапазона $10^{16} - 10^{17}$ эВ и g = 0.95 для диапазона $10^{17} - 10^{18}$ эВ. Результаты расчета представлены на рис. 5.

Константа C определяется путем нормировки полученного экспериментального интегрального энергетического спектра на известный полный поток космических лучей с энергией более $3 \cdot 10^{15}$ эВ, измеренный в эксперименте QUEST [31].

Относительную погрешность восстановленных параметров ливня можно оценить с помощью хорошо известного метода шахматной доски [32]. Для энергий $E_0 \ge 10^{16}$ эВ погрешность восстановления положения оси ШАЛ менее 6 м для центральной части установки Тунка-133 ($R \le 450$ м) и менее 10 м для $450 \le R \le 800$ м и $E_0 \ge 5 \cdot 10^{16}$ эВ. Ошибка восстановления энергии с учетом неопределенности в массовом составе и точности определения положения оси ШАЛ составляет приблизительно 10 %. Наличие в составе астрофизическо-

Рис. 4. Функция пространственного распределения света от ШАЛ энергией $5 \cdot 10^{15}$ эВ, рассчитанная по программе CORSIKA, для различных расстояний от положения максимума ШАЛ до установки, H_{max} 3.2 км (1), 4.1 км (2), 5 км (3)

Рис. 5. (В цвете онлайн) Расчет (CORSIKA, QGSJET-II-04) корреляции энергии первичной частицы (E_0) и плотности потока света на расстоянии 200 м от оси (Q_{200}) . Черные точки — средние значения Q_{200} для первичных протонов, красные точки — средние значения Q_{200} для первичных ядер железа

го комплекса TAIGA установки Tunka-Rex, регистрирующей радиоизлучение ШАЛ, и установки LOPES в составе установки KASCADE-GRANDE позволило провести сравнение точности восстановления энергии ШАЛ между установками Тунка-133 и KASCADE-GRANDE [33]. Идея метода состоит в сравнении амплитуд сигналов с радиоантенн установок Tunka-Rex и LOPES в зависимости от энергий ШАЛ, восстановленных с использованием методик, разработанных в экспериментах Тунка-133 и KASCADE-GRANDE. Систематическое отличие в измерении энергии оказалось равным 5 %.

Основные параметры ШАЛ для установки TAIGA-HiSCORE реконструируются с использованием тех же алгоритмов, что и для установки Тунка-133. В то же время для установки TAIGA-HiSCORE восстановить плотность потока черенковского излучения ШАЛ на расстоянии 200 м от оси, интерполируя амплитуды, измеренные с помощью ее оптических станций, расположенных на расстояниях больше и меньше 200 м, оказывается возможным для 100 % событий только при энергии ШАЛ выше 1015 эВ, в то время как энергетический порог установки TAIGA-HiSCORE при срабатывании четырех и более ее оптических станций составляет ~ 80 ТэВ для ШАЛ от заряженных частиц космических лучей. Поэтому для более низких энергий был разработан другой алгоритм восстановления параметров ШАЛ. Положение оси определяется как центр тяжести амплитуд импульсов в 4-5 станциях. Плотность светового потока вблизи оси рассчитывается как среднее значение для двух станций, ближайших к оси. Расчет с использованием программы CORSIKA показал, что из-за больших флуктуаций светового потока около оси ШАЛ погрешность измерения энергии значительно больше, чем по плотности светового потока на расстоянии 200 м от оси, но в среднем преобразование светового потока в энергию ШАЛ возможно по формуле [34]

$$\lg(E_0) = C + 0.87Q_{65},\tag{3}$$

где Q_{65} — плотность потока фотонов на расстоянии 65 м от оси.

3.2. Восстановление энергии первичной частицы по заряженным частицам ШАЛ

Для установки Тунка-Гранде энергия первичной частицы восстанавливается по плотности потока частиц ШАЛ на расстоянии 200 м от оси [14]:

554

Рис. 6. Корреляция между энергией ШАЛ, восстановленной по данным установки Тунка-133, и плотностью заряженных частиц на расстоянии 200 м от оси по данным установки Тунка-Гранде

$$\lg(E/1 \ \Im B) = C_a \lg(\rho_{200}) + C_b. \tag{4}$$

Коэффициенты C_a и C_b в этом выражении определяются путем подстановки энергии ШАЛ, восстановленной по данным установки Тунка-133, в левую часть уравнения для событий, зарегистрированных как установкой Tunka-Grande, так и установкой Тунка-133. Экспериментальная зависимость Eот ρ_{200} показана на рис. 6.

3.3. Восстановление глубины максимума ШАЛ

Для определения глубины максимума (X_{max}) ШАЛ используется параметр P, характеризующий крутизну ФПР черенковского света. P определяется как отношение потока света на расстоянии 80 м от оси ШАЛ Q_{80} к потоку на расстоянии 200 м Q_{200} :

$$P = Q_{80} / Q_{200}. \tag{5}$$

Моделирование методом Монте-Карло подтвердило, что параметр P определяется только толщиной атмосферы между установкой и глубиной максимума ($\Delta X_{max} = 965/\cos\theta - X_{max} [r/cm^2]$) и не зависит от энергии, зенитного угла ливня и сорта первичного ядра (см. рис. 7). Здесь 965 г/сm² — глубина атмосферы в месте расположения установок [35]. Рассчитанная связь ΔX_{max} и параметра P близка к линейной для диапазона параметра P от 2.5 до 9. Стандартное отклонение точек от линии подгонки для этого диапазона составляет около 15 г/сm².

Рис. 7. (В цвете онлайн) Зависимость между параметром крутизны ФПР $P = Q_{80}/Q_{200}$ и толщиной атмосферы между установкой и глубиной максимума ШАЛ ΔX_{max} [35] по банку событий, полученных методом Монте-Карло

Расчетные точки для более тяжелых ядер или зенитных углов более 30° лежат в значительной степени на значениях параметра P менее 2.5, т.е. относятся к событиям с ФПР, практически плоскими вблизи оси ШАЛ, для которых описываемый метод неприменим.

4. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

4.1. Энергетический спектр в диапазоне $10^{14} - 10^{18}$ эВ

Для построения энергетического спектра космических лучей по данным Тункинского астрофизического комплекса были использованы данные установки Тунка-133, полученные за 2175 ч, и данные установки TAIGA-HiSCORE за 327 ч работы. Совместный энергетический спектр космических лучей [13, 34] показан на рис. 8 в сравнении с ранее полученным спектром по данным установки Тунка-25 [10]. Спектр охватывает четыре порядка величины в диапазоне энергий от $3 \cdot 10^{14}$ до $3 \cdot 10^{18}$ эВ. Одним из главных результатов, который следует из полученного спектра, является доказательство более сложной зависимости интенсивности космических лучей от энергии, чем предполагалось ранее. В спектре наблюдаются две статистически обеспеченные осо-

Рис. 8. Энергетический спектр космических лучей по данным установок Астрофизического комплекса TAIGA: 1 — Тунка-25 [10], 2 — Tunka-133 [13], 3 — TAIGA-HiSCORE [34]

бенности кроме «классического колена» при энергии $3 \cdot 10^{15}$ эВ. А именно, при энерги
и $2 \cdot 10^{16}$ эВ показатель наклона энергетического спектра уменьшается примерно на 0.2, а при энергии 3 · 10¹⁷ эВ значение показателя наклона спектра опять увеличивается примерно на 0.3. Энергетический спектр при энергии меньше $3\cdot 10^{15}$ эВ может быть описан степенным законом с показателем равным 2.70±0.01. В энергетическом диапазон
е $2\cdot10^{16}\text{--}3\cdot10^{17}$ эВ спектр также описывается степенным законом с показателем 2.99 ± 0.01 . При энергии выше $3 \cdot 10^{17}$ эВ показатель наклона спектра увеличивается и становится равным 3.29 ± 0.09. Укручение спектра при энергии 3 · 10¹⁷ эВ можно интерпретировать как «второе колено» в энергетическом спектре, связанное с переходом от галактических космических лучей к внегалактическим. На рис. 9 показано сравнение наших данных с данными других экспериментов. Существует хорошее согласие как с прямыми измерениями на высотных аэростатах [36], со спутниковыми [37] и высокогорными [38] измерениями при низких энергиях, так и с измерениями на гигантских установках при чрезвычайно высоких энергиях (обсерватория Р. Auger (PAO) [41], установка ТА [42]). Во всех экспериментальных данных наблюдается уменьшение значения показателя наклона спектра при энергии $1.5-2.5 \cdot 10^{16}$ эВ на величину 0.2-0.3.

Рис. 9. (В цвете онлайн) Сравнение энергетических спектров космических лучей, полученных в различных экспериментах в широком диапазоне энергий: ATIC-2 [36], NUCLEON [37], HAWC [38], Tunka-25, TAIGA-HiSCORE, Tunka-133, KASCADE-Grande [39], IceTop [40], PAO [41], TA+Tale [42]

В настоящее время этот эффект не имеет астрофизического объяснения.

4.2. Массовый состав в диапазоне $10^{15} - 10^{18}$ эВ

Средние глубины максимума, полученные на двух установках (Тунка-133 и TAIGA-HiSCORE), в зависимости от энергии первичной частицы показаны на рис. 10. Данные обеих установок, несмотря на разницу в их геометрии, хорошо согласуются друг с другом в широком диапазоне энергий от 10^{15} до $3 \cdot 10^{17}$ эВ. Для получения неискаженных оценок X_{max} выбираются события с зенитным углом ≥ 30° и энергией, при которой эффективность регистрации ШАЛ около 100 %. Для установки Тунка-133 такая энергия равна $1.25 \cdot 10^{16}$ эВ, а для TAIGA-HiSCORE — $1.25 \cdot 10^{15}$ эВ. На рис. 10 наши экспериментальные данные сравниваются с результатами измерений X_{max}, полученных путем регистрации флуоресцентного света ШАЛ на ТА [42], РАО [43] и смеси флюоресцентного и черенковского света в эксперименте TALE [44]. Все экспериментальные результаты сравниваются с теоретическими кривыми, рассчитанными с использова-

Рис. 10. (В цвете онлайн) Зависимость среднего значения *X_{max}* от энергии: Tunka-133 и TAIGA-HiSCORE [33], TA [42], TALE [43], Auger [44]

нием модели QGSJET-II-04 [45] для первичных протонов и ядер железа. При фиксированной энергии X_{max} линейно зависит от $\ln A$ (см. выражение (1)). Пользуясь этим, обычно определяют среднее значение $\langle \ln A \rangle$ методом интерполяции между расчетными кривыми для протонов и ядер железа, приведенными на рис. 10. Результат показан на рис. 11.

Зависимость от энергии среднего значения $\ln A$ хорошо экстраполируется на результаты Auger при энергии $3 \cdot 10^{17}$ эВ [44] и противоречит результатам существенно более сложного в интерпретации данных эксперимента TALE [43].

5. ПЛАН ПО РАЗВИТИЮ КОМПЛЕКСА НА БЛИЖАЙШИЕ ВРЕМЯ. ЗАКЛЮЧЕНИЕ

Развитие Астрофизического комплекса в Тункинской долине за 25 лет привело к строительству ряда серьезных установок для изучения космических лучей сверхвысоких энергий. По результатам, полученным с помощью этих установок, был реконструирован энергетический спектр первичных космических лучей в диапазоне четырех порядков. В энергетическом спектре наблюдается ряд особенностей, которые еще не получили астрофизической интерпретации. Прежде всего, спектр в области «первого колена» при энергии $(3-6) \cdot 10^{15}$ эВ нельзя описывать просто как резкое изменение наклона. Так-

Рис. 11. (В цвете онлайн) Зависимость среднего логарифма атомного номера $\langle \ln A \rangle$ от энергии: Tunka-133 и TAIGA-HiSCORE [33], TA [42], TALE [43], Auger [44]

же в настоящее время не объяснена особенность в спектре при энергии $2 \cdot 10^{16}$ эВ, которая была надежно установлена в ряде экспериментов. Наконец, энергия, при которой находится «второе колено», все еще определяется с большой неопределенностью. По нашим данным, в диапазоне 10^{15} – 10^{17} эВ в потоке космических лучей должны доминировать легкие ядра — протоны и гелий. Это противоречит излому в энергетическом спектре легкой компоненты космических лучей, полученному на установке ARGO-YBJ [46], при энергии $0.7 \cdot 10^{15}$ эВ.

Следует отметить, что согласно данным о массовом составе в области первого колена, полученным в различных экспериментах, пока невозможно определить согласованную картину. Возможно, детальный массовый состав космических лучей в этом диапазоне энергий будет окончательно понят только после запуска на околоземную орбиту многотонного детектора [47]. В ближайшие 2–3 года изучение массового состава будет продолжено на Астрофизическом комплексе в качестве одной из основных тем. Будет предпринята попытка изучить массовый состав при энергии ниже 10¹⁵ эВ, возможно, на основе совместных данных установок TAIGA-HiSCORE и TAIGA-IACT. В диапазоне 10¹⁶–10¹⁸ эВ мы надеемся продвинуться в изучении массового состава за счет увеличения площади детекторов мюонов. Также мы связываем прогресс в области энергий выше 10¹⁷ эВ с возможным развертыванием нового флуоресцентного детектора в составе астрофизического комплекса TAIGA.

Финансирование. Работа выполнена на УНУ «Астрофизический комплекс МГУ–ИГУ» (соглашение 13.УНУ.21.0007), поддержана министерством науки и высшего образования (проекты FZZE-2020-0017, FZZE-2020-0024), Российским научным фондом (грант № 19-72-20230 (разд. 2.4, 2.7), грант № 19-72-20067 (разд. 2.8, 6)) и Российским фондом фундаментальных исследований (гранты № № 19-52-44002, 19-32-60003).

Authors and Affiliations

- И. И. Астапов^d, П. А. Безъязыков^b, М. Бланк^m, Е. А. Бонвеч^a, А. Н. Бородин^c, М. Брюкнер^l,
- Н. М. Буднев^b, А. В. Булан^a, А. Вайдянатан^e,
- Р. Вишневский
 l, Н. В. Волков i, П. А. Волчугов
 a,
- Д. М. Воронин f, А. Р. Гафаров b, О. А. Гресс b,
- Т. И. Гресс^b, О. Г. Гришин^b, А. Ю. Гармаш^{e,h},
- В. М. Гребенюк^{с, j}, А. А. Гринюк^с, А. Н. Дячок^b,
 Д. П. Журов^b, А. В. Загородников^b,
- А. Л. Иванова^{b,h}, Н. Н. Калмыков^a, В. В. Киндин^d,
 С. Н. Кирюхин^b, Р. П. Кокоулин^d,
 К. Г. Компаниец^d, Е. Е. Коростелева^a,
- В. А. Кожин^{*a*}, Е. А. Кравченко^{*e*,*h*}, А. П. Крюков^{*a*},
- Л. А. Кузьмичев^{*a*}, А. Кьявасса^{*n*}, А. А. Лагутин^{*i*}, М. В. Лаврова^{*c*}, Ю. Е. Лемешев^{*b*},
- Б. К. Лубсандоржиев^{*f*}, Н. Б. Лубсандоржиев^{*a*},
- Р. Р. Миргазов^b, Р. Мирзоян^k, Р. Д. Монхоев^b,
 Е. А. Осипова^a, А. Л. Пахоруков^b, А. Пан^c,
 М. И. Панасюк^a, Л. В. Паньков^b,
 А. А. Петрухин^d, Д. А. Подгрудков^a,
- В. А. Полещук^b, Е. Г. Попова^a, А. Порелли^l,
- Е. Б. Постников^а, В. В. Просин^а, В. С. Птускин^g,
 - А. А. Пушнин^b, А. В. Разумов^a, Р. И. Райкинⁱ,
 - Г. И. Рубцов^{*f*}, Е. В. Рябов^{*b*}, Я. И. Сагань^{*c*,*j*},
 - В. С. Самолига^b, И. Сатышев^c, А. А. Силаев^a,
 - А. А. Силаев (мл.)^a, А. Ю. Сидоренков^f,
 А. В. Скурихин^a, А. В. Соколов^{e,h},
 - Л. Г. Свешникова^{*a*}, Я. В. Суворкин^{*b*},
 - В. А. Таболенко^b, А. Б. Танаев^b,
 - Б. А. Таращанский^{*b*}, М. Ю. Терновой^{*b*},
- Л. Г. Ткачев $^{c,j},$ М. Тлужикон
т m, Н. А. Ушаков f, Д. Хорнс
 m, Д. В. Чернов a, И. И. Яшин d
- ^{*а*}Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына,

Московский государственный университет им. М. В. Ломоносова 119991, Москва, Россия ^bНаучно-исследовательский институт прикладной физики, Иркутский государственный университет 664003, Иркутск, Россия

^сОбъединенный институт ядерных исследований 141980, Дубна, Московская обл., Россия

^dНаучно-исследовательский ядерный университет «МИФИ» 115409, Москва, Россия

^еНовосибирский государственный университет 630090, Новосибирск, Россия

> ^fИнститут ядерных исследований Российской академии наук 117312, Москва, Россия

^{*g*}Институт Земного магнетизма, ионосферы и распространения радиоволн им. Н. В. Пушкова Российской академии наук 108840, Москва, Россия

^hИнститут ядерной физики Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

^{*i*}Алтайский государственный университет 656049, Барнаул, Россия

^{*ј*}Университет «Дубна» 141982, Дубна, Московская обл., Россия

^kMax Planck Institute for Physics 80804, Мюнхен, Германия

> ^{*l*}DESY 15738, Цойтен, Германия

 m Hamburg University 20148, Гамбург, Германия

 n University of Turin 10124, Турин, Италия

ЛИТЕРАТУРА

- N. M. Budnev, I. I. Astapov, P. A. Bezyazeekov et al., Nucl. Instrum. Meth. A 958, 162113 (2020).
- L. A. Kuzmichev, I. I. Astapov, P. A. Bezyazeekov et al., Phys. Atom. Nuclei 81, 497 (2018).
- M. G. Aartsen, M. Ackermann, J. Adams et al., Science 361, 6398 (2018), arXiv:1807.08816.
- A. D. Avrorin, A. V. Avrorin, V. M. Aynutdinov et al., JETP Lett. 108, 787 (2018), arXiv:1810.10966.
- 5. A. R. Bell, Astropart. Phys. 43, 56 (2013).

- P. Blasi, Compt. Rend. Phys. 15, 329 (2014), arXiv: 1403.2967.
- 7. V. Ptuskin, EPJ Web Conf. 145, 03001 (2017).
- S. V. Bryanski, G. N. Dudkin, O. A. Gress et al., 24th ICRC, Roma 2, 724 (1995).
- R. Bagduev, V. Balkanov, I. Belolaptikov et al., Nucl. Instrum. Meth. A 420, 138 (1999).
- N. Budnev, D. Chernov, O. Gress et al., Astropart. Phys. 50–52, 18 (2013).
- O. Gress, I. Astapov, N. Budnev et al., Nucl. Instrum. Meth. A 845, 367 (2017).
- S. Berezhnev, S. Epimakhov, N. Karpov et al., Nucl. Instrum. Meth. A 692, 98 (2012).
- N. Budnev, A. Chiavassa, O. Gress et al., Astropart. Phys. 117, 102406 (2020).
- R. Monkhoev, N. Budnev, A. Gafarov et al., Bull. Russ. Acad. Sci., Phys. 83, 959 (2019).
- M. Tluczykont, D. Hampf, D. Horns et al., Astropart. Phys. 56, 42 (2014).
- I. Astapov, N. Barbashina, A. Bogdanov et al., Bull. Russ. Acad. Sci., Phys. 81, 460 (2017).
- L. Kuzmichev, I. Astapov, P. Bezyazeekov et al., EPJ Web Conf. 145, 01001 (2017).
- M. Tluczykont, N. Budnev, I. Astapov et al., EPJ Web Conf. 136, 03008 (2017).
- 19. A. D. Panov, I. I. Astapov, A. K. Awad et al., arXiv: 2109.09637.
- 20. P. Bezyazeekov, N. Budnev, O. Gress et al., Nucl. Instrum. Meth. A 802, 89 (2015).
- D. Kostunin, P. Bezyazeekov, N. Budnev et al., PoS ICRC2019 319 (2019); arXiv:1908.1035.
- A. Ivanova, N. Budnev, A. Chiavassa et al., JINST 15, C06057 (2020).
- 23. I. Astapov, P. Bezyazeekov, A. Borodin et al., Nucl. Instrum. Meth. A 936, 254 (2019).
- 24. L. Kuzmichev, I. Astapov, P. Bezyazeekov et al., Nucl. Instrum. Meth. A 952, 161830 (2020).
- N. Budnev, I. Astapov, P. Bezyazeekov et al., JINST 15, C09031 (2020).
- 26. B. Acharya, M. Actis, T. Aghajani et al., Astropart. Phys. 43, 3 (2013).
- 27. A. Grinyuk, E. Postnikov, P. Volchugov et al., PoS ICRC2021 395, 713 (2021).

- 28. E. Postnikov, A. Grinyuk, L. Kuzmichev et al., EPJ Web Conf. 145, 19005 (2017).
- 29. D. Chernov, I. Astapov, P. Bezyazeekov et al., JINST 15, C09062 (2020).
- 30. K.-H. Kampert and M. Unger, Astropart. Phys. 35, 660 (2012).
- E. Korosteleva, V. Prosin, L. Kuzmichev et al., Nucl. Phys. B Proc. Supp. 165, 74 (2007).
- 32. A. Karle, M. Merck, R. Plaga et al., Astropart. Phys. 3, 321 (1995).
- 33. W. Apel, J. Arteaga-Velázquez, L. Bahren et al., Phys. Lett. B 763, 179 (2016).
- 34. V. Prosin, I. Astapov, P. Bezyazeekov et al., Bull. Russ. Acad. Sci., Phys. 83, 1016 (2019).
- 35. V. Prosin, I. Astapov, P. Bezyazeekov et al., Bull. Russ. Acad. Sci., Phys. 85, 395 (2021).
- 36. A. Panov, J. Adams, jr., H. Ahn et al., Bull. Russ. Acad. Sci., Phys. 73, 564 (2009).
- 37. A. Turundaevskiy, O. Vasiliev, D. Karmanov et al., Bull. Russ. Acad. Sci., Phys. 85, 353 (2021).

- 38. R. Alfaro, C. Alvarez, R. Arceo et al., Phys. Rev. D 96, 122001 (2017).
- 39. W. Apel, J. Arteaga Velázquez, K. Bekk et al., Astropart. Phys. 36, 183 (2012).
- 40. M. G. Aartsen, R. Abbasi, Y. Abdou et al., Phys. Rev. D 88, 042004 (2013).
- 41. J. Abraham, P. Abreu, M. Aglietta et al., Phys. Lett. B 685, 239 (2010).
- R. Abbasi, M. Abe, T. Abu-Zayyad et al., Astrophys. J. 858, 76 (2018).
- 43. A. Yushkov, A. Aab, P. Abreu et al., PoS ICRC2019
 482 (2019); arXiv:1909.09073.
- 44. R. Abbasi, M. Abe, T. Abu-Zayyad et al., Astrophys. J. 909, 178 (2021).
- 45. S. Ostapchenko and M. Bleicher, Phys. Rev. D 93, 051501 (2016).
- 46. B. Bartoli, P. Bernardini, X. J. Bi et al., Phys. Rev. D 92, 092005 (2015).
- 47. D. Podorozhny, D. Karmanov, A. Panov et al., Bull. Russ. Acad. Sci., Phys. 83, 637 (2019).