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The effect of screening by atomic electrons on the behavior of electron and positron wave functions in 
the continuous spectrum at small distances is studied. It is shown that these asymptotics are affected 
not only by the static potential of atomic electrons, but also by the polarization potential, as well as by 
the exchange interaction, which is essential for nonrelativistic electrons. A simple analytical expression is 
obtained for the photoproduction cross section of e+e− pair in an atomic field near the threshold. The 
spectrum and angular distribution of the produced particles are considered. It is shown that screening 
significantly affects the cross section in the near-threshold region.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

At present, the process of e+e− pair photoproduction on an 
atom has been studied in detail exactly in the parameters of the 
atomic field at photon energies ω � me , where me is the electron 
mass, h̄ = c = 1. In this case, both the spectra of produced par-
ticles and their angular distributions are studied in detail, taking 
screening into account. The results are obtained using the qua-
siclassical approximation with account for the first quasiclassical 
corrections [1,2]. The quasiclassical approximation is applicable be-
cause at high energies the main contribution to the cross section 
is given by large angular momenta of produced particles and small 
angles between their momenta and the photon momentum. For 
ω � me , exact in ω results for the spectra of produced particles 
are obtained using the exact solution of the Dirac equation in an 
atomic field [3,4]. At the same time, there are no results for the 
angular distribution of produced particles, obtained exactly in the 
atomic field parameters and ω � me .

Numerical results in the near-threshold region were obtained 
in [5–8]. The analytical results of [9] obtained for the case of the 
Coulomb field at ω − 2me � me are cited in many reviews, see 
e.g. [10,11]. It has been shown in a recent paper [12] that these 
results are erroneous both for the spectrum of produced particles 
and for their angular distribution. At low energies, the main con-
tribution to the pair production cross section comes from small 
angular momenta of produced particles and small distances r ∼ λC , 
where λC = 1/me is the electron Compton wavelength. At such 
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distances, the wave functions of non-relativistic electrons with 
small angular momenta are significantly enhanced by the so-called 
Sommerfeld-Gamov-Sakharov factor [13], while the wave functions 
of non-relativistic positrons with small angular momenta are sig-
nificantly suppressed. Atomic screening strongly affects the behav-
ior of wave functions at large distances of non-relativistic electrons 
and positrons. The question arises of how screening affects the be-
havior of the wave functions at small distances, which determine 
the pair production cross section at low energies. Our work is de-
voted to the study of this issue. We show that the cross section 
of the process is significantly affected not only by the static po-
tential of atomic electrons, but also by the polarization potential, 
as well as by the exchange interaction, which is essential for non-
relativistic electrons. We consider the influence of atomic electrons 
on the spectrum and angular distribution of produced particles in 
the process of e+e− photoproduction in the atomic field near the 
threshold.

2. Wave function of non-relativistic electrons at small distances

For the applicability of the non-relativistic approximation, we 
assume that Zα � 1 and v � 1 where v is the electron or positron 
velocity in a continuous spectrum. We also assume that Zα/v ∼ 1
and Z � 1, where Z is the atomic charge number and α = 1/137
is the fine structure constant. The latter inequality allows one to 
use the Thomas-Fermi approximation to describe the static interac-
tion potential V (r) of an electron with an atom (Molière potential 
[14]),

V (r) = − Z [
0.1 e−6 β r + 0.55 e−1.2 β r + 0.35 e−0.3 β r

]
,

r
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Fig. 1. Dependence of radial electron wave function f0(r) in units of 2k on r in 
the atomic potential V (r) (solid line) and in the Coulomb attractive potential −Z/r
(dashed line) for Z = 40 and k = 1.

Fig. 2. Dependence of R(el)
0 (k) on k for l = 0, Z = 60 (solid curve), Z = 40 (dotted 

curve), and Z = 20 (dash-dotted curve).

β = 137

121
Z 1/3 . (1)

In this formula and below we use the atomic units, in which mo-
mentum, distance and energy are measured in meα, 1/meα and 
meα

2, respectively. The screening radius in these units is rscr ∼
1/β ∼ Z−1/3, the characteristic size of the ground state is 1/Z , and 
the momentum of most atomic electrons is Z 2/3.

Fig. 1 shows the dependence on r of the radial electron wave 
function fl(r) in units of 2k in the potential (1) and in the Coulomb 
potential −Z/r for the orbital angular momentum l = 0, momen-
tum k = 1, and Z = 40.

An analysis of similar plots for different Z shows that for 
k � 1 and r � π/Z the Coulomb functions f0, c(r) differ signifi-
cantly from the functions f0(r) in the atomic potential, while for 
r � π/Z these functions are almost the same. For k � 1, the elec-
tron wave functions f0, c(r) differ from the functions f0(r) for any 
r. However, for r � π/Z the ratio f0(r)/ f0, c(r) depends only on 
Z and k and is independent of r. Fig. 2 shows the dependence of 
R(el)

l (k) = lim
r→0

[ f 2
l (r)/ f 2

l, c(r)] on k for l = 0 and several values of Z , 

where the functions f0, c(r) and f1, c(r) for kr � 1 are [15]

f0, c(r) = 2k
√

C (el)
0 (k) , C (el)

0 (k) = 2πηk

1 − e−2πηk
, ηk = Z

k
,

f1, c(r) = 2k

3
(kr)

√
C (el)

1 (k) , C (el)
1 (k) = 2πηk

1 − e−2πηk
(1 + η2

k ) .

(2)

Note that f0, c(0)/2k tends to infinity at k → 0, while f0(0)/2k

tends to a nonzero constant, so that R(el)
(k) → 0 for k → 0.
0

2

Fig. 3. Dependence of R(el)
0 (k) on Z for k = 0.2.

Fig. 4. Dependence of R(el)
l (k) on k for Z = 40, l = 1 (solid curve) and l = 2 (dotted 

curve).

It is interesting that R(el)
0 (k) depends very strongly on Z for 

k � 1, see Fig. 3 which shows the dependence of R(el)
0 (k) on Z for 

k = 0.2.
Strong oscillations in this figure appear because in the potential 

(1) at certain values of Z there are bound states with a binding 
energy close to zero. In this case, the scattering length of slow 
particles becomes much larger than the screening radius, and the 
characteristic value of the wave function in the region of nonzero 
atomic potential differs significantly from the value of the Coulomb 
wave function. Note that for the angular momentum l > 0 a signif-
icant deviation of R(el)

l (k) from unity occurs at k � Z but not at 
k � 1, as in the case of l = 0, see Fig. 4. This is due to existence of 
a centrifugal barrier for l > 0.

For k � 1, in addition to the static potential V (r), it is also nec-
essary to take into account the van der Waals forces (polarization 
potential), as well as the exchange interaction, which takes into 
account the identity of an electron in continuous spectrum and 
atomic electrons. Note that the polarization potential essentially 
depends on Z . To illustrate the effect of polarization potential V pol , 
we use the simplest parameterization,

V pol(r) = − αpol

2(r2 + d2)2
, (3)

where αpol is the static polarizability and d ∼ 1 is some parameter. 
The exchange interaction V ex is taken into account using the model 
[16],

V ex(r) = −
(

3ne

π

)1/3

,

ne = Zβ2

4πr

[
3.6 e−6 β r + 0.792 e−1.2 β r + 0.0315 e−0.3 β r

]
. (4)
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Fig. 5. Dependence of R(el)
0 (k) on Z at k = 0.2 and l = 0 for the potentials V (r)

(solid curve), V (r) + V pol(r) (dash-dotted curve), and V (r) + V pol(r) + V ex(r) (dashed 
curve). The parameters αpol = 40 and d = 2 are used.

Fig. 6. Dependence on r of radial positron wave function f0(r) in the atomic poten-
tial −V (r) (solid line) and in the Coulomb repulsive potential Z/r (dashed line) for 
Z = 40 and k = 10.

Fig. 5 shows the dependence of R(el)
0 (k) on Z with and without 

account for the exchange and polarization potentials. It is seen that 
account for the exchange potential leads to a very small deviation 
of R(el)

0 (k) from unity.

3. Wave function of non-relativistic positrons at small distances

The wave function of non-relativistic positrons in an atomic 
field differs significantly from the Coulomb wave function of 
positrons for any k, see Fig. 6.

This is especially evident at small distances for k � Z because 
of smallness of positron Coulomb wave function at kr � 1,

f0, c(r) = 2k
√

C (pos)
0 (k) , C (pos)

0 (k) = 2πηk

e2πηk − 1
, ηk = Z

k
,

f1, c(r) = 2k

3
(kr)

√
C (pos)

1 (k) , C (pos)
1 (k) = 2πηk

e2πηk − 1
(1 + η2

k ) .

(5)

Fig. 7 shows the dependence on k of the ratio R(pos)
l (k) =

f 2
l (0)/ f 2

l, c(0) for the positron wave functions at l = 0 and several 
values of Z .

The large difference between R(pos)
0 and unity begins at k � Z . 

This is due to repulsion of the positron potential at small distances, 
so that the normalization of the positron wave function in the 
atomic field is determined by the distances r ∼ 1/β . The proper-
ties of wave functions with l �= 0 are similar to the case l = 0. Note 
that the influence of the polarization potential on behavior of the 

q

q

d

3

Fig. 7. Dependence of R(pos)
0 (k) on k for the positron wave functions at Z = 60 (solid 

curve), Z = 40 (dotted curve), and Z = 20 (dash-dotted curve).

positron wave functions is insignificant. For the case of positron, 
the exchange interaction is absent, since it is related to identity of 
atomic electrons and an incoming particle.

4. Phenomenological approach to description of f0(0) for 
electron and positron

In Refs. [6–8], a phenomenological approach was proposed to 
describe f0(0) in an atomic field. In this approach, in the case 
of electrons f0(0) is calculated from f0, c(0) by replacing p → p1, 
where p2

1/2 = p2/2 − Va . In the case of positrons f0(0) is calcu-
lated from f0, c(0) by replacing q → q1, where q2

1/2 = q2/2 + Va , 
and Va = 1.365 Zβ is the potential of atomic electrons at small dis-
tances. Naturally, such an approach for electrons can only be used 
for p ≥ √

2Va . The dependence of R̃(el)
0 (p) and R̃(pos)

0 (q) on p and 
is shown in Fig. 8. The functions R̃(el)

0 (p) and R̃(pos)
0 (q) are ob-

tained from R(el)
0 (p) and R(pos)

0 (q) by the replacement p → p1 and 
 → q1 in the corresponding functions f 2

0, c(0).
It is seen that the use of phenomenological approach for elec-

trons and positrons at k � Z is not justified. For l �= 0 the situation 
does not change qualitatively.

5. Cross section of non-relativistic e+e− pair photoproduction in 
an atomic field

Let us discuss the effect of screening on the cross section of 
e+e− pair production in an atomic field by a photon of energy 
ω at ω − 2me � me . In this section, we use the units h̄ = c = 1. 
This cross section, summed over the polarizations of electron and 
a positron, has the form [15]

σ = αpqεpεq dεp d
p d
q

ω(2π)4

∑
σ1,2=±1

|Tσ1 , σ2 |2 ,

Tσ1 , σ2 =
∫

d3r eik·r Ū (out)
p, σ1 (r) (γ · eμ) V (in)

q, σ2(r) , (6)

where p and q are the electron and positron momenta, εp and 
εq = (ω− εp) are their energies, k is the photon momentum, eμ is 
the photon polarization vector, μ is its helicity,

γ are the Dirac matrices, U (out)
p, σ1 (r) is a positive-frequency so-

lution of the Dirac equation in an atomic field, which at large 
distances contains a plane wave and a converging spherical wave, 
V (in)

q, σ2 (r) is a negative-frequency solution of the Dirac equation in 
an atomic field, which at large distances contains a plane wave 
and a diverging spherical wave. The cross section summed over 
the polarizations of electron and positron is independent of pho-
ton polarization. Therefore, for simplicity of calculations, we chose 



P.A. Krachkov and A.I. Milstein Physics Letters B 846 (2023) 138224

Fig. 8. Dependence of the function ̃R(el)
0 (p) on p (left figure) and ̃R(pos)

0 (q) on q (right figure) for Z = 60 (solid curve), Z = 40 (dashed curve) and Z = 20 (dash-dotted curve).
the circular polarization of photon. Note that for a neutral atom the 
plane wave is not distorted, in contrast to the case of the Coulomb 
field.

The wave functions U (out)
p, σ (r) have the form [15]

U (out)
p, σ (r) = 4π

2p

∑
l,m

ilY ∗
l,m−σ/2(np)√

2l + 1

×
[

e−iδ(−)

l
√

l + 1/2 + mσ

(
f (−)

l 
l+1/2, l,m

g(−)

l 
l+1/2, l+1,m

)

− σ e−iδ(+)

l
√

l + 1/2 − mσ

(
f (+)

l 
l−1/2, l,m

−g(+)

l 
l−1/2, l−1,m

) ]
. (7)

Here f (±)

l (r) and g(±)

l (r) are the radial components of the positive-
frequency wave function, Yl,M(n) are spherical functions, and 

 j,l,m(n) are spherical spinors. The asymptotics of f (±)

l (r) and 
g(±)

l (r) at large distances are(
f (±)

l
g(±)

l

)
→

r→∞
2

r
√

2εp

( √
εp + me sin(pr − lπ/2 + δ

(±)

l )√
εp − me cos(pr − lπ/2 + δ

(±)

l )

)
. (8)

Thus, the phases δ(±)

l are determined by the behavior of solutions 
at large distances, and the potential of atomic electrons makes a 
significant contribution to these phases.

The wave functions V (in)
q, σ (r) have the form

V (in)
q, σ (r) = 4π

2q

∑
L,m

i−L Y ∗
L,m−σ/2(nq)√

2L + 1

×
[

ei�(−)
L

√
L + 1/2 + mσ

(
G(−)

L 
L+1/2, L+1,m

−F (−)
L 
L+1/2, L,m

)

+ σ ei�(+)
L

√
L + 1/2 − mσ

(
G(+)

L 
L−1/2, L−1,m

F (+)
L 
L−1/2, L,m

) ]
. (9)

Here F (±)
L (r) and G(±)

L (r) are the radial components of the 
negative-frequency wave function, which have asymptotics at large 
distances(

F (±)
L

G(±)
L

)
→

r→∞
2

r
√

2εq

( √
εq + me sin(qr − Lπ/2 + δ

(±)
L )

−√
εq − me cos(qr − Lπ/2 + δ

(±)
L )

)
.

(10)

The main contribution to the integral over r in (6) comes from 
distances r ∼ λC , so that for a non-relativistic electron and positron 
pr � 1, qr � 1. As a result, the photoproduction cross section of a 
4

non-relativistic e+e− pair is determined by the orbital angular mo-
menta l = 0, 1 and L = 0, 1. In this case, it is necessary to take into 
account all the components of the wave functions, f (±)

l , g(±)

l , F (±)
L , 

and G(±)
L , which can be expanded in pr, qr, and Zα. In addition, in 

the wave functions for j = 1/2 it is necessary to make the replace-
ment (pr)γ −1 → 1 − (Zα)2 ln(pr)/2, where γ = √

1 − (Zα)2. As 
for the phases δ(±)

l and �(±)
L , they can be considered in the non-

relativistic approximation, in which δ(+)

l = δ
(−)

l and �(+)
L = �

(−)
L . 

As a result, the differential cross section is independent of the 
phases δ(±)

l and �(±)
L :

dσ = α(Zα)2 pq d
p d
q dεp

16(2π)2m5
e

×
{

C (el)
0 (p)C (pos)

0 (q)R(el)
0 (p)R(pos)

0 (q)
9π2

16
(Zα)2

+ p2

m2
e

C (el)
1 (p)C (pos)

0 (q)R(el)
1 (p)R(pos)

0 (q) sin2 θp

+ q2

m2
e

C (el)
0 (p)C (pos)

1 (q)R(el)
0 (p)R(pos)

1 (q) sin2 θq

}
. (11)

Here C (el)
0,1 (p) and C (pos)

0,1 (q) are defined in (2) and (5), ηk = mZα/k, 
θp is the angle between vectors p and k, θq is the angle between 
vectors q and k, the functions R(el)

l (p) and R(pos)
L (q) are discussed 

in previous sections. Integrating (11) over the angles of vectors p
and q, we obtain

dσ = α(Zα)2 pq dεp

4m5
e

×
{

C (el)
0 (p)C (pos)

0 (q)R(el)
0 (p)R(pos)

0 (q)
9π2

16
(Zα)2

+ 2p2

3m2
e

C (el)
1 (p)C (pos)

0 (q)R(el)
1 (p)R(pos)

0 (q)

+ 2q2

3m2
e

C (el)
0 (p)C (pos)

1 (q)R(el)
0 (p)R(pos)

1 (q)

}
. (12)

Note that the obtained results (11) and (12) are universal and in-
dependent of the explicit form of the atomic potential.

The case of the Coulomb field corresponds to the substitution 
R(el)

l (p), R(pos)
l (q) → 1. After that the results coincide with that of 

[12], in which the errors made in the well-known work [9] were 
corrected. Since the dependence of R(el)

0 (p) on p differs from the 
dependence of R(el)

1 (p), as well as the dependence on q of R(pos)
0 (q)

and R(pos)
(q), then the angular dependence of the cross section dσ
1
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Fig. 9. Dependence on k of functions R(el)
1 (k)/R(el)

0 (k) (solid curve) and 
R(pos)

1 (k)/R(pos)
0 (k) (dashed curve) for Z = 40.

in the atomic field does not coincide with the angular dependence 
of the cross section in the Coulomb field. Fig. 9 shows the depen-
dence on k of the ratios R(el)

1 (k)/R(el)
0 (k) and R(pos)

1 (k)/R(pos)
0 (k).

6. Conclusion

In this paper, we study the influence of screening on the be-
havior of electron and positron non-relativistic wave functions in 
the continuous spectrum at small distances. It is shown that the 
asymptotic behavior of the electron wave functions is significantly 
affected not only by the static potential of atomic electrons, but 
also by the polarization potential and the exchange interaction. 
For positrons, the effect of polarization potential on the behavior 
of wave functions is not significant. A simple analytical formula 
is obtained for the differential cross section of e+e− pair photo-
production in an atomic field in the near-threshold region. The 

results (11) and (12) for this cross section are universal and in-
dependent of the explicit form of the atomic potential. It is shown 
that screening significantly affects the cross section.
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