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A R T I C L E I N F O A B S T R A C T

Editor: A. Ringwald We calculate the total Born cross section of the 𝑒+𝑒−-pair production by an electron in the field of a nucleus 
(trident process) using the modern multiloop methods. For general energies we obtain the cross section in terms 
of converging power series. The threshold asymptotics and the high-energy asymptotics are obtained analytically. 
In particular, we obtain an additional contribution to the Racah formula due to the identity of the final electrons. 
Besides, our result for the leading term of the high-energy asymptotics reveals a typo in an old Racah paper.
1. Introduction

The process of the 𝑒+𝑒−-pair production by an electron in the field 
of a nucleus 𝑒−𝑍 → 𝑒−𝑍𝑒+𝑒− (trident process) is one of the basic pro-

cesses of interaction of high-energy electrons with matter. Theoretical 
and experimental studies of this process have a long history [1–6].

First theoretical results for the total Born cross section in the leading 
logarithmic approximation were obtained by Landau and Lifshitz [2]

and, independently, by Bhabha [3]. A little bit later the paper by Racah 
[1] appeared, where the total Born cross section of this process was 
obtained up to power corrections. The Racah result reads

𝜎𝑒−𝑍→𝑒−𝑍𝑒+𝑒− =𝛼
2(𝑍𝛼)2

𝜋𝑚2

(
28
27𝐿

3 − 178
27 𝐿

2 +
(
191
81 + 𝜋2

27

)
𝐿

+ 683𝜋2
162 − 3781

486 − 4𝜋2 ln2
9 + 79𝜁3

9

)
+(1∕𝛾) . (1)

Here 𝐿 = ln(2𝛾), 𝑚 and 𝛾 are the electron mass and its relativistic factor 
in the nucleus rest frame. Note that the above formula does not take into 
account the identity of the two final electrons. Meanwhile, this account 
is expected to modify the coefficients in front of 𝐿1 and 𝐿0 terms.

In the present paper we calculate the total Born cross section of the 
trident process. We obtain the exact result in terms of convergent power 
series with analytic coefficients, which allows us to determine analyt-

ically both the threshold asymptotics and the high-energy asymptotics 
of the cross section. In particular, we find that the contribution due to 

* Corresponding author.

the identity of the final electrons indeed modifies the ∝ 𝐿1 and ∝ 𝐿0

terms. We also uncover a typo in the Racah formula which results to 
the incorrect coefficient 799 in front of 𝜁3 (the correct one is 18518 ).

2. Details of calculation

The total cross section of the trident process is determined by the 
three-loop cut diagrams depicted in Fig. 1. These diagrams fall into 
three groups:

• Diagrams containing a cut fermion loop with four photon lines at-

tached.

• Diagrams containing a cut fermion loop with two photon lines at-

tached.

• Diagrams without fermion loop.

It is natural to call the corresponding contributions 𝐶 -even, 𝐶 -odd, and 
“twisted” contributions, respectively. The latter contribution appears 
due to the particle identity. We will denote these contributions by 𝜎𝐸 , 
𝜎𝑂 , and 𝜎𝑇 , so that

𝜎𝑒−𝑍→𝑒−𝑍𝑒−𝑒+ = 𝜎𝐸 + 𝜎𝑂 + 𝜎𝑇 . (2)

Let 𝑝1, 𝑝2,3, and 𝑝4 denote the momenta of the initial electron, of two 
final electrons and of the final positron, respectively. Then the cut gray 
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Fig. 1. Diagrams corresponding to the total Born cross section 𝑍𝑒 + 𝑒− →𝑍𝑒 + 𝑒− + 𝑒− + 𝑒+. The two upper left diagrams correspond to the 𝐶 -even contribution, the 
three upper right diagrams correspond to the 𝐶 -odd contribution, and the remaining ten diagrams correspond to the “twisted” contribution. Each of the 7 framed 
diagrams corresponds to a specific LiteRed basis.
line corresponds to the delta-function 𝛿(𝜀1 − 𝜀2 − 𝜀3 − 𝜀3), expressing 
the energy conservation (here 𝜀𝑖 = 𝑝0𝑖 =

√
𝒑2
𝑖
+𝑚2).

We perform Dirac algebra using FORM [7] and express the three con-

tributions in terms of scalar three-loop integrals with cut denominators. 
Each of the three-loop scalar Feynman integrals appearing in the cal-

culation falls into one of the seven families of integrals corresponding 
to the framed diagrams in Fig. 1. We perform an IBP reduction using

LiteRed and FIRE [8,9] and identify 74 unique master integrals. We 
introduce the dimensionless parameter 𝑥 = 𝑚2∕𝜀21 = 1∕𝛾2 and derive a 
differential equation with respect to 𝑥.

Using Libra [10] and criterion of Ref. [11], we have checked that 
the differential system is irreducible to 𝜖-form in a sole 3 × 3 block, 
corresponding to the three-particle phase-space integral in the static 
field,

𝑗1 = = ∫
𝑑𝒑2
2𝜀2

𝑑𝒑3
2𝜀3

𝑑𝒑4
2𝜀4
𝛿(𝜀1 − 𝜀2 − 𝜀3 − 𝜀4) , (3)

and its first and second derivatives with respect to 𝑥. We pass to normal-

ized Fuchsian form and fix the boundary conditions in the asymptotics 
𝑥 → 1∕9, corresponding to the threshold (𝜀1 = 3𝑚). Note that the phys-

ical region corresponds to 𝑥 ∈ (0, 1∕9). The only non-zero boundary 
constant appears to be the coefficient in the leading asymptotics of 𝑗1, 
Eq. (3), at the threshold. Then we construct an 𝜖-regular basis [12] fol-

lowing the approach described in Ref. [13]. Once we find the 𝜖-regular 
basis we can safely put 𝜖 = 0 in the differential equations and bound-

ary conditions for it. This is exactly the rationale behind passing to an 
𝜖-regular basis. When searching for the 𝜖-regular basis, it is convenient 
to pass to the new variable 𝑧,

𝑥 =
(
1−𝑧2
1+𝑧2

)2
, 𝑧 =

√
1−

√
𝑥

1+
√
𝑥
,

1√
2
< 𝑧 < 1 . (4)

Then the matrix on the right-hand side of the resulting system at 𝜖 = 0
has many zeros as demonstrated in Fig. 2. In particular, apart from 
the leftmost upper 3 × 3 block, all the diagonal elements are zero. The 
non-zero matrix elements are rational functions of 𝑧, therefore, we can 
express all elements of the regular basis as onefold integrals of polylog-

arithms and the integral 𝑗1.

However, the resulting expressions appear to be quite complicated 
2

and we choose instead to use the Frobenius method. In order to apply 
Fig. 2. Plot of the matrix on the right-hand side of the differential system for 
the regular basis. Black squares denote nonzero matrix elements.

this method, we pass to the variable 𝜏 which varies from 0 to ∞ in the 
physical region:

𝑥 =
(
1−𝜏
3+𝜏

)2
, 𝜏 = 1−3

√
𝑥

1+
√
𝑥
, 0 < 𝜏 < 1 . (5)

The point 𝜏 = 0 corresponds to the threshold, while 𝜏 = 1 corresponds 
to the high-energy limit.

Then we construct the generalized power series for the evolution 
operator 𝑈 (𝜏, 𝜃) around 𝜃 = 0 and 𝜃 = 1:

𝑈 (𝜏,0) =
∑ 𝑁0−1∑

𝑈
(0)
𝑛+𝜈𝜏

𝑛+𝜈 +(𝜏𝑁0+𝜈), (6)
𝜈∈{0, 32 }
𝑛=0
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𝑈 (𝜏,1) =
𝑁1−1∑
𝑛=0

7∑
𝑘=0

𝑈
(1)
𝑛,𝑘
𝜏
𝑛 ln𝑘 𝜏 +(𝜏𝑁1 ), (7)

where 𝜏 = 1 − 𝜏 and the coefficients 𝑈 (0)
𝑛+𝜈 and 𝑈 (1)

𝑛,𝑘
satisfy a finite-order 

recurrence relation automatically derived using Libra. Then the spe-

cific solution reads

𝑱 (𝜏) =𝑈 (𝜏,0)𝑪0 =𝑈 (𝜏,1)𝑪1 , (8)

where 𝑪0 and 𝑪1 are the two columns of boundary constants. Note 
that 𝑪0 is expressed via the threshold asymptotics of the phase-space 
integrals 𝑗1, which was calculated analytically. Then we can find 𝑪1
numerically by matching the two expansions at some point 𝜏0 ∈ (0, 1):

𝑪1 =𝑈−1(𝜏0,1)𝑈 (𝜏0,0)𝑪0. (9)

Our goal was to obtain high-precision values for 𝑪1 in order to recog-

nize their analytic form using PSLQ algorithm [14]. In order to evaluate 
𝑈 (𝜏0, 1) and 𝑈 (𝜏0, 0) with comparable precision, we have to choose 𝑁1
and 𝑁0 so that

𝜏
𝑁0
0 ≈ (1 − 𝜏0)𝑁1 . (10)

Since the expansion of 𝑈 (𝜏, 1) appears to be much more computation-

ally expensive than that of 𝑈 (𝜏, 0), we choose 𝜏0 = 9∕10, 𝑁0 = 6700, 
𝑁1 = 307. This choice gives us about 300 digits of 𝑪1 within about 10 
minutes of computation time for each 𝑈 (𝜏0, 1) and 𝑈 (𝜏0, 0). Then we 
use PSLQ to obtain the analytic form of 𝑪1 in terms of alternating mul-

tiple zeta values.

3. Results and conclusion

The results obtained within the described approach are the follow-

ing:

• Threshold asymptotics with analytic coefficients to arbitrary order 
in the parameter 𝜏 = 𝜀1−3𝑚

𝜀1+𝑚
= 𝛾−3

𝛾+1 .

• High-energy asymptotics with analytic coefficients to arbitrary or-

der in the parameter 𝑚∕𝜀1 = 1∕𝛾 .

• High-precision numerical results for arbitrary energies.

The threshold asymptotics of 𝜎𝐸 , 𝜎𝑂 , and 𝜎𝑇 read

𝜎𝐸 =𝛼
2(𝑍𝛼)2

𝑚2

[
304𝜏9∕2
945

− 64𝜏11∕2
10395

+ 15040𝜏13∕2
27027

− 9472𝜏15∕2
405405

+ (
𝜏17∕2

)]
, (11)

𝜎𝑂 =𝛼
2(𝑍𝛼)2

𝑚2

[
8𝜏7∕2
35

− 232𝜏9∕2
945

+ 512𝜏11∕2
1485

− 1568𝜏13∕2
6435

+ 11528𝜏15∕2
61425

+ (
𝜏17∕2

)]
, (12)

𝜎𝑇 =𝛼
2(𝑍𝛼)2

𝑚2

[
−4𝜏7∕2

21
+ 76𝜏9∕2

135
− 1856𝜏11∕2

1155
+ 395632𝜏13∕2

135135

− 121276𝜏15∕2
25025

+(
𝜏17∕2

)]
. (13)

The high-energy asymptotics read

𝜎𝐸 = 𝛼2(𝑍𝛼)2

𝜋𝑚2{
28
27
𝐿3− 178

27
𝐿2+

(
430
27

− 25𝜋2
18

)
𝐿+

68𝜁3
3

+ 13
9
𝜋2 ln 2+ 877𝜋2

324
− 512

27

+ 1
𝛾

[
− 27𝜋2

2
𝐿

2 𝜋2
]

1
[
𝐿5 5𝐿4 (

179 5𝜋2
)

3

+

−

+

𝜎𝑂

{(

+

+

−

𝜎𝑇

−

−

+

+

−

−

−

in 
sio

we

Eq

ter

co

wi

thi

we

ter

Eq

Str

pro

fac

pro

Re

cro

pro

𝜀1
3

+ 36𝜋 ln 2 −
4

+
𝛾2 3

−
6

+
27

−
9

𝐿
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4𝜁3 −

655
54

+ 7𝜋2
6

)
𝐿2 +

(
5𝜋4
18

− 16𝜁3

25𝜋2
2

− 3907
54

)
𝐿−

47𝜁5
2

−
11𝜋2𝜁3

6
+

476𝜁3
3

+ 𝜋4

24
− 286𝜋2

81
− 15161

108

131
9
𝜋2 ln 2

]
+(

1
𝛾3

)}
, (14)

= 𝛼2(𝑍𝛼)2

𝜋𝑚2

77𝜋2
54

− 1099
81

)
𝐿−

223𝜁3
18

+ 163𝜋2
108

+ 5435
486

− 17
9
𝜋2 ln 2 + 1

𝛾

3𝜋2
4

1
𝛾2

[
− 7𝐿4

18
+ 11𝐿3

9(
5𝜋2
18

− 415
54

)
𝐿2 +

(
901
162

− 𝜋2

18

)
𝐿−

13𝜁3
2

− 17𝜋4
360

+ 143𝜋2
324

3935
972

− 2
9
𝜋2 ln 2

]
+(

1
𝛾3

)}
, (15)

= 𝛼2(𝑍𝛼)2

𝜋𝑚2

{(
−
748𝜁3
105

− 2729
630

+ 13591𝜋2
4725

− 16
7
𝜋2 ln 2

)
𝐿+

93𝜁5
8

7𝜋2𝜁3
8

−
2048Li4

(
1
2

)
35

+ 101𝜋4
105

6051𝜁3
175

+ 3007𝜋2
4725

− 5282
1575

− 256 ln4 2
105

+ 496
105

𝜋2 ln2 2 − 1242
175

𝜋2 ln 2

1
𝛾

27𝜋2
8

+ 1
𝛾2

[
𝐿5

15
− 5𝐿4

4
+ 5𝐿3

18(
−2𝜁3 −

91
4

+ 11𝜋2
36

)
𝐿2 +

(
88𝜁3
21

− 493
126

+ 6707𝜋2
3780

+ 𝜋4

15

166
105

𝜋2 ln 2
)
𝐿−

77𝜁5
4

+
11𝜋2𝜁3
12

1144Li4

(
1
2

)
35

+ 9809𝜋4
15120

+ 344𝜋2
105

ln2 2 − 143 ln4 2
105

+
257𝜁3
140

434𝜋2
45

ln2 + 2836𝜋2
4725

− 746
21

]
+(

1
𝛾3

)}
. (16)

Finally, the functions 𝜎𝐸, 𝜎𝑂, 𝜎𝑇 for arbitrary 𝜏 = 𝛾−3
𝛾+1 are presented 

Fig. 3. The solid graphs were obtained using deep Frobenius expan-

ns near 𝜏 = 0 and 𝜏 = 1.

We note that the leading terms underlined in Eqs. (14) and (15)

re also considered by Racah in Ref. [1]. While we find agreement of 
. (14) with the sum of Eqs. (59) and (66) of Ref. [1], the underlined 
ms in Eq. (15) slightly differ from Eq. (70) of Ref. [1]. Namely, the 
efficient in front of 𝜁3 is −125

9 in Ref. [1], which is to be compared 
th −223

18 in Eq. (15). Fortunately, it is easy to identify the place where 
s typo appeared: simply integrating Eq. (69) of Ref. [1] over 𝑑𝑡∕𝑡
 recover our result. It turns out that the logarithmically amplified 
m in the leading asymptotics of the contribution 𝜎𝑇 , underlined in 
. (16) can also be found in old papers. Namely, Kuraev, Lipatov and 
ikman in Ref. [15] considered the effect of electron identity in the 
cess 𝑒+𝑒− → 𝑒+𝑒+𝑒−𝑒−. After taking into account the combinatorial 
tor 2 due to the appearance of two pairs of identical particles in this 
cess instead of one pair in 𝑒−𝑍 → 𝑒−𝑍𝑒−𝑒+ we find agreement with 

f. [15].

Finally, we note that the leading high-energy asymptotics of the 
ss sections suffice only for rather high energies. In particular, they 
vide 5% accuracy at 𝜀1 ≳ 200𝑚, to be compared with 𝜀1 ≳ 50𝑚 and 
≳ 17𝑚 when one takes into account the 1∕𝛾 and 1∕𝛾2 corrections, 
respectively.
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Fig. 3. Cross sections 𝜎𝐸, 𝜎𝑂, 𝜎𝑇 as functions of 𝜏 . Dashed and dash-dotted curves correspond to the threshold, Eqs. (11)-(13) and high-energy, Eqs. (14)-(16), 
asymptotics, respectively.
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