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The Eisenhart lift establishes a fascinating connection between non-relativistic and 
relativistic physics, providing a space-time geometric understanding of non-relativistic 
Newtonian mechanics. What is still little known, however, is the fact that there is a 
Hilbert space representation of classical mechanics (also called Koopman-von Neumann 
mechanics) that attempts to give classical mechanics the same mathematical structure that 
quantum mechanics has. In this article, we geometrize the Koopman-von Newmann (KvN) 
mechanics using the Eisenhart toolkit. We then use a geometric view of KvN mechanics to 
find transformations that relate the harmonic oscillator, linear potential, and free particle 
in the context of KvN mechanics.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Attempts to understand physical interactions in terms of geometry began shortly after Einstein’s theory of general relativ-
ity in 1915 (although, in fact, attempts to understand mechanics geometrically have a much richer history, see, for example, 
[63]). In 1928, Eisenhart proposed a variant of the geometrization of the Newtonian equations of motion of classical mechan-
ics with d degrees of freedom in terms of geodesics of a (d + 2)-dimensional Lorentzian manifold with a Brinkmann-type 
metric. This formalism is called the Eisenhart lift, where the word lift indicates the necessity to introduce extra dimensions 
to achieve proper geometrization. However, surprisingly, Eisenhart’s original publication [37] did not attract much attention 
and had fallen into oblivion until the idea was rediscovered in the modern coordinate-independent approach (the so-called 
Bargmann structure approach) by Duval in 1985 [32,33,70]. This time these new advances have attracted attention and 
led to further progress in this direction, see [15,23,24,30,40,55,96] and references therein for some modern applications, 
including an important relation between the relativistic field equation and the Schrödinger equation [23,32].

Newtonian mechanics provides us with the mathematical toolkit to understand the classical world. However, the ad-
vent of quantum mechanics required a unique mathematical formalism associated with it, different from the mathematical 
structure used in classical physics. The change in the mathematical structure during the transition from the microscopic 
world (the quantum world) to the macroscopic world (the classical world) is still a mystery. Koopman-von-Newmann (KvN) 
mechanics arose as a result of attempts to formulate both classical and quantum mathematical formalism on the same basis 
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of Hilbert spaces. The search for such a unified mathematical basis for both quantum and classical mechanics is still the 
subject of ongoing research, and two different points of view prevail in the scientific community. While some authors prefer 
to have a symplectic view of quantum mechanics [6,7,10,50,64,65,75], others tend to move in the direction indicated by 
Koopman and von Newmann [60,90] of establishing a Hilbert space representation of classical mechanics [2,25,46,47,66,67].

The Eisenhart lift of Newtonian mechanics is well known and studied. However, in this article we will develop the 
Eisenhart lift of the Koopman-von Neumann mechanics and point out some applications of the introduced formalism.

2. Emergence of classicality from quantum world

2.1. Emergence of classical mechanics I

Initially, classical mechanics, in the non-relativistic realm, was usually understood in the Newtonian sense. However, over 
time, classical mechanics has evolved from Newtonian formalism to mathematically more complex Lagrangian and Hamil-
tonian formulations that have given us a deep understanding of the symmetry, mathematical structures, etc. of classical 
dynamical systems. The Hamiltonian formalism, in particular, played a significant role in the construction of quantum me-
chanics and the corresponding mathematical apparatus in a Hilbert space. Both classical and quantum theories find their 
application in explaining the macroscopic and microscopic worlds, respectively. However, the emergence of the classical 
macroscopic world from the underlying microscopic quantum world is not so straightforward to understand. In particular, 
the emergence of classicality from quantum mechanics is still a subject of debate [45]. We would not be completely satisfied 
with either a naively attractive way of obtaining classicality from quantum theory using the h̄ → 0 limit [74], nor reasoning 
based on the Ehrenfest theorem [79], nor any approximate methods or arguments proposed by decoherence experts [11,77]. 
This is due to the fact that all of them are fraught with some conceptual problems and/or problems of mathematical rigor, 
see, for example, [16,17,52,58].

Nevertheless, ignoring possible mathematical and conceptual subtleties, let us briefly outline the use of the h̄ → 0 limit 
to derive classicality from a quantum theory. It might be expected that after such a limiting procedure we would obtain 
Newton’s equation directly from the Schrödinger equation, which, however, is not the case and we actually arrive at the 
Hamilton-Jacobi (HJ) equation [58]. The procedure for obtaining the HJ equation includes the Madelung substitution ψ =√

ρ eiS/h̄ in the Schrödinger equation and the separation of the real and imaginary parts of the resulting equation. Then, 
in the limit h̄ → 0, we get a system whose second equation is formally identical to the Hamilton-Jacobi equation (Einstein 
summation convention is used):

∂ρ

∂t
+ ∂

∂xi
(ρvi) = 0, vi = 1

m

∂ S

∂xi
,

∂ S

∂t
+ 1

2m

(
∂ S

∂xi

)2

+ V (x, t) = 0. (1)

However, the system (1) still describes the probabilistic situation of the statistical ensemble, as evidenced by the presence 
of the first equation, and not a Newtonian particle moving along a certain trajectory. Indeed, it can be shown [78,89] that if 
we start with the Liouville equation in phase space

∂ f (�x, �p, t)

∂t
= {

H(�x, �p, t), f (�x, �p, t)
}
,

{H, f } = ∂ H

∂xi

∂ f

∂ pi
− ∂ H

∂ pi

∂ f

∂xi
, (2)

and make the hydrodynamic substitution f (�x, �p, t) = ρ(�x, t) δ(�p − m�v(�x, t)), one can obtain equations equivalent to the 
system (1) from (2).

To obtain a deterministic limit of (1) and hence of Schrödinger equation, we must assume that ρ(�x, t) takes the form of 
a delta function peaked at the Newtonian trajectory. More precisely, the procedure is as follows [58]. First it can be shown 
that the ansatz

ρ(�x, t) =
(

1

πε

)3/2

exp

{
−1

ε

(�x −�r(t))2
}
, (3)

which represents δ(�x −�r(t)) in the limit ε → 0, is under this limit a valid solution of the first continuity equation of (1) for 
arbitrary S . Then Hamilton equations are obtained for averaged values x̄k(t) =

∫
d�xρ(�x, t) xk and p̄k(t) =

∫
d�xρ(�x, t) ∂ S(�x,t)

∂xk
. 

Finally, it is shown that in the limit ε → 0 we have x̄k(t) = rk(t), p̄k(t) = mṙk(t), and, so it follows from the Hamilton 
equations that rk(t) is a Newtonian trajectory.

2.2. Emergence of classical mechanics II

There is a subtlety in the derivation of the classical limit, evident from the previous discussion: classicality does not 
arise simply as the limit h̄ → 0 (or the limit m → ∞, where m is the mass of the particle) of the Schrödinger equation. This 
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subtlety was noted already by Einstein in his essay on the occasion of Born’s retirement from his Chair at the University 
of Edinburgh in 1952 [12]. Einstein considered a free particle in an energy eigenstate moving between two reflecting walls 
and remarked that in the classical limit m → ∞ (but with the energy fixed) the quantum mechanical description does 
not go over into the classical description of a body with a well-defined center of mass that oscillates between the walls. 
Rather, in this limit, the wave function describes the behavior of an ensemble of identical bodies in the sense of classical 
statistical mechanics. In his answer, Born pointed out, in line with point of view [58] outlined above, that one should take 
a sharply localized wave packet rather than an energy eigenstate before passing to the macroscopic limit [12]. However, 
Einstein insisted that the quantum wave function must be considered to describe an ensemble of similar systems, and 
cannot be considered as a complete description of an individual system, as advocated by Bohr and subsequently accepted in 
the canonical Copenhagen interpretation of quantum mechanics [12,36]. From Einstein’s point of view, in a proper quantum 
ontology, the classical description must be restored in the macroscopic limit for all solutions of the Schrödinger equation, 
not just for a limited class, and he emphasized that this requires the adoption of an ensemble interpretation in which 
there are no difficulties regarding the classical limit [12]. An interesting counterexample to Einstein’s claim that the classical 
description must always be restored in the macroscopic limit is provided by the cryogenic version of the Weber bar (a 
gravitational wave detector), which must be treated quantum mechanically even though it may weigh over a ton [97].

In fact, it is quite natural to expect that the probabilistic picture inherent in quantum mechanics in the classical limit 
corresponds to a similar probabilistic picture in the phase space, as indicated by the Liouville equation. It can be easily 
checked that, since the Liouville equation is linear in derivatives, the square root of the phase space probability density 
ψ(�x, �p, t) = √

f (�x, �p, t) obeys the same Liouville equation (2). If we assume that ψ(�x, �p, t) is complex, then it can be viewed 
as a kind of wave function (in phase space) attributed to a classical particle (or system), and the Liouville equation can be 
rewritten in the Schrödinger-like form

ih̄
∂ψ(q, p, t)

∂t
= L̂ ψ(q, p, t) (4)

where L̂ is the Liouville operator given by

L̂ = ih̄{H, } = ih̄

(
∂ H

∂q

∂

∂ p
− ∂ H

∂ p

∂

∂q

)
. (5)

Using this fact a quantum-like Hilbert space formalism, pioneered by Koopman and von Neumann [60,90], can be developed 
for classical statistical mechanics. The fundamental difference between the quantum and classical cases is that [59] in the 
latter case, if we make the Madelung substitution for the classical wave function, we get decoupled differential equations 
for √ρ and S , in contrast to the quantum case.

Using the fact that in the classical limit there is a mapping between the Wigner quasi-probability distribution function 
and the KvN wave function [19], it can be shown that the KvN equation naturally arises from the quantum picture in the 
classical limit, if we start from the representation of quantum mechanics in the phase space instead of configuration space.

The Wigner function is given by (for simplicity, one-dimensional systems are considered throughout)

W (q, p) = 1√
2πκh̄

∫
eipy/κh̄	∗(q + y

2
, t)	(q − y

2
, t)dy, (6)

where the parameter κ was introduced, κ → 0 corresponding to the classical limit when the coordinate and momentum 
operators must commute. Note that the last condition is different from the condition h̄ → 0 because h̄ is also present as 
a multiplier of the time derivative in the Schrödinger equation. Thus, the limit h̄ → 0 means more than the criterion for 
the commutativity of the position and momentum operators in the classical limit, and differs from the limit κ → 0, which 
ensures the commutativity of these operators [18].

Let y = κh̄λp . The above equation can be re-written in terms of λp

W (q, p) =
√

κh̄

2π

∫
eipλp 	∗(q + κh̄λp

2
, t)	(q − κh̄λp

2
, t)dλp . (7)

Using the following change of variables,

u = q − κh̄λp

2
, v = q + κh̄λp

2
, (8)

let us define ρ(u, v, t) = 	∗(v)	(u). Since 	(q, t) satisfies the time-dependent Schrödinger equation, it can be easily 
checked that ρ(u, v, t) satisfies the following equation

iκh̄
∂

∂t
ρ(u, v, t) = [Ĥu − Ĥ v ]ρ(u, v, t), (9)

where the Hamiltonians are Ĥu = (h̄κ)2

2m
∂2

∂u2 + V (u) and analogously for Ĥ v . Interestingly, equation (9) is reminiscent of the 
chiral decomposition method, in which the phase space variables are chosen in such a way that the Hamiltonian of the 
system decomposes into the difference of the Hamiltonians of two uncoupled systems [3,4,94].
3
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To represent Eq. (9) in the representation-independent operator form, we introduce generalized Bopp pseudo-differential 
operators [28,51]

û = q̂ − κh̄λ̂p

2
, v̂ = q̂ + κh̄λ̂p

2
,

p̂u = p̂ + κh̄λ̂x

2
, p̂v = p̂ − κh̄λ̂x

2
,

(10)

and assume the following commutation relations

[û, p̂u] = iκh̄, [v̂, p̂v ] = −iκh̄. (11)

In the κ → 0 limit, Eq. (11) and Eq. (10) suggest that 
[
q̂, p̂

] = 0. We assume that this commutativity holds even for nonzero 
κ so that q̂ and p̂ can be considered as classical position and momentum operators.

Eq. (11) will be ensured if, in addition to 
[
q̂, p̂

] = 0, the following set of commutation relations holds:[
q̂, λ̂x

]
= i,

[
p̂, λ̂p

]
= i,

[
λ̂p, λ̂x

]
= 0. (12)

Further we make the identification

λ̂x = P̂

h̄
, λ̂p = − Q̂

h̄
, (13)

and obtain the commutation relations with canonical pairs (q̂, P̂ ) and (Q̂ , p̂):[
Q̂ , p̂

]
= ih̄,

[
Q̂ , P̂

]
= 0,

[
p̂, P̂

]
= 0,[

q̂, Q̂
]

= 0,
[
q̂, p̂

] = 0,
[

q̂, P̂
]

= ih̄. (14)

The Hamiltonian Hqc = Ĥu − Ĥ v can be expressed in terms on operators Q̂ , P̂ , ̂q and p̂, as follows [18]:

Ĥqc = Ĥu − Ĥ v =
[

p̂2
u

2m
+ V

(
û
)] −

[
p̂2

v

2m
+ V

(
v̂
)]

= κ p̂ P̂

m
+ V

(
q̂ + κ Q̂

2

)
− V

(
q̂ − κ Q̂

2

)
.

(15)

As a result, in the (q, Q ) representation (when q̂ and Q̂ operators are diagonal), equation (9) can be written as

ih̄
∂

∂t
	 =

[
p̂ P̂

m
+ 1

κ
V

(
q + κ Q

2

)
− 1

κ
V

(
q − κ Q

2

)]
	, (16)

where 	(q, Q , t) is proportional to ρ(u, v, t) [18].
In the limit κ → 0, we get

ih̄
∂

∂t
ψK vN =

[
p̂ P̂

m
+ ∂V (q)

∂q
Q

]
ψK vN = ĤcψK vN , (17)

where Ĥκ→0
qc = Ĥc and ψK vN = 	(q, Q , t). The above equation is KvN equation in the (q, Q ) representation, where it is 

more quantum-like [80,87].
The Hamiltonian Ĥc can be further re-written in terms of classical Hamiltonian H and the KvN equation takes the 

following form

ih̄
∂

∂t
ψ = Ĥcψ =

(
∂ Ĥ

∂q
Q̂ + ∂ Ĥ

∂ p
P̂

)
ψ. (18)

Note that we have removed the subscript KvN from the wave function, and therefore ψ should be understood as the KvN 
wave function in what follows.

In the representation (q, p), according to commutation relations (14), P̂ and Q̂ are the following operators

P̂ = −ih̄
∂

∂q
, Q̂ = ih̄

∂

∂ p
, (19)

and we obtain the Liouville equation (4) in the Schrödinger-like form.
4
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Fig. 1. Emergence of KvN mechanics.

Therefore, the KvN formalism for the classical theory can be motivated by the quantum mechanical phase space formal-
ism based on the Wigner quasi-probability distribution function in the κ → 0 limit. See [78] for an alternative hydrodynamic 
motivation of the Madelung type, and [71] for an algebraic approach to KvN mechanics. We summarize the ideas presented 
in this section using Fig. 1.

2.3. Relationship between Newtonian mechanics and KvN mechanics

A description of classical mechanics in various forms is outlined in the previous subsections. It is well known that 
Lagrange’s equation of motion, as well as Hamilton’s equation of motion lead to Newton’s equation of motion. In this 
subsection, we will see how one can arrive at the classical Hamiltonian equation of motion starting from the KvN mechanics 
in the Heisenberg picture [27]. In the Heisenberg picture, the operators evolve as

�̂(t) = eiL̂t�̂(0)e−i L̂t (20)

leading to the following equation of motion

d�̂(t)

dt
= i[L̂, �̂(t)]. (21)

Assuming (q, p) representation, for diagonal (multiplicative) position and momentum operators we get

dq

dt
= i[L̂, q̂] = ∂ H(q, p, t)

∂ p
,

dp

dt
= i[L̂, p̂] = −∂ H(q, p, t)

∂q
, (22)

which are the Hamiltonian equation of motion in classical mechanics.
Another way to see that the KvN mechanics for definite initial values of q and p leads to Newtonian trajectories is the 

method of characteristics [91]. The KvN equation (17) is a linear partial differential equation ψt + p
m ψq − ∂V

∂q ψp = 0, whose 
characteristic curves are given in parametric form by a system of ordinary differential equations

dt

dτ
= 1,

dq

dτ
= p

m
,

dp

dτ
= −∂V

∂q
. (23)

The solution of (23) with initial values q(t0) = q0 and p(t0) = p0 are clearly a Newtonian trajectory q(q0, p0, t) =
qN (t), p(q0, p0, t) = m dqN

dt . The wave function ψ remains constant along characteristic curves. Therefore, if initially it is 
a delta-function localized around the initial values (q0, p0), it will remain a delta-function localized around the Newtonian 
trajectory (qN(t), pN (t)) at every instant of time t .

3. Eisenhart-lift and KvN mechanics

3.1. Eisenhart-lift: brief introduction

Minkowski’s four-dimensional (4D) representation of special relativity was an important step towards the geometrization 
of the theory, which further deepened our understanding of special relativity and played a crucial role in the creation of 
general relativity. A similar approach to classical mechanics [49] and Newtonian theory of gravity led to the Newton-Cartan 
5
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(NC) theory [26,49]. The geometrization of any theory introduces a mathematical structure with appropriate properties and 
symmetries. For example, in the case of special relativity, the geometrization procedure introduces the Minkowski structure 
(M, g), where M is the space-time manifold and g is the Lorentzian metric associated with it. The symmetry group of 
this space-time is the Poincaré group I S O (3, 1). Similarly, NC theory introduces the Gallilean structure (M, h, τ ), where 
M is a space-time manifold with a degenerate metric h and a nowhere vanishing 1-form τ . For a free particle (in 3D), the 
symmetry group is the Galilean group Gal(3, 1).

The Newton-Cartan theory, a fascinating approach to the geometrization of Newtonian gravity, is not a simple geometric 
theory because it has a more complex structure than Lorentzian space-time due to the presence of a degenerate metric 
structure: a separate metric for space, a separate metric for time, which do not merge into one actual space-time metric. In 
order to have a deeper understanding of the NC theory, further research led to a geometric formulation of Newtonian gravity 
based on gauging the Bargmann algebra (centrally extended Galilean algebra) and to a possible role of Newton-Cartan theory 
in non-relativistic applications of the AdS/CFT correspondence [8].

Motivated by the problem of transforming the quantization of classical systems into a rigorous mathematical procedure, 
Alexander Kirillov, Bertram Kostant and Jean-Marie Souriau independently initiated a geometric quantization program in 
the 1960s [56,57,61,84,85]. Forming a bridge between quantum mechanics and the representation theory of Lie groups, 
geometric quantization provides a differential-geometric method for constructing a quantum theory corresponding to a 
classical system [82]. For examples of interesting interplay between geometric quantization and KvN mechanics, see, for 
example, [1,20,59].

A by-product of such research was the formulation of classical mechanics in terms of Bargmann structures [32,62]. In 
fact, such a geometric embedding of the classical dynamics was already established by Eisenhart [37]. However, surprisingly, 
at that time this publication did not attract much attention from physicists [40].

The simplest way to explain Eisenhart lift is to use Hamiltonian approach [21,44]. Given a classical dynamical system 
with Hamiltonian

H = 1

2m

n∑
i, j=1

hij(q)pi p j + V (q, t), (24)

the first step is to promote time t to a dynamical variable (enlarge the configuration space from {qi} to {qi, t}). Since

t f∫
ti

L

(
q,

dq

dt
, t

)
dt =

σ f∫
σi

L

(
q,

q̇

ṫ
, t

)
ṫ dσ ,

where q̇i = dqi
dσ , ṫ = dt

dσ , the new Lagrangian takes the form (hij matrix is inverse of hij)

L̃(q, t, q̇, ṫ) =
⎡
⎣m

2

n∑
i, j=1

hij(q)q̇iq̇ j ṫ−2 − V (q, t)

⎤
⎦ ṫ

and the momentum variable canonically conjugate to time is

pt = ∂ L̃

∂ ṫ
= −

⎡
⎣m

2

n∑
i, j=1

hij(q)q̇iq̇ j ṫ−2 + V (q, t)

⎤
⎦ = −H .

Therefore, in order to turn time into a dynamical variable, we must impose a constraint

pt + H(q, p, t) = 0, (25)

which ensures reparametrization invariance with respect to the auxiliary parameter σ with the dimension of time [9,15].
Using q̇i = ṫ

m

∑n
j=1 hij p j , we find 

∑n
i=1 q̇i pi − L̃ = ṫ H(q, p, t). Therefore the new Hamiltonian is

H̃ =
n∑

i=1

q̇i pi + ṫ pt − L̃ = ṫ[pt + H(q, p, t)].

Because of the reparametrization invariance, ṫ remains arbitrary. Therefore, we can take ṫ = 1 and end up with the Hamil-
tonian

H̃ = pt + H(q, p, t) = pt + 1

2m

n∑
i, j=1

hij pi p j + V (q, t). (26)

Of course, this Hamiltonian vanishes due to the constraint (25), a situation analogous to the invariance under general 
coordinate transformations in general relativity [9].
6
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The main idea behind the Eisenhart lift is to introduce a new momentum ps conjugate to a dummy configuration 
space variable s to make the Hamiltonian homogeneous in canonical momenta and turn it into a geodesic Hamiltonian 
(homogeneous quadratic function of momenta) [21,44]. So we replace the Hamiltonian (26) with the homogenized version 
(in the following, we use natural units with h̄ = 1, c = 1, and assume that s has the dimension of time, so ps has the 
dimension of energy)

H = 1

2m

n∑
i, j=1

hij(q)pi p j + 1

m2
p2

s V (q, t) + 1

m
ps pt . (27)

Note that other conventions are also used in the literature: if ps is assumed to have the dimension of mass, then s has the 
dimension of action per mass [35], and if ps is assumed to be dimensionless, then s has the dimension of action [21].

Since s is a cyclic coordinate, ps is conserved and we can take ps = m. In this case, (27) reduces to (26). Thus, in fact, 
we have homogenized the constraint (25) to obtain a constraint that is quadratic in momenta [15]:

H = 1

2m

n+2∑
A,B=1

g AB p A pB = 0, (28)

where pn+1 = pt , pn+2 = ps and the nonzero components of the inverse metric are gij = hij , gn+1,n+2 = gn+2,n+1 = 1, 
gn+2,n+2 = 2V (q, t)/m.

Since(
0 1
1 2 V (q,t)

m

)−1

=
( −2 V (q,t)

m 1
1 0

)
,

the constraint (28) can be interpreted as a mass-shell condition for a massless particle in space-time with a Brinkmann-type 
metric

dS2 =
n∑

i, j=1

hij dqi dq j + 2ds dt − 2
V (q, t)

m
dt2. (29)

Newtonian trajectories in the subspace (qi, t) (space-time) are projections of zero geodesics in the Bargmann space (qi , t, s)
with the Eisenhart metric (29) [35,95].

There is some arbitrariness in generalizing the null constraint (25) to (28). In particular, we can multiply (28) by 
�−1(q, t), where the conformal factor �(q, t) nowhere vanishes. In this case, instead of the Eisenhart metric (29), we get 
the metric

dS2 = �(q, t)

⎡
⎣ n∑

i, j=1

hij dqi dq j + 2ds dt − 2
V (q, t)

m
dt2

⎤
⎦ . (30)

The metric in this form was first introduced by Lichnerowicz [15].

3.2. Eisenhart-lift in KvN mechanics: examples

3.2.1. Eisenhart lift of KvN oscillator
The study of harmonic oscillators has always been a good starting point for a deeper understanding of the physics of our 

world. As Sidney Coleman once said: “The career of a young theoretical physicist consists of treating the harmonic oscillator 
in ever-increasing levels of abstraction” [72]. Therefore, we will also use the KvN harmonic oscillator to get a crude idea of 
the Eisenhart lift in KvN mechanics.

The equation of motion of the KvN harmonic oscillator in the (q, Q )-representation and assuming that the mass and 
spring constant are equal to unity is as follows:

ih̄
∂

∂t
ψ(q, Q , t) = (p̂ P̂ + qQ )ψ(q, Q , t). (31)

Using the following transformation

q = u + v

2
, Q = u − v,

p̂ = p̂u + p̂v

2
, P̂ = p̂u − p̂v , (32)

the KvN equation of motion for harmonic oscillator becomes
7
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ih̄
∂

∂t
ψ(u, v, t) = (Ĥu − Ĥ v)ψ(u, v, t), (33)

where Ĥ w = 1
2

(
p̂2

w + w2
)

with w = u, v .
If the Hamiltonian in the equation (31) is considered as the Hamiltonian of a classical system with configuration space 

variables q and Q , the corresponding Eisenhart-lift metric is given by

dS2
H O = 2dq dQ + 2dtds − 2Q q dt2, (34)

and similar reasoning for the Hamiltonian in equation (33) leads to

dS2
H O = du2 − dv2 + 2dtds −

(
u2 − v2

)
dt2. (35)

Both Eisenhart-metric expressions (34) and (35) are equivalent and related by the transformation q = u+v
2 , Q = u − v .

Since the determinant of the matrix( −(u2 − v2) 1
1 0

)
is −1, this matrix has one negative and one positive eigenvalue. Then from (35) it is clear that this metric is an ultrahyper-
bolic metric, in contrast to the Eisenhart lift of ordinary classical dynamics, which gives a Lorentzian metric.

3.2.2. Eisenhart lift of linear potential in KvN mechanics
It follows from (17) that the equation of motion for the linear potential V (q) = gq (assuming unit mass) in KvN mechan-

ics in the (q, Q )-representation has the form

ih
∂

∂t
ψ(q, Q , t) = (p̂ P̂ + g Q̂ )ψ(q, Q , t). (36)

After using the same transformation equation (32), the KvN equation of motion (36) becomes

ih
∂

∂t
ψ(u, v, t) = (Ĥu − Ĥ v)ψ(u, v, t) (37)

Where, Ĥ w = p̂2
w

2 + g w and w = u, v . As in the case of harmonic oscillator, equations (36) and (37) suggest two equivalent 
forms for the corresponding Eisenhart metric

dS2
Linear = 2dq dQ + 2dtds − 2g Q dt2,

dS2
Linear = du2 − dv2 + 2dt ds − 2g(u − v)dt2. (38)

Again, these different forms of the same Eisenhart metric are related by the transformation q = u+v
2 , Q = u − v , and the 

second form suggests that the metric is of the ultrahyperbolic signature.

3.3. Eisenhart-lift of general KvN dynamical system

The simplest way to geometrize the KvN mechanics is to begin from the KvN Hamiltonian that follows from (17) and 
consider it as describing classical (not KvN) system:

H = p P

m
+ ∂V

∂q
Q . (39)

Homogenizing this Hamiltonian as described above, we get

H = p P

m
+ ∂V

∂q
Q

p2
s

m2
+ 1

m
ps pt, (40)

which corresponds to the inverse metric

gqQ = g Q q = 1, gst = gts = 1, gss = 2

m

∂V

∂q
Q , (41)

all other components being zero. Inverting g AB to calculate the metric tensor g AB , we get the corresponding Eisenhart 
metric

dS2 = 2dq dQ + 2dt ds − 2Q

m

∂V (q)

∂q
dt2. (42)

Harmonic oscillator and linear potential examples considered above are just special cases of (42).
8
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However, for (42) to be considered as the Eisenhart lift of the KvN dynamical system, we have to demonstrate something 
more: that the KvN equation (17) can be seen as null-reduction (reduction in the s-direction) of the massless Klein-Gordon 
equation in the Bargmann space with the Eisenhart metric (42).

The massless Klein-Gordon equation in general metric is given by

�χ = 1√|g|∂μ

(√|g|gμν∂νχ
)

= 0. (43)

Using the metric in (42), we get the explicit form of curved KG for the massless scalar field χ(t, s, q, Q ) as follows

∂2χ

∂q∂ Q
+ Q

m

∂V

∂q

∂2χ

∂s2
+ ∂2χ

∂t∂s
= 0, (44)

which after the field redefinition

χ(t, s,q, Q ) = eimsψK vN(t,q, Q ), (45)

reduces to the equation of the form

i
∂ψK vN

∂t
=

(
Q

∂V

∂q
− 1

m

∂2

∂q∂ Q

)
ψK vN , (46)

which is the KvN equation in the (q, Q )-representation for the classical Hamiltonian H = p2

2m + V (q), (17) being its operator 
version.

Thus, the KvN equation can be considered as a null-reduction (reduction in the s-direction) of the Klein-Gordon equa-
tion in the Eisenhart metric background, much like the quantum mechanical case [15,32,53]. Therefore, (42) is indeed the 
Eisenhart lift of the general one-dimensional KvN system. Generalization to multidimensional KvN systems does not cause 
difficulties.

An interesting difference from the usual quantum mechanics is that in the KvN-Case the Eisenhart metric is of sig-
nature (−, −, +, +). This implies that the free KvN-system gives rise to S O (2, 2) symmetric Eisenhart metric, while the 
free Schrödinger-system gives rise to S O (1, 2) symmetric Eisenhart metric (for one-dimensional configuration space). Thus, 
group-theoretic analyzes like those in [69] or [35] deserve further study.

3.4. Some applications

An immediate application of the Eisenhart lift of KvN mechanics is to obtain relations between KvN systems with a 
harmonic potential, a linear potential, and a free particle. The quantum mechanical analog [30] hints that for this to be 
possible, the Eisenhart metric must be conformally flat.

In n > 3 dimensions, conformal flatness is guaranteed by the vanishing of the Weyl tensor

Wμνγ δ = Rμνγ δ − 1

n − 2

(
gμγ Rνδ − gνγ Rμδ − gμδ Rνγ

+gνδ Rνγ

) + 1

(n − 1)(n − 2)

(
gμγ gνδ − gνγ gμδ

)
R, (47)

where Rμνγ δ , Rμν , and R are the Riemannian curvature tensor, the Ricci tensor, and the scalar curvature for the metric gμν , 
respectively. For a general KvN mechanical system, using the lifted metric (42) in the Weyl tensor (47), we can calculate the 
non-zero components of the Weyl tensor as follows:

Wqtqt = Wtqtq = −Wqttq = −Wtqqt = Q

m

∂3 V (q, t)

∂q3
. (48)

From the conformal flatness condition Wμνγ δ = 0 we obtain:

V (q, t) = 1

2
C1(t)q

2 + C2(t)q + C3(t), (49)

where C1, C2 and C3 are the integration constants.
Hence we obtain a class of potentials for which the KvN Eisenhart metric (42) is conformally flat. The result is the same 

as for the Lorentzian Eisenhart lift [30,34]: only up to quadratic-in-the-position potentials is the corresponding Eisenhart 
metric conformally flat.
9
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3.4.1. Equivalence of a harmonic oscillator to a free particle
For the classical harmonic potential V (q) = 1

2 q2, the corresponding Eisenhart metric takes the following form (we have 
added the Lichnerowicz conformal factor)

dS2
H O = �(t)(2dq dQ + 2dt ds − 2Q qdt2). (50)

Using the transformation q = v+u
2 , Q = u − v , the metric is transformed into

dS2
H O = �(t)

(
du2 − dv2 + 2dt ds − (u2 − v2)dt2

)
. (51)

We know that this Eisenhart-Lichnerowicz metric is conformally equivalent to the Eisenhart metric for a free KvN particle

dS2
F ree = dη2 − dξ2 + 2dτ dζ. (52)

Thus there exist a coordinate transformation (u, v, s, t) → (η, ξ, ζ, τ ) between (51) and (52). Since calculations almost ex-
actly mirror the quantum case considered in [30], we present only the final results. We choose the conformal factor �(t) =
sec2(t) and take the general coordinate transformation as u = �(η, ξ, τ ), v = R(η, ξ, τ ), s = ζ + �(η, ξ, τ ), t = T (η, ξ, τ ). 
The explicit form of the transformation (with all integration constants set to zero) is

t = tan−1 (τ ) , u = −η√
τ 2 + 1

, v = −ξ√
τ 2 + 1

,

s = ζ + 1

2(τ 2 + 1)

[(
η2 − ξ2

)
τ
]
. (53)

This transformation between Eisenhart metrics for KvN Harmonic oscillator and KvN free particle induce a transformation 
between the corresponding KvN wave functions ψH O (u, v, t, s) and ψ f ree(η, ξ, τ , ζ ) in the equation (46):

ψH O =
√

1 + τ 2 exp

[
im

[(
ξ2 − η2

)
τ
]

2(τ 2 + 1)

]
ψ f ree. (54)

One remark is pertinent here. When the metric (42) is multiplied by Lichnerowicz conformal factor �(t) and used in (43), 
instead of (44) we obtain

∂2χ

∂q∂ Q
+ Q

m

∂V

∂q

∂2χ

∂s2
+ ∂2χ

∂t∂s
+ 1

2�

∂�

∂t

∂χ

∂s
= 0, (55)

and to get the KvN equation (46) we need to replace (45) by

χ(t, s,q, Q ) = �−1/2eimsψK vN(t,q, Q ). (56)

This explains the 
√

1 + τ 2 prefactor before the exponent in (54). Because of this time-dependent prefactor, the transforma-
tion (54) is not unitary, and the corresponding mapping of a harmonic oscillator into a free particle cannot be considered 
as an equivalence principle, in contrast to the case of a linear potential (see below). This situation is completely analogous 
to the quantum case [30]. Note, however, that there is a broader “conformal” context in which the correspondence of a 
harmonic oscillator to a free particle fits [42,93].

The connection between quantum isotropic oscillators with a time-independent frequency and a free particle is usually 
attributed to Niederer [73]. However, apparently, for the first time such a connection was noticed in the field of optics 
[86,92] and explicitly or implicitly rediscovered by many authors [48,54,83]. This relationship has recently been discussed 
in the context of KvN mechanics [68], and extended to anisotropic oscillators with time-dependent frequency [93].

3.4.2. Equivalence of a linear potential to a free particle
A similar analysis can also be carried out for a linear potential. The Eisenhart metric for the KvN linear potential V = gq

(assuming unit mass) has the form (38). It is converted to the free metric (52) by the following transformation (integration 
constants are again set to zero)

t = τ , u = η − 1

2
gτ 2, v = ξ − 1

2
gτ 2, s = ζ + (η − ξ)gτ . (57)

The corresponding transformation of the KvN wave function

ψLinear = exp [i(ξ − η)gτ ]ψ f ree, (58)

is unitary and represents Einstein’s principle of equivalence in KvN mechanics.
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The relation (58) in (q, Q ) coordinates reads

ψLinear(q, Q , t) = e−i Q gτ ψ f ree

(
q + 1

2
gt2, Q , t

)
, (59)

which is the result obtained in [78] with a different method.

4. Conclusions

KvN mechanics, a Hilbert space interpretation of classical mechanics, naturally appears as a limiting situation of the 
Wigner function formalism [19]. Eisenhart lift of the KvN Hamiltonian opens the way to a geometric understanding of the 
KvN mechanics, since the massless Klein-Gordon equation in curved space for the metric (42) at null-reduction gives exactly 
the KvN equation. Using this geometric picture, we found the transformations of coordinates, as well as KvN wave functions, 
that relate KvN harmonic oscillator or the linear potential to a KvN free particle. In the case of linear potential, we recover 
Einstein’s equivalence principle in KvN mechanics first obtained in [78].

Eisenhart lift of KvN mechanics is very similar to the similar lift of quantum mechanics [15,32,53]. This is not surprising, 
since the KvN system (17) can be interpreted as a kind of quantum system with a Hamiltonian linearly dependent on the 
classically “hidden” variables Q and P , as a result of which the classical dynamics is induced in the subspace (q, p).

An interesting difference from the quantum case is that the Eisenhart metric in the KvN case has an ultrahyperbolic 
rather than a Lorentzian signature. This is because the kinetic energy in the KvN Hamiltonian, since it must be linear 
in “hidden” momenta, is pseudo-Euclidean rather than positive definite Euclidean. Such an unusual kinetic energy in the 
context of classical mechanics was first considered in 1935 by Drach in search of potentials that admit a cubic integral of 
motion with respect to momenta [31]. References [22,39,41] consider the Eisenhart lift of such classical systems and show 
that a metric with an ultrahyperbolic signature arises.

Metrics with the ultrahyperbolic signature (−, −, +, +) are special cases of the so-called Kleinian space-times with the 
complete symmetry between space and time, which are relatively unknown to physicists [13], maybe because it is widely 
believed that ultrahyperbolic space-times are not deterministic in a physically meaningful sense [88]. Nevertheless, such 
space-times, in addition to the Eisenhart lift of the Drach-type classical mechanical and KvN systems, arise in a number of 
different physical contexts, see for example [5,13,14,29,38,43,76,81].
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121249.
[32] C. Duval, G. Burdet, H.P. Kunzle, M. Perrin, Bargmann structures and Newton-Cartan theory, Phys. Rev. D 31 (1985) 1841–1853, https://doi .org /10 .1103 /

PhysRevD .31.1841.
[33] C. Duval, G.W. Gibbons, P. Horvathy, Celestial mechanics, conformal structures and gravitational waves, Phys. Rev. D 43 (1991) 3907–3922, https://

doi .org /10 .1103 /PhysRevD .43 .3907, arXiv:hep -th /0512188.
[34] C. Duval, P.A. Horvathy, L. Palla, Conformal properties of Chern-Simons vortices in external fields, Phys. Rev. D 50 (1994) 6658–6661, https://doi .org /10 .

1103 /PhysRevD .50 .6658, arXiv:hep -th /9404047.
[35] C. Duval, G.W. Gibbons, P.A. Horvathy, P.M. Zhang, Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time, Class. Quantum 

Gravity 31 (2014) 085016, https://doi .org /10 .1088 /0264 -9381 /31 /8 /085016, arXiv:1402 .0657.
[36] A. Einstein, Physics and reality, J. Franklin Inst. 221 (1936) 349–382, https://doi .org /10 .1016 /S0016 -0032(36 )91047 -5.
[37] L.P. Eisenhart, Dynamical trajectories and geodesics, Ann. Math. 30 (1928) 591–606, https://doi .org /10 .2307 /1968307.
[38] D. Figueiredo, F.A. Gomes, S. Fumeron, B. Berche, F. Moraes, Modeling Kleinian cosmology with electronic metamaterials, Phys. Rev. D 94 (2016) 044039, 

https://doi .org /10 .1103 /PhysRevD .94 .044039, arXiv:1608 .03812.
[39] S. Filyukov, A. Galajinsky, Self-dual metrics with maximally superintegrable geodesic flows, Phys. Rev. D 91 (2015) 104020, https://doi .org /10 .1103 /

PhysRevD .91.104020, arXiv:1504 .03826.
[40] A.P. Fordy, A. Galajinsky, Eisenhart lift of 2-dimensional mechanics, Eur. Phys. J. C 79 (2019) 301, https://doi .org /10 .1140 /epjc /s10052 -019 -6812 -6, 

arXiv:1901.03699.
[41] A. Galajinsky, Eisenhart lift in pseudo–Euclidean space and higher rank killing tensors, Phys. Part. Nucl. Lett. 14 (2017) 328–330, https://doi .org /10 .

1134 /S154747711702011X.
[42] G.W. Gibbons, Dark energy and the Schwarzian derivative, arXiv:1403 .5431, 2014.
[43] G.W. Gibbons, Lifting the Eisenhart-Duval lift to a minimal brane, arXiv:2003 .06179, 2020.
[44] G.W. Gibbons, T. Houri, D. Kubiznak, C.M. Warnick, Some spacetimes with higher rank Killing-Stackel tensors, Phys. Lett. B 700 (2011) 68–74, https://

doi .org /10 .1016 /j .physletb .2011.04 .047, arXiv:1103 .5366.
[45] D. Giulini, C. Kiefer, E. Joos, J. Kupsch, I.O. Stamatescu, H.D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory, Springer, 

Berlin, 1996.
[46] E. Gozzi, D. Mauro, Minimal coupling in Koopman-von Neumann theory, Ann. Phys. 296 (2002) 152–186, https://doi .org /10 .1006 /aphy.2001.6206, arXiv:

quant -ph /0105113.
[47] E. Gozzi, D. Mauro, On Koopman-von Neumann waves 2, Int. J. Mod. Phys. A 19 (2004) 1475–1494, https://doi .org /10 .1142 /S0217751X04017872, 

arXiv:quant -ph /0306029.
[48] J. Guerrero, F.F. Lopez-Ruiz, The quantum Arnold transformation and its applications, Nuovo Cimento C 36 (2013) 127–137, https://doi .org /10 .1393 /ncc /

i2013 -11528 -0.
[49] P. Havas, Four-dimensional formulations of Newtonian mechanics and their relation to the special and the general theory of relativity, Rev. Mod. Phys. 

36 (1964) 938–965, https://doi .org /10 .1103 /RevModPhys .36 .938.
[50] A. Heslot, Quantum mechanics as a classical theory, Phys. Rev. D 31 (1985) 1341–1348, https://doi .org /10 .1103 /PhysRevD .31.1341.
[51] M. Hillery, R. O’Connell, M. Scully, E. Wigner, Distribution functions in physics: fundamentals, Phys. Rep. 106 (1984) 121–167, https://doi .org /10 .1016 /

0370 -1573(84 )90160 -1.
[52] P.R. Holland, The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics, Cambridge University 

Press, Cambridge, 1993.
[53] P.A. Horvathy, P. Zhang, Vortices in (abelian) Chern-Simons gauge theory, Phys. Rep. 481 (2009) 83–142, https://doi .org /10 .1016 /j .physrep .2009 .07.003, 

arXiv:0811.2094.
[54] R. Jackiw, Dynamical symmetry of the magnetic monopole, Ann. Phys. 129 (1980) 183, https://doi .org /10 .1016 /0003 -4916(80 )90295 -X.
12

https://doi.org/10.1142/S0217751X94000650
https://doi.org/10.1088/0264-9381/18/16/303
https://doi.org/10.1103/PhysRevD.88.063008
https://doi.org/10.1103/PhysRevD.88.063008
https://doi.org/10.1088/0034-4885/35/1/306
http://refhub.elsevier.com/S0393-0440(22)00282-0/bibD25FD3ED05BE01656C8EF7A557FC0C4Ds1
https://doi.org/10.1103/PhysRevLett.109.190403
https://doi.org/10.1103/physreva.88.052108
https://doi.org/10.1103/physreva.88.052108
https://doi.org/10.1098/rspa.2018.0879
https://doi.org/10.1088/0143-0807/36/2/025018
https://doi.org/10.1016/j.physletb.2015.04.001
https://doi.org/10.1016/j.physletb.2015.04.001
https://doi.org/10.1016/j.aop.2016.07.033
https://doi.org/10.1016/j.aop.2016.07.033
https://doi.org/10.1140/epjc/s10052-018-5789-x
https://doi.org/10.1140/epjc/s10052-018-5789-x
https://doi.org/10.1002/andp.200510177
https://doi.org/10.1002/andp.200510177
https://doi.org/10.24033/asens.751
https://doi.org/10.1142/s0218271820500704
http://refhub.elsevier.com/S0393-0440(22)00282-0/bibB95F7D8FEF3D3851BCD95D1C23ECEADDs1
https://doi.org/10.1103/PhysRevResearch.3.033281
https://doi.org/10.1103/PhysRevResearch.3.033281
https://doi.org/10.1016/j.aop.2021.168623
https://doi.org/10.1016/j.aop.2021.168623
https://doi.org/10.21136/CPMF.1935.121249
https://doi.org/10.21136/CPMF.1935.121249
https://doi.org/10.1103/PhysRevD.31.1841
https://doi.org/10.1103/PhysRevD.31.1841
https://doi.org/10.1103/PhysRevD.43.3907
https://doi.org/10.1103/PhysRevD.43.3907
https://doi.org/10.1103/PhysRevD.50.6658
https://doi.org/10.1103/PhysRevD.50.6658
https://doi.org/10.1088/0264-9381/31/8/085016
https://doi.org/10.1016/S0016-0032(36)91047-5
https://doi.org/10.2307/1968307
https://doi.org/10.1103/PhysRevD.94.044039
https://doi.org/10.1103/PhysRevD.91.104020
https://doi.org/10.1103/PhysRevD.91.104020
https://doi.org/10.1140/epjc/s10052-019-6812-6
https://doi.org/10.1134/S154747711702011X
https://doi.org/10.1134/S154747711702011X
http://refhub.elsevier.com/S0393-0440(22)00282-0/bib7E9B1411071C1C09DC5617524A7390B1s1
http://refhub.elsevier.com/S0393-0440(22)00282-0/bib0E6718084F0F2F1923BF3DF2226DB4AAs1
https://doi.org/10.1016/j.physletb.2011.04.047
https://doi.org/10.1016/j.physletb.2011.04.047
http://refhub.elsevier.com/S0393-0440(22)00282-0/bibCFD5E2A26E17E96C232CED629F657386s1
http://refhub.elsevier.com/S0393-0440(22)00282-0/bibCFD5E2A26E17E96C232CED629F657386s1
https://doi.org/10.1006/aphy.2001.6206
https://doi.org/10.1142/S0217751X04017872
https://doi.org/10.1393/ncc/i2013-11528-0
https://doi.org/10.1393/ncc/i2013-11528-0
https://doi.org/10.1103/RevModPhys.36.938
https://doi.org/10.1103/PhysRevD.31.1341
https://doi.org/10.1016/0370-1573(84)90160-1
https://doi.org/10.1016/0370-1573(84)90160-1
http://refhub.elsevier.com/S0393-0440(22)00282-0/bib28D7D0A4C5D27C856DA676CB3F9D5492s1
http://refhub.elsevier.com/S0393-0440(22)00282-0/bib28D7D0A4C5D27C856DA676CB3F9D5492s1
https://doi.org/10.1016/j.physrep.2009.07.003
https://doi.org/10.1016/0003-4916(80)90295-X


A. Sen, B.K. Parida, S. Dhasmana et al. Journal of Geometry and Physics 185 (2023) 104732
[55] N. Kan, T. Aoyama, T. Hasegawa, K. Shiraishi, Eisenhart-Duval lift for minisuperspace quantum cosmology, Phys. Rev. D 104 (2021) 086001, https://
doi .org /10 .1103 /PhysRevD .104 .086001, arXiv:2105 .09514.

[56] A. Kirillov, Unitary representations of nilpotent Lie groups, Russ. Math. Surv. 17 (1962) 53–104, https://doi .org /10 .1070 /rm1962v017n04abeh004118.
[57] A.A. Kirillov, Geometric quantization, in: V.I. Arnold, S.P. Novikov (Eds.), Dynamical Systems IV: Symplectic Geometry and Its Applications, Springer 

Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 139–176.
[58] U. Klein, What is the limit � → 0 of quantum theory?, Am. J. Phys. 80 (2012) 1009–1016, https://doi .org /10 .1119 /1.4751274.
[59] U. Klein, From Koopman–von Neumann theory to quantum theory, Quantum Stud.: Math. Found. 5 (2018) 219–227, https://doi .org /10 .1007 /s40509 -

017 -0113 -2.
[60] B.O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proc. Natl. Acad. Sci. USA 17 (1931) 315–318, https://doi .org /10 .1073 /pnas .

17.5 .315.
[61] B. Kostant, Quantization and unitary representations, in: C. Taam (Ed.), Lectures in Modern Analysis and Applications III, Springer, Berlin, 1970, 

pp. 87–208.
[62] H.P. Kunzle, C. Duval, Relativistic and non-relativistic classical field theory on five-dimensional spacetime, Class. Quantum Gravity 3 (1986) 957–974, 

https://doi .org /10 .1088 /0264 -9381 /3 /5 /024.
[63] J. Lützen, Interactions between mechanics and differential geometry in the 19th century, Arch. Hist. Exact Sci. 49 (1995) 1–72, https://doi .org /10 .1007 /

BF00374699.
[64] G. Marmo, G.F. Volkert, Geometrical description of quantum mechanics-transformations and dynamics, Phys. Scr. 82 (2010) 038117, https://doi .org /10 .

1088 /0031 -8949 /82 /03 /038117.
[65] J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry, Springer, New York, 1999.
[66] D. Mauro, On Koopman-von Neumann waves, Int. J. Mod. Phys. A 17 (2002) 1301–1325, https://doi .org /10 .1142 /S0217751X02009680, arXiv:quant -ph /

0105112.
[67] D. Mauro, Topics in Koopman-von Neumann theory, arXiv:abs /quant -ph /0301172, 2003.
[68] G. McCaul, D.I. Bondar, Free to harmonic unitary transformations in quantum and Koopman dynamics, J. Phys. A 55 (2022) 434003, https://doi .org /10 .

1088 /1751 -8121 /ac97cf, arXiv:2207.09515.
[69] E. Minguzzi, Classical aspects of lightlike dimensional reduction, Class. Quantum Gravity 23 (2006) 7085–7110, https://doi .org /10 .1088 /0264 -9381 /23 /

23 /029, arXiv:gr-qc /0610011.
[70] E. Minguzzi, Eisenhart’s theorem and the causal simplicity of Eisenhart’s spacetime, Class. Quantum Gravity 24 (2007) 2781–2808, https://doi .org /10 .

1088 /0264 -9381 /24 /11 /002, arXiv:gr-qc /0612014.
[71] P. Morgan, An algebraic approach to Koopman classical mechanics, Ann. Phys. 414 (2020) 168090, https://doi .org /10 .1016 /j .aop .2020 .168090, arXiv:

1901.00526.
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