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1 Introduction

The electron bremsstrahlung and photoproduction of electron-positron pairs in the
Coulomb field of the nucleus are fundamental QED processes. First papers devoted to
this subject appeared already in 1930s. In particular, in 1934 Bethe and Heitler have de-
rived the spectra of both processes in the Born approximation [1]. The total energy loss in
bremsstrahlung and the total cross section of pair production in the Born approximation
have been calculated in the same year by Racah [2, 3].

Exact, in both energy and nucleus charge, pair production spectrum has been investi-
gated much later in refs. [4, 5]. The result had a very complicated form involving multiple
sums and Appell double hypergeometric function F2. Using this form the authors numeri-
cally tabulated the spectrum and the total cross section for energies . 10MeV. There is no
analogous result for the spectrum of bremsstrahlung. Apart from refs. [4, 5], the Coulomb
corrections, i.e., the higher-order terms in the parameter Zα (here Z is the nucleus charge
number, α ≈ 1/137 is the fine structure constant) have been investigated mostly in the
low- and high-energy limit. The low-energy asymptotics of the bremsstrahlung spectrum
has been considered by Sommerfeld [6]. The earliest results for the threshold asymptotics
of the pair production spectrum were obtained by Nishina, Tomonaga and Sakata in ref. [7]
using the Furry-Sommerfeld-Maue approximation. However it appears that this approxi-
mation is not sufficient and the correct results were obtained only recently [8]. The leading
and subleading high-energy asymptotics of the differential cross sections and spectra of
both processes have been obtained exactly in the parameter Zα in refs. [9, 10] and [11, 12],
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respectively. The high-energy asymptotics of the charge asymmetry in the differential cross
section has been calculated exactly in the parameter Zα in refs. [13] and [14] for the pair
production and bremsstrahlung, respectively.

The experimental study of the two processes has been undertaken already in
1950s-1960s, see refs. [15–19] for pair production measurements and refs. [20–22] for
bremsstrahlung. In particular, the charge asymmetry in the pair production cross section
has been investigated in ref. [19]. However those early experimental results have rather
poor accuracy and new measurements of the pair production and bremsstrahlung cross
sections would be useful. For a recent review on the status of bremsstrahlung calculations
and measurements see ref. [23].

For light nuclei the parameter Zα is small and one can use the perturbation theory
with respect to this parameter. The leading Born approximation is invariant under the
replacement of electron with positron and vice versa. For the bremsstrahlung it means
that electron and positron radiate exactly the same in this approximation. For the pair
production it means that the electron spectrum is symmetric under the change ε− ↔ ε+
(here ε± are the electron/positron energies). The replacement of the electron with the
positron is equivalent to the substitution Z → −Z in the cross section. Therefore, the
charge asymmetry is an odd function of Z and is determined in the leading approximation
by the first Coulomb correction.1 For the bremsstrahlung process this correction determines
the difference between the radiation from electron and that from positron. For the pair
photoproduction cross section the first Coulomb correction determines the leading anti-
symmetric contribution to the energy spectrum of the produced pair.

Recently, the multiloop methods have been used in ref. [24] to calculate the first
Coulomb correction to the energy loss in bremsstrahlung. In the present paper we use
the multiloop methods to calculate the first Coulomb correction to the energy spectra of
bremsstrahlung and pair production.

2 Cross sections

For the bremsstrahlung process we define ε, ε′ and ω′ = ε−ε′ to be the energies of the initial
electron, final electron and final photon, respectively. Similarly, for the pair production
process we define ε−, ε+ and ω = ε− + ε+ to be the energies of the final electron, final
positron and initial photon. The physical regions are determined by the inequalities

bremsstrahlung: m < ε′ < ε , (2.1)
pair production: ε± > m . (2.2)

The two processes are related to each other by the crossing symmetry

ε′ ↔ ε−, ε↔ −ε+, ω′ ↔ −ω . (2.3)

Note that these substitution rules are too ambiguous to determine the analytic continuation
of the differential cross section from one physical region to another. Moreover, such a

1Note that other first-order corrections are proportional to Z2 and, therefore, do not contribute to the
asymmetry.
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continuation necessarily exists only for the amplitudes of the processes. It is known that the
spectra of bremsstrahlung and pair production processes in the Born approximation as well
as in the high-energy approximation are also related by the substitutions (2.3). Moreover,
the consideration of ref. [25] can be erroneously taken as a proof of exact symmetry between
the two processes. However we shall see below that already first corrections to the spectra
considered here have completely different forms and can not be obtained by not only a
naive substitution (2.3), but also by any carefully chosen analytic continuation.

The spectrum of photons in the bremsstrahlung process reads

dσeγ

dω′
= 1

2|p|

∫ ∑
|M |2 δ

(
ω′−|k′|

)
dΦ , dΦ = 2πδ

(
ε−εp′−|k′|

) dk′

(2π)32|k′|
dp′

(2π)32εp′
.

(2.4)
Here we use the notation εp′ =

√
p′2 −m2.

The perturbative expansion of the matrix element M starts with the term ∝ eZα. As
we are interested in the first Coulomb correction, we write

M = eZα [M0 + ZαM1 + . . .] , (2.5)

|M |2 = 4πα(Zα)2
{∑

|M0|2 + 2Zα
∑

ReM1M
∗
0 + . . .

}
. (2.6)

where dots denote omitted higher-order terms in the parameters α and/or Zα. Conse-
quently we have

dσeγ

dω′
= dσeγB

dω′
+ dσeγC

dω′
+ . . . , (2.7)

where
dσeγB
dω′

= α(Zα)2

(2π)4|p|

∫
dµeγ

∑
|M eγ

0 |
2 (2.8)

is the Born cross section and
dσeγC
dω′

= 2α(Zα)3

(2π)4|p|

∫
dµeγ

∑
Re
[
M eγ

1 (M eγ
0 )∗

]
(2.9)

is the first Coulomb correction that we consider in the present paper. Here

dµeγ = δ
(
ω′ − |k′|

)
δ
(
ε′ − εp′

) dk′

2|k′|
dp′

2εp′
(2.10)

is the integration measure.
Similar formulas hold for the pair production process:

dσeē

dε+
= dσeēB
dε+

+ dσeēC
dε+

+ . . . , (2.11)

dσeēB
dε+

= α(Zα)2

(2π)4ω

∫
dµeē

∑∣∣M eē
0
∣∣2 , (2.12)

dσeēC
dω′

= 2α(Zα)3

(2π)4ω

∫
dµeē

∑
Re
[
M eē

1

(
M eē

0

)∗]
, (2.13)

dµeē = δ
(
ε+ − εp+

)
δ
(
ε− − εp−

) dp+
2εp+

dp−
2εp−

(2.14)
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(b) Cut diagrams that determine dσeēC
dω′ .

Figure 1. Cut diagrams for first Coulomb correction in bremsstrahlung and pair production
spectra. Numbers on the diagrams correspond to the enumeration of functions Dk, eq. (3.2), (left)
and D̃k, eq. (3.4), (right).

Graphically, dσ
eγ
C

dω′ and dσeēC
dε+

can be represented as a sum of diagrams depicted in figure 1a
and in figure 1b, respectively. Note that we have ordered the diagrams in these figures in
a way consistent with the crossing symmetry (2.3). Namely, each diagram in figure 1b can
be obtained from the corresponding diagram in figure 1a by opening wide the cut photon
line and closing the external fermion legs into a cut positron line.

3 Calculation of master integrals

We use the dimensional regularization with d = 4− 2ε and consider the integral family

j(n1, . . . , n12) = Re
∫
dqdk′dp′

π3d/2

7∏
k=1

D−nkk ×
12∏
k=8

δ(nk−1) (−Dk)
(nk − 1)! , (3.1)

where

D1 = q2 , D2 = (Q− q) 2 , D3 = Q2 , D4 = (p− q)2 −m2 + i0 ,

D5 =
(
k′ + p′

)2 −m2 , D6 =
(
p− k′ − q

) 2 −m2 + i0 , D7 =
(
p− k′

)2 −m2 ,

D8 = q · n , D9 = Q · n , D10 = p′ · n− ε′ , D11 = p′2 −m2 , D12 = k′2 . (3.2)

Here Q = p−p′−k′ and n = (1,0) is the time ort. The cut denominators D8−12 correspond
to the on-shell condition for the emitted photon (D12), the zero energy transfer to the
heavy nucleus (D8 and D9), the on-shell condition for the final electron (D11), and the
δ-function fixing the electron energy (D10). Note that we have indicated +i0 prescription
only in those denominators in eq. (3.2) which may otherwise turn to zero in the integration
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region.2 The Coulomb correction dσeγC
dω in eq. (2.9) is expresses via integrals j(n1, . . . n12)

for which n8−12 = 1 and at least one of n4, n5, n6, n7 is non-positive.
Similarly, for the pair production we consider the family

j̃(n1, . . . , n12) = Re
∫
dqdp+dp−
π3d/2

7∏
k=1

D̃−nkk ×
12∏
k=8

δ(nk−1)
(
−D̃k

)
(nk − 1)! , (3.3)

where

D̃1 = q2 , D̃2 = (Q̃− q)2 , D̃3 = Q̃2 , D̃4 = (p+ + q)2 −m2 + i0 , (3.4)
D̃5 = (p− − k)2 −m2 , D̃6 = (k − p+ − q) 2 −m2 + i0 , D̃7 = (k − p+)2 −m2 ,

D̃8 = q · n , D̃9 = Q̃ · n , D̃10 = p− · n− ε− , D̃11 = p2
− −m2 , D̃12 = p2

+ −m2 .

Here Q̃ = k − p− − p+. Note that our choice of the functions Dk and D̃k is well adjusted
to the crossing symmetry relation (2.3). Namely, all of them except the last ones (D12 and
D̃12) pass to each other, Dk ↔ D̃k, under (2.3).

Making the IBP reduction [26, 27] with LiteRed [28, 29], we reveal 59 master integrals
for each case (bremsstrahlung and pair production) and construct differential equations
for them [30, 31]. We choose the master integrals for pair production in a symmetric
fashion, so that the symmetry ε+ ↔ ε− is a one-to-one mapping of these integrals. The
master integrals for the bremsstrahlung are chosen in a way consistent with crossing sym-
metry (2.3). Due to our judicious choice of denominators, (3.2) and (3.4), this requirement
simply means that for each pair production master integral j̃(n1, . . . , n7, 1, 1, 1, 1, 1) the
integral j(n1, . . . , n7, 1, 1, 1, 1, 1) is a bremsstrahlung master integral.

Using Libra,3 [32], we reduce the system to ε-dlog-form [33, 34]. In order to do this,
we introduce the following new kinematic variables:

bremsstrahlung: x =
√
ε′ −m
ε′ +m

, z =
√
ε−m
ε+m

, (3.5)

pair production: x =
√
ε− −m
ε− +m

, y =
√
ε+ −m
ε+ +m

. (3.6)

In new variables the crossing symmetry corresponds to the exchange rules z ↔ −1/y , x↔
x. The physical regions are

bremsstrahlung: 0 < x < z < 1 , (3.7)
pair production: 0 < x, y < 1 . (3.8)

The resulting differential system for bremsstrahlung has the form

dJ = εdM J , dM =
12∑
k=1

Mk d lnPk , (3.9)

(P1, . . . ,P12) = (x,z,1−x,1−z,1+x,1+z,x−z,x+z,x2−z,x2 +z,z2−x,z2 +x) , (3.10)
2The remaining denominators in eq. (3.2) have definite sign in the whole integration region: D5 > 0 and

D1,2,3,7 < 0.
3Note that Libra is able to treat the multivariate case.
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Figure 2. Physical region (grayed) and singularities (dashed curves) of the differential system for
bremsstrahlung (left) and pair production (right) master integrals.

where Mk are some constant matrices. The plot of singular curves corresponding to the
alphabet (3.10) is shown in the left plot of figure 2. Note that the singularity x − z2 = 0
traverses the physical region.

The case of pair production process is very similar. Reducing the differential system
to ε-form, we obtain a similar system (3.9) where the alphabet now has the form

(P1, . . . , P12) = (x, y, 1− x, 1− y, 1 + x, 1 + y, 1− xy, 1 + xy, 1− x2y, x2 + z, z2− x, z2 + x) ,
(3.11)

The physical region and singular curves for pair production are shown in figure 2, right.

3.1 Boundary conditions

For the bremsstrahlung case we fix the boundary conditions by considering the asymptotics
of the master integrals in the region x � z � 1. More specifically, we first consider the
limit x → 0 and determine which coefficients of the asymptotic expansion in x are to be
calculated. Those coefficients depend on z and we construct the differential system for
them using the method described in ref. [35, section 2]. Reducing this system to ε-form, we
determine which coefficients of the asymptotic expansion in z should be fixed. We find these
coefficients by a direct integration method. Note that the obtained boundary constants
are such that the special solution (in contrast to general solution) has no branching at
x− z2 = 0 in the physical region, as it should be.

For the pair production case fixing the boundary conditions is done by passing from
x, y to t, r via x = tr, y = t/r and considering the asymptotics t → 0 at fixed r. In
contrast to the bremsstrahlung case here it appears to be easy to obtain the necessary
asymptotic coefficients as functions of r by direct integration methods, without messing
with the differential equations in this variable.
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Figure 3. Example of a pair of master integrals, j20 and j̃20, which are not related by analytical
continuation.

3.2 Crossing symmetry

A remarkable observation that we can make about our results is that most of the master
integrals do not obey the crossing symmetry. Let us demonstrate this fact on the example
of one master integral for bremsstrahlung and its counterpart for pair production. These
master integrals, j20 and j̃20 in our enumeration, are shown in figure 3. These integrals
are finite in d = 4. We are going to demonstrate that already ε0 terms can not be related
via analytical continuation. Thus, below in this section we put d = 4. The corresponding
analytic expressions for the integrals are

I(ε, ε′) def= 4πε′ω′j20 = 1
π3

〈∫
dq

(p− p′ − k′ − q)2q2

〉
p′,k′

(3.12)

Ĩ(ε+, ε−) def= 4πε−ε+j̃20 = 1
π3

〈∫
dq

(k − p− − p+ − q)2q2

〉
p−,p+

(3.13)

Here 〈. . .〉v denotes the averaging over the angles of the vector v, i.e., the integration with
the measure

∫ dΩv
4π . Note that the right-hand sides of eqs. (3.12) and (3.13) obviously do not

change upon the averaging over the angles of the remaining vector, p for bremsstrahlung
and k for the pair production. Comparing the integrands, we see that they are related by
the crossing substitutions (2.3). This property persists after taking the integral over q:

I(ε, ε′) =
〈 1
|p− p′ − k′|

〉
p′,k′,p

(3.14)

Ĩ(ε+, ε−) =
〈

1
|k − p− − p+|

〉
p−,p+,k

(3.15)

At this point one might speculate that Ĩ(ε+, ε−) = I(−ε+, ε−), where the right-hand side
is understood as a suitable analytic continuation of eq. (3.14) to the region of negative first
argument. However, it is not the case. We use the following formula4

A(a, b, c) def=
〈 1
|a + b + c|

〉
a, b, c

= 1
a

if a > b+ c. (3.16)

4Note that when a, b, c satisfy triangle inequality, the result is different, A(a, b, c) = (2ab + 2ac + 2bc −
a2 − b2 − c2)/(4abc).
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It is easy to derive this formula by recalling that 1√
1+2tx+t2 is a generating function for the

Legendre polynomials. Using eq. (3.16) we obtain

I(ε, ε′) = 1√
ε2 −m2

, Ĩ(ε+, ε−) = 1
ε+ + ε−

. (3.17)

It is obvious that these two functions can not be related to each other by analytical con-
tinuation. In particular, Ĩ(ε+, ε−) is a single-valued meromorphic function.

We find similar incompatibility with the crossing symmetry as defined in eq. (2.3) in
most of the master integrals as well as in the final result.

4 Results

Our final result for the bremsstrahlung energy-dependent cross section has the form

dσeγ

dω
= dσeγB

dω
+ dσeγC

dω
+O(α2η2, αη4) , (4.1)

where

dσeγB
dω′

= α(Zα)2

ω′p2

{
4pp′
3m2 − 2 εε

′

m2
p2 + p′2

pp′
− 2ε

′p′ ln rz
p2 − 2εp ln rx

p′2
− 4 ln rx ln rz (4.2)

− 2 ln rx/z

(
8εε′
3m2 + ω′2(ε2ε′2 + p2p′2 +m2εε′)

m2p2p′2
− (εε′ + p2)ω′

p3 ln rz + (εε′ + p′2)ω′
p′3

ln rx
)}

is the Born cross section [1], and

dσeγC
dω′

= πα(Zα)3

p2ω′

{
c1
[
F (rx/z, rx)−F (rx/z, rx2/z)+lnrx lnrx2/z

]
+c2F (rx, rx/z) (4.3)

+c3
[
F (rx, rx2/z)−F (rx, rz)+lnrx/z ln(rz/rx2/z)

]
+c4 [Li2(x)−Li2(−x)]−c5 ReF (rx,−1)

+c6 lnrx lnrx/z+c7 lnrz lnrx/z−c8 lnrx ln(rxr2
z)+c9 lnrx/z−c10 lnrz+c11 lnrx+c12

}
,

is the result of the present calculation. Here rx = 1−x
1+x and the function F is defined as

F (r, r̃) = 1
2Li2(1− rr̃) + 1

2Li2
(

1− r

r̃

)
− 1

2Li2
(

1− r̃

r

)
− 1

2Li2
(

1− 1
r̃r

)
= Li2(1− rr̃) + Li2

(
1− r

r̃

)
+ 1

2 ln2 r + 1
2 ln2 r̃ . (4.4)

Note that from this definition it follows that F (r, r̃) = F (r, 1/r̃) = −F (1/r, r̃). The
coefficients ck are rational functions of z, x or, alternatively, of ε, p, ε′, p′. Their explicit
form is presented in appendix A.

For the pair production cross section we have

dσeē

dω
= dσeēB

dω
+ dσeēC

dω
+O(α2η2, αη4) , (4.5)
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where
dσeēB
dε−

=
(
p2dσeγB
ω′2dω′

)
(ε′,p′,ε,p,ω′,z)→(−ε+,p+,ε−,p−,−ω,−1/y)

, (4.6)

and

dσeēC
dε−

= π α(Zα)3

ω3

{
c̃1
[
F
(
ry, rx y2

)
− F (ry, rx y)− ln rx y ln rx y2 − 2 ln rx ln ryrx y

]
+ c̃2

[
F (rx y, 1)− F

(
rx y, rx2 y

)
+ ln rx ln rx2 y

]
+ c̃3 [F (rx y, 1)− 2F (rx y, rx) + ln ry ln rx]

+ c̃4 [Li2(y x)− Li2(−y x)]− c̃5 ln ry ln rx y + c̃6 ln2 rx y + c̃7 ln rx y + c̃8 ln ry + c̃9

}
,

− {(ε−, p−, x)↔ (ε+, p+, y)} (4.7)

The explicit form of the coefficients c̃k = c̃k(ε−, p−, ε+, p+) is presented in appendix A.
We attach the Mathematica files BSresult and PPresult in the supplementary material

which contain eqs. (4.3) and (4.6) in computer-readable form. The content of these files
can be used as follows

• The code
{eq43, eq44, eqA1, ep2xz} = Get["BSresult"];
eq43//.eq44/.eqA1/.ep2xz/.{x->0.3,z->0.4} (*==> 133.445*al4Z3/m3*)

gives the value of dσ
eγ
C

dω′ at x = 0.3, z = 0.4.

• The code
{eq47, eq44, eqA2, ep2xy} = Get["PPresult"];
(#-(#/.{x->y,y->x}))&[eq47//.eq44/.eqA2/.ep2xy]/.{x->0.3,y->0.9}
(*==> 0.146448*al4 Z3/m3*)
gives the value of dσ

eē
C

dε−
at x = 0.3, y = 0.9.

4.1 Asymptotics

Let us present asymptotics of the obtained corrections to the spectra. We start from
high-energy asymptotics. The first three terms of the high-energy asymptotics of the
bremsstrahlung spectrum read

(
πα(Zα)3

ε2ω

)−1
dσeγC
dω

= π2

4m

(
2ω′2
εε′

+3
)

(ε+ε′)−
{
π2(ε2−ε′2)2

2ε2ε′2
+
[
ε′

ε

(
ln2ε
m
−1
)

+ ε

ε′
ln2ε′
m

]2

−8(ε2−ε′2)
3εε′ ln 2εε′

ω′m
+3ε3−3ε2ε′+3εε′2+ε′3

εε′2

(
2ln2ε′

m
−1
)

+2ε
2−ε′2

ε2 lnω
′

ε′
ln ε
ε′

+19ε2+3εε′+11ε′2
3εε′

−2 ε
2

ε′2
ReLi2

(
1+ω′

ε

)
+22ε2−ε′2

ε2 Li2
(
ε

ε′

)}
+π2m

(
ε2−ε′2

)(
ε3−ε′3

)
2ε3ε′3

+O(m2) (4.8)
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For the pair production spectrum we have(
πα(Zα)3

ω3

)−1
dσeēC
dε−

= π2

4m

(
2ω2

ε+ε−
−3
)

(ε+−ε−)+
{
π2ε2

+
2ε2
−
− 2ε+
ε−

ln 2ε−
m
−
ε2
−+ε2

+
ε2
−

ln2 2ε−
m

− ε+ (9ω+ε−)
3ε2
−

(
2ln 2ε−ε+

ωm
−1
)

+ 2ε2
−

ε2
+

ReLi2
(

1+ ω

ε−

)
+2Li2

(
−ε+
ε−

)
−(ε−↔ ε+)

}
+ π2m

(
ε2

+−ε2
−
)(
ε3
−+ε3

+
)

2ε3
−ε

3
+

+O(m2) , (4.9)

The leading terms in eqs. (4.8) and (4.9) are in agreement with the results of refs. [12]
and [11], respectively, where the O (m/ε) correction to the spectra were calculated exactly
in the parameter Zα.

The low-energy asymptotics for bremsstrahlung and pair production processes, v ∼
v′ � 1 and v+ ∼ v− � 1, respectively, reads(

πα(Zα)3

m3

)−1
dσeγC
dω

= 64 arctanh(v′/v)
3v3v′(v + v′) +O(v−3) , (4.10)(

πα(Zα)3

m3

)−1
dσeēC
dε−

= 1
6(v+ − v−)(v2

+ + v2
−)− 17

96v+v−(v2
+ − v2

−) +O
(
v5
±

)
. (4.11)

Here v = p/ε, v′ = p′/ε′, v± = p±/ε±. The leading terms in eqs. (4.10) and (4.11) are
in agreement with the results of refs. [6] and [8], respectively, where the spectra of the
non-relativistic electron bremsstrahlung and of the pair production near threshold were
obtained exactly in the parameter Zα

v .

5 Graphs and checks

Given the complexity of our results, it is important to have as many crosschecks as possible.
First, we remind that the leading terms of the low- and high-energy asymptotics are in
agreement with the results from the literature.

Another check for the bremsstrahlung process comes from the comparison with ref. [24],
where the energy loss in the bremsstrahlung was calculated in the order α(Zα)3. We have
checked that the numerical integration of the bremsstrahlung spectrum (4.3) perfectly
agrees with the result of ref. [24]. In the same paper [24] the authors approximately
obtained the bremsstrahlung spectrum by fitting the moments

K(n)(Z, ε) =
ε−m∫
0

(
ε′ −m
ε−m

)n ω
ε

dσeγC
dω

dω . (5.1)

The comparison of our result with the results from [24] is presented in figure 4, where the
quantity

ΣBS(τ) =
(
α(Zα)3

m2

)−1

p
ω

ε

dσeγC
dτ

, (5.2)
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Figure 4. Function ΣBS(τ) for several values of Z and its comparison with low energy (dashed
black curve) and high energy (dash-dotted brown curve) asymptotics. The solid line corresponds
to our present result, the dotted line shows the fit of ref. [24].

is plotted as function of τ =
√

ε′−m
ε−m for different z. A noticeable difference at small τ is

related to the uncertainty of the fitting functions basis chosen in ref. [24].
For the pair production process the additional crosscheck comes from the comparison

with the result of ref. [5], where the exact spectrum and total cross section were obtained
numerically for a few intermediate values of photon energy, ω−2m ∼ m, and atomic charge
numbers.

In figure 5 the positron spectra at ω = 3m and Z = 13 is presented. Points correspond
to the numerical result of ref. [5], line corresponds to the sum of eqs. (4.5) and (4.6). We
see that, apart from the central part, the solid curve already gives a good approximation.
The deviation in the central part of the graph reaches 5% and can be ascribed to higher
orders in Zα not considered here.

In figure 6 we plot the quantity

ΣPP = p+p−(p+ + p−)ω2

α(Zα)3(ω − 2)3
dσeēC
dε+

,

as a function of ε−−mω−2m for different values of ω. The convenience of this quantity is that it
has finite low- and high-energy limits:

Σhigh
PP = π3

4 (1− 2τ̃)(2− 3τ̃(1− τ̃)) , Σlow
PP = 16π

3 (1− 2τ̃)
√
τ̃(1− τ̃) , (5.3)

where τ̃ = ε−−m
ω−2m . As can be seen from figure 6, the account of the m0 term in eq. (4.9)

essentially improves the precision of the high-energy approximation.

6 Conclusion

In the present paper we have calculated the first Coulomb corrections to the spectra of the
electron bremsstrahlung and electron-positron pair photoproduction in the Coulomb field.
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Figure 5. Positron energy spectra at ω = 3m for Z = 13. Points correspond to exact numerical
result from ref. [5], solid line corresponds to the sum of eqs. (4.5) and (4.6). Blue points and curves
corresponding to Born approximation are given for the reference.
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0

5

10

15

Figure 6. Function ΣP P for several values of ω and its comparison with leading low-energy (dashed
black curve) and leading high-energy (dash-dotted brown curve) asymptotics. Color dashed lines
correspond to the account of the first two terms in eq. (4.9).

These corrections give the leading contribution to the charge asymmetry in these processes.
Our results are expressed in terms of dilogarithms and simpler functions. We observe that,
in contrast to the Born spectra and the leading high-energy asymptotics, the obtained
results for these two processes are not related by the crossing symmetry rules. We provide
an explicit example of a pair of master integrals which can not be related by an analytic
continuation from bremsstrahlung channel to pair production channel. Comparison with
the results available in the literature, such as high- and low-energy asymptotics, asymmetry
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in the total energy loss and numerical results for pair production spectra, shows perfect
agreement. We provide Mathematica files containing the obtained formulas in computer-
readable form.
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A Coefficients ck and c̃k

The coefficients c1−12 in eq. (4.3) have the form

c1 = 2ε
p
, c2 = 2

(
p′4−p4)
p2p′2

− 4m2ε′ω′

p′4
, c3 = 4ε′3ω′+2p′2ω′2

p′4
,

c4 = ε+ε′

m

( 2ω′
ε′+m

− 2ω′
ε+m

+3
)
, c5 = 2

(
p2−p′2

)2
p2p′2

, c6 = 2ω′ (2εp′−pε′)
(
εε′+p′2

)
pp′4

,

c7 = 2ε′ω′
(
εε′+p2)
p3p′

, c8 = 2ε′
p′
, c9 =−8εε′2 (εε′−pp′)

3m2pp′2
− 2ε′ (pε′−εp′)2 (ε2 +p′2

)
m2p2p′3

+ 2
(
3ε′2−5ε2)ε′

3pp′2 + 2εε′2
(
p2 +p′2

)
p2p′3

, c10 = 2ε′2
p2 , c11 = 2(3ε−ε′)ε′2ω′

p′4
+ ε′2 +εε′

p′2

− 2εε′p
p′3

, c12 = ω′
(
6εε′−3ε′2 +m2)

p′3
+ 2(pε′−εp′)

(
3ε2 +3p′2 +2pp′

)
3m2pp′

− 2εp
p′2

. (A.1)

The coefficients c̃1−9 in eq. (4.6) have the form

c̃1 = 2ε−
p−

, c̃2 = 2ω
(
(ε− − ε+) ε2

− +m2ω
)

p4
−

, c̃3 = 2
(
p2

+ − p2
−
) (
p2
− + p2

+ −m2)
p2
−p

2
+

−
2m2 (p4

+ − p4
−
) (
ε−ε+ +m2)

p4
−p

4
+

, c̃4 = (ε− − ε+)
2m

(
3− 2ω

ε+ +m
− 2ω
ε− +m

)
,

c̃5 = 2ω (ε+p− − ε−p+)
(
p2

+ − ε−ε+
)

p−p4
+

, c̃6 = 2
(
ε−ε+ +m2) (m2 + p2

− + p2
+
)

p3
−p+

,

c̃7 = ε+p− − ε−p+
p+p−

(
4
(
3ε2
− + ε+ε−

)
3m2 + 2ω ε+

p2
−

)
+ 7ε−ε+ + 5m2

p2
−

+ 2
(
ε−ε+ +m2) (3ε−ε+ +m2)

p4
−

, c̃8 = 2
(
ε+p− (ε− − p+)− ε2

−p+
)

p3
+

,

c̃9 = 2ε−ε+ (ε+p− − ε−p+)
m2p2

−
− 4ε−p+

3m2 + 2p+
(
3ε−ε+ +m2)
p3
−

+ 5p+
p−

. (A.2)
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