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1 Introduction

As is well known, massive internal lines in the diagrams bring much complexity in the
calculations. However, there are two well-known limiting cases where the analysis simplifies:
when the lines are massless and they are infinitely heavy. In particular, this fact justifies the
utility of the heavy quark effective theory (HQET) [1]. In HQET, in its simplest form, in
addition to a single infinitely heavy particle, one considers massless particles only. Within
this theory, the propagator-type integrals are functions with trivial dependence on a single
dimensionful parameter, the residual energy ω, and the method of differential equations
can not be applied, at least, directly.

Possible applications of such integrals include calculating the heavy quark field anoma-
lous dimension [2, 3], the small-angle expansion of cusp anomalous dimension, and the cor-
relators of various currents in HQET [2, 4]. For example, recently, using integrals calculated
in the present paper, the four-loop expression for the heavy quark anomalous dimension
and first two terms of the small-angle expansion of the QCD cusp anomalous dimension
were calculated in ref. [3].

In three-loop calculations there are only eight propagator-type master integrals, and
all of them, except one, are known for arbitrary space-time dimension in terms of hyper-
geometric functions [5, 6]. The last non-trivial master integral has been calculated up to
ε1 terms in ref. [7] using its relation to the three-loop on-shell master integral. Techniques
used in three-loop calculation are difficult to apply at four loops due to a large number
of master integrals and their grown complexity. Therefore, we choose to switch to a more
effective Dimensional Recurrence and Analyticity (DRA) technique [8]. This method is
based on constructing the general solutions of the dimensional recurrence relations [9] in
the form of triangular series and using the analytical properties of the integrals as the func-
tions of space-time dimension d to fix the undetermined periodic functions. The derivation
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of dimensional recurrence relations and the construction of their general solutions can be
done rather easily using LiteRed [10] and SummerTime [11] packages. In the present paper
we demonstrate that the remaining task of fixing the homogeneous solution can also be
accomplished in a quasi-automatic fashion. Our approach is based on deriving required
constraints in a specific rational point d = d0 by generating a sufficient number of integrals
finite in this point and then reducing them to master integrals. It appears that the finite-
ness of the initial integrals provides a highly redundant set of constraints on the expansion
coefficients of master integrals around d0, which can be used not only to fix the periodic
functions in general solution, but also to safely crosscheck the obtained results.

The paper is organized as follows. In section 2 we describe some details of the DRA
method as applied to our problem, and in section 3 we provide an explicit example of the
calculation. Section 4 contains description of the obtained results for general d and for
ε-expansion near d = 4 and d = 3. We conclude in section 5.

2 Method of calculation

We consider the propagator-type diagrams obtained by attaching an n-legged graph with
massless lines to n points on a single HQET line. For four loops we have 2 6 n 6 8, however
for the master integrals identification we can restrict ourselves with n = 3, 4, or 5 as other
cases reduce to these by partial fractioning. Performing the IBP reduction of the remaining
19 big topologies, we end up with 54 master integrals shown in figure 1. In this figure, the
notation [CLn] with n = 0, 1, 2, 3, 4 denotes the complexity level of the integral, i.e. the
maximal depth of multiple sums which enter its DRA representation. Note that many of
[CL0] and [CL1] integrals listed in figure 1 can be obtained from the literature [5, 7, 12].

The dimensional recurrence relations have the form

J(d+ 2) = L(d)J(d) . (2.1)

The application of the DRA method is straightforward provided the matrix L(d) is lower-
triangular. This property is obvious for the case when there are no more than one master
integral in each sector. In our case the integrals J21 and J22 belong to the same sector,
but, fortunately, the corresponding block in the matrix L is diagonal. The triangular form
of the matrix L(d) results to the first-order inhomogeneous difference equation for each Jk:

Jk(d+ 2) = Lkk(d)Jk(d) +
∑
l<k

Lkl(d)Jl(d). (2.2)

Let us assume that Jl(d) for l < k are already calculated by the same method. Then the
general solution of eq. (2.2) can be written as

Jk(d) = S−1(d)ω(d) +Rk(d) , (2.3)

where Rk(d) is a specific solution of inhomogeneous equation, ω(d) = ω(d + 2) is an
arbitrary periodic factor, and the summing factor S(d) is a specific solution of

S(d) = Lkk(d)S(d+ 2) . (2.4)
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J1 [CL0] J2 [CL0] J3 [CL0] J4 [CL0] J5 [CL0]

J6 [CL0] J7 [CL0] J8 [CL0] J9 [CL0] J10 [CL0]

J11 [CL0] J12 [CL0] J13 [CL0] J14 [CL0] J15 [CL1]

J16 [CL1] J17 [CL1] J18 [CL1] J19 [CL1] J20 [CL1]

J21 [CL1] J22 [CL1] J23 [CL1] J24 [CL1] J25 [CL1]

J26 [CL1] J27 [CL1] J28 [CL1] J29 [CL1] J30 [CL1]

J31 [CL1] J32 [CL1] J33 [CL1] J34 [CL1] J35 [CL1]

J36 [CL1] J37 [CL1] J38 [CL2] J39 [CL2] J40 [CL2]

J41 [CL2] J42 [CL2] J43 [CL2] J44 [CL2] J45 [CL2]

J46 [CL2] J47 [CL3] J48 [CL3] J49 [CL3] J50 [CL3]

J51 [CL3] J52 [CL4] J53 [CL4] J54 [CL4]

Figure 1. Four-loop propagator-type HQET integrals calculated in this paper. Red solid lines
correspond to massless propagators [−l2 − i0]−1, double lines correspond to the HQET propagator
[1− 2l · n− i0]−1, (where n2 = 1). The loop integration measure is ddl

iπd/2 .
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The specific inhomogeneous solution Rk can be expressed in terms of triangular sums, see
ref. [8] for details.

In order to fix the function ω(z) we need to obtain sufficient information about the
analytical properties of Jk as a function of d on the chosen basic stripe B— a vertical stripe
of width 2 in the complex plane of d. We find it sufficient to use for all master integrals Jk
one and the same basic stripe

B = {d ∈ C| 0 < <d 6 2} . (2.5)

The conventional approach to obtain the required analytical data is the following. First,
one defines the positions of possible singularities on the basic stripe using Fiesta’s [13]
routine SDAnalyze. Then, for each of the found position one tries to find the order of the
pole and a few leading coefficients of Laurent expansion near it. For these goals one often
needs to derive the Mellin-Barnes representation and to use the MB code [14], although for
some simple cases it might be sufficient to use Fiesta’s routine SDEvaluate alone. This
approach usually gives a few first terms of Laurent expansion as limited-precision numbers
and should be complemented by the educated guess about their analytical form.

The main drawback of this approach is that the derivation of the required Mellin-
Barnes representation requires a substantial amount of manual work. In the present paper
we use an alternative approach which appears to provide more than enough information
about the analytical properties of the master integrals. First, instead of using Fiesta’s
SDAnalyze, we follow a less specific but much more simple way to restrict possible positions
of singularities. Namely, we analyze the position of poles in the matrix of dimensional
recurrence relations and assume that the singularities may differ from those poles by a
multiple of 2. In this way we obtain the following set of potential positions of poles on the
basic stripe:

S =
{1

4 ,
1
3 ,

2
5 ,

1
2 ,

2
3 ,

3
4 ,

4
5 , 1,

6
5 ,

5
4 ,

4
3 ,

3
2 ,

8
5 ,

5
3 ,

7
4 , 2

}
. (2.6)

The main step of our approach is to consider large enough set of integrals in some chosen
d = d0 − 2ε + 2k, with d0 ∈ S and k ∈ Z, finite at ε = 0 and to reduce them to master
integrals J1, . . . , J54 in d = d0−2ε using IBP identities and dimensional recurrence relations.
Then, the finiteness of the obtained expression implies some constraints on the ε-expansion
coefficients of master integrals at d = d0 − 2ε. This approach is very similar to the one
that was successfully used for the calculation of four-loop [15] and five-loop [16] massless
propagators.1 The only difference is that for our present purposes we need to consider not
a single value of d0, but all points in S. In order to pick a set of finite integrals we use
the algorithm of ref. [17] as implemented in the public code Reduze2 [18]. As the existing
implementation supports only even d0, we had to slightly modify the routines of Reduze2
code to support arbitrary rational d0.

1In the calculations of massless propagators it was important to use also the additional Glue-and-Cut
symmetry.
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3 Example: J21 integral

Let us describe our method in some details on the example of integral J21,

J21(d) =
∫

dl1dl2dl3dl4/(iπd/2)4

[−l21][−l213][−l223][−l234][−l24][1− 2l1 · n][1− 2l2 · n][1− 2l4 · n]
, (3.1)

where n is a unit time-like vector, n2 = 1, lik = li− lk, and [a] = (a− i0). The integral J21
satisfies the equation

J21(d+ 2) = c21(d)J21(d) + c7(d)J7(d) + c4(d)J4(d) + c3(d)J3(d) , (3.2)

where ck(d) are some rational functions of d, in particular,

c21(d) = − 3(d− 3)(3d− 7)(3d− 5)
16(d− 1)3(4d− 11)(4d− 9)(4d− 7)(4d− 5) . (3.3)

Analytical properties. In order to discover the analytical properties of J21, we deter-
mine the set of finite integrals for each point in S. For example, we find that the integral
J̃21 = is finite in d = 4. Reducing this integral in d = 4 − 2ε to the master
integrals in d = 2− 2ε, we obtain

J̃21(4− 2ε) = ε(1 + 2ε)2J21(2− 2ε)
16(1− 2ε)(1 + 8ε)(3 + 8ε) + ε

(
386ε3 + 395ε2 + 131ε+ 14

)
J7(2− 2ε)

48(1− 2ε)(1 + 3ε)(2 + 5ε)(1 + 8ε)

+ ε
(
53ε2 + 37ε+ 6

)
(2ε+ 1)J4(2− 2ε)

64(2ε− 1)(4ε+ 1)(5ε+ 2)(8ε+ 1) + ε(6ε+ 1)
(
124ε2 + 95ε+ 18

)
J3(2− 2ε)

48(2ε− 1)(5ε+ 2)(8ε+ 1)(8ε+ 3) .

(3.4)
Since the left-hand side is finite, so is the right-hand side. Note that in the latter the
integral J21 is the only nontrivial one, while J3, J4, J7 are expressed in terms of Γ-functions.
Expanding the right-hand side up to ε−1, we obtain the following constraint

e4εγEJ21(2− 2ε) = −10
ε4
− 226

3ε3 +
(286

3 − 58π2
)
ε−2 +O(ε−1) . (3.5)

In fact, we can obtain yet more terms of expansion of J21 near d = 2 once we consider
more finite integrals. Finally, we obtain

e4εγEJ21(2− 2ε) = −10
ε4
− 226

3ε3 +
(286

3 − 58π2
)
ε−2 +

(
5512ζ(3)

3 − 166
3 − 3826π2

9

)
ε−1

+ 118336ζ(3)
9 − 728

3 + 4904π2

9 − 4478π4

15 +O (ε) ,

e4εγEJ21(1− 2ε) = −3072π2 +
(
−1084928π2

45 − 24576π2 log 2
)
ε+O

(
ε2
)
,

e4εγEJ21(2/3− 2ε) = −
14554000Γ

(
4
3

)5

189ε +O
(
ε0
)
,

e4εγEJ21(4/3− 2ε) =
16677Γ

(
5
3

)5

10ε +O
(
ε0
)
,

e4εγEJ21(d0 − 2ε) = O
(
ε0
)

in all other points d0 ∈ (0, 2] . (3.6)
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The right-hand sides of these constraints are built from the expansion coefficients of simpler
integrals J1,2,3,5 expressible in terms of Γ-functions.

Summing factor. The summing factor S(d) satisfies

S−1
i (d+ 2) = ci(d)S−1

i (d) , (3.7)

where c21 is defined in eq. (3.3). It is useful to consider its following decomposition

S(d) = S0(d)Ω(d)f(d) , (3.8)

where each of the factors S0(d), Ω(z), f has its own meaning. First, we find S0(d), which
is a random solution of eq. (3.7). Then we pick a periodic factor Ω(z) = Ω(eiπd) such as to
reduce the number and the orders of singularities of the quantity S(d)J21(d) on the basic
stripe. In addition we secure that S(d)J21(d)/eπ|d| decays when d → ±i∞. Finally, we
pick a constant factors f to simplify the leading term of expansion of S(d) at d = 2 − 2ε.
We have

S0(d) =
24dΓ

(
11
2 −

3d
2

)
Γ
(

13
2 − 2d

)
Γ
(

3
2 −

d
2

)3 , (3.9)

Ω(z) = sin3
(
π

2 (d− 2)
)

sin
(
π

2

(
d− 4

3

))
sin
(
π

2

(
d− 2

3

))
, (3.10)

f = 1
192π3/2 . (3.11)

Consequently, we have the following properties of S(d):

1. S(d) satisfies eq. (3.7).

2. S(d)J21(d) has no singularities at d ∈ (0, 2) and is bounded when =d→ ±∞.

3. S(2− 2ε)J21(2− 2ε) = 10
ε + 146

3 +O (ε).

Two last properties are trivially established from the constraints (3.6).

General and specific solution. We write the general solution of eq. (3.2) as

S(d)J21(d) = I21(d) + ω(z) , (3.12)

I21(d) = −
∞∑
k=0

S(dk + 2) [c7(dk)J7(dk) + c4(dk)J4(dk) + c3(dk)J3(dk)] , (3.13)

where dk = d+ 2k and ω(z) = ω(eiπd) is a periodic function.
Now we have to construct ω(z) in the right-hand side to fit the analytical properties

of the left-hand side of eq. (3.12). We use SummerTime package [11] to calculate with high
numerical precision the coefficients of ε-expansion of the inhomogeneous solution I21(d)

– 6 –



J
H
E
P
0
2
(
2
0
2
3
)
0
9
7

near points d0 ∈ S. Then, using some educated guess about the transcendental constants
which may appear in the coefficients, we obtain the following analytic expansions

I21(1− 2ε) PSLQ= 1
27ε +O(ε0), I21

(1
2 − 2ε

)
PSLQ= 1

2ε +O(ε0),

I21

(3
2 − 2ε

)
PSLQ= 1

2ε +O(ε0), I21

(1
3 − 2ε

)
PSLQ= 1

9
√

3πε2
− 14

27ε +O(ε0),

I21

(5
3 − 2ε

)
PSLQ= − 1

9
√

3πε2
− 14

27ε +O(ε0), I21(2− 2ε) PSLQ= 10
ε

+ 146
3 +O

(
ε1
)
,

(3.14)

and I21(d0 − 2ε) = O(ε0) for all other d0 from S. Here PSLQ= means that the analytic
coefficients in ε-expansion have been determined from their multi-digit numerical values
using PSLQ, ref. [19]. Then we construct the function ω(z) which cancels the poles at
d = 1, 1

2 ,
3
2 ,

1
3 ,

5
3 and preserves the expansion at d = 2 and the behavior of S(d)J21(d)

at d→ ±i∞:

ω(z) PSLQ= π

9
√

3
cot2 π

2

(
d− 5

3

)
− 14π

27 cot π2

(
d− 5

3

)
− π

9
√

3
cot2 π

2

(
d− 1

3

)
−14π

27 cot π2

(
d− 1

3

)
+ π

2 cot π2

(
d− 3

2

)
+ π

27 cot π2 (d− 1) + π

2 cot π2

(
d− 1

2

)

= −
2π sin

(
πd
2

)
(1− 2 cos(2πd))

3(1− 2 cos(πd))2
(
cos

(
πd
2

)
+ cos

(
3πd

2

)) . (3.15)

Thus we obtain the final expression

J21(d) = S−1(d) [I21(d) + ω(z)] , (3.16)

where S(d), I21(d), and ω(d) are defined in eqs. (3.8)–(3.11), (3.13), and (3.15), respectively.
Using the SummerTime package to calculate the sum in I21(d), we obtain the ε expansion
around d = 4 and d = 3 with high-precision numeric coefficients. Using PSLQ, we obtain

J21(4− 2ε)=e−4εγE

[
−
(

7
288 + ζ2

36

)
1
ε2
−
(

667
1728 + 8ζ2

27 −
5ζ3

72

)
1
ε
− 31993

10368 −
2725ζ2

1296 + 20ζ3

27 −
49ζ2

2
360

−
(

636223
62208 + 79321ζ2

7776 + 196ζ2
2

135 −
835ζ3

324 + 293ζ2ζ3

108 + 191ζ5

24

)
ε+ . . .

]
, (3.17)

J21(3− 2ε)=e−4εγEπ2
[

7ζ3

ε
+ 14

5 ζ
2
2 + 32ζ−3,1 + (254ζ2ζ3 + 357ζ5− 256ζ−3,1,1) ε

+
(

5172
35 ζ3

2 + 192ζ−3,1ζ2−
2746

3 ζ2
3 − 640ζ−5,1 + 2048ζ−3,1,1,1

)
ε2 + . . .

]
, (3.18)

where ζa1...an is defined in (A.1).

4 Results

Similar to the example in previous section, we derive representations for all master inte-
grals from figure 1 in terms of iterated triangular sums with factorized summands. One
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can effectively evaluate these sums as expansions in ε with arbitrarily accurate numerical
coefficients using the SummerTime package [11]. Assuming that we know the basis of tran-
scendental numbers, which may show up in the results, we can use the PSLQ algorithm to
recover the analytical form of the coefficients.

With the paper, we provide the results for sums in the SummerTime format, admitting
the calculation of all considered integrals for arbitrary space-time dimension and/or to
arbitrary order in ε. Furthermore, we perform PSLQ recognition for d = 3−2ε and d = 4−2ε
to obtain the analytic results, which should be sufficient for any practical application. For
d = 4 − 2ε we successfully recognize the analytic result in terms of usual multiple zeta
values. For d = 3− 2ε we use also the alternating Euler-Zagier sums.

The existence of a uniformly transcendental (UT) basis is very remarkable per se,
but it is advantageous also for practical reasons as it simplifies the PSLQ recognition. Un-
fortunately, it is yet unclear how to systematically construct the UT basis for one-scale
integrals. Nevertheless, we were able to construct UT bases for both three-dimensional
and four-dimensional cases. This was accomplished in a semi-empirical way by checking
the integrals which diverge logarithmically in d = 4 or d = 3. In many cases we observed
that such integrals exhibit the property of uniform transcendentality after pulling out a
simple rational factor. We have recognized the analytical results for UT integrals up to the
weight twelve2 for both d = 4− 2ε and d = 3− 2ε.

The advantage of using UT basis in applications is that it should be expanded exactly
up to the transcendentality weight which appear in the physical result. This is in contrast
to IBP basis, where some integrals might require higher expansion terms involving higher
transcendental weights. We have checked whether it is the case for the master integrals in
figure 1 in the following way. Let J IBP = TJUT, where J IBP is a column of IBP master
integrals, depicted in figure 1, JUT is a UT basis, and T is a transition matrix. Then
we evaluate the quantity T−1(TJUT). Formally, the result coincides with JUT, however,
substituting the expansions of JUT up to a certain transcendental weight and performing
the matrix multiplication in the order dictated by braces, we might, in principle, lose some
higher terms in the expansions of JUT. In this case it means that J IBP should be expanded
up to terms involving higher transcendental weight. We find that for d = 4 − 2ε this loss
of higher expansion terms does not happen, while for d = 3− 2ε it does.

The obtained results are attached to the arXiv version of the paper. The description
of the files attached as supplementary material can be found in appendix A.

Checks of the results. Since our method is quite involved, it is important to perform
some crosschecks of our results. First, as we mentioned earlier, the IBP reduction of finite
integrals provide an extremely redundant set of constraints which we use not only for fixing
the specific solution of dimensional recurrence relations, but also for an extensive crosscheck
of the results. Then, we have verified that our results reproduce all terms of ε expansion of
integrals calculated in [20] for d = 4−2ε. Unfortunately, for the most complicated integrals
in that paper only the divergent part is available. While this paper was being written a

2Note that the expansion of integrals at d = 3 − 2ε appears to have an overall common factor π2, so
after pooling this factor out we had to recognize only up to t.w. 10 expressions.
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work on the numerical calculation of the same set of four-loop integrals appeared [21]. The
comparison of the results provided therein with those of the present paper for the cases
d = 4− 2ε has shown only partial agreement.3 We note that the results of ref. [21] for the
most complicated integrals J52, J53, J54 are also in contradiction with the divergent parts
of these integrals calculated in [20].

5 Conclusion

In this paper we have calculated the four-loop HQET propagator-type master integrals
using the DRA method [8]. In order to fix the periodic functions in the general solution of
the dimensional recurrence relations, we use a novel highly automated approach based on
the IBP reduction of finite integrals. In order to pick a sufficient set of the finite integrals
we use a criterion from [17] generalized to the case of rational d. Having obtained the
expressions for the master integrals in terms of triangular sums treatable by the SummerTime
package [11], we obtain an ε-expansion with high-precision numerical coefficients (up to 104)
near the most relevant dimensions d = 4 and d = 3. Using PSLQ algorithm we recognize
these high-precision coefficients in terms of multiple zeta values (for d = 4− 2ε) and Euler-
Zagier sums (for d = 3 − 2ε). The obtained results for even and odd dimensions cover
all thinkable practical applications and for the d = 4 − 2ε case were already successfully
applied in ref. [3]. The results in d = 3 − 2ε can find their application in perturbative
calculations in ABJM theory, see, e.g. [22, 23].
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A Supplementary files description

The main results of the article are available in the form of computer readable files. For
alternating Euler-Zagier sums we use the notation

mzv[n1, . . . , nk] = ζn1,...,nk
=

∑
i1>...>ik>0

k∏
l=1

(signnl)il

i
|nl|
l

. (A.1)

Short description of files and examples of their usage are provided below.

HQET4l.st
List of arbitrary d results in the SummerTime package format. To calculate all integrals
in d = 4− 2ε with 30 digits precision to the order O(ε2) one can run:

TriangleSumsSeries[#,{ep,2},30]& /@ (Get["HQET4l.st"] /.d->4-2*ep)
3In our notations we found disagreement in integrals J28, J30, J36, J44, J45, J46, J52, J53, J54.
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HQET4l.ldrr
Matrix L(d) of the lowering dimensional recurrence ralation (2.1).

hqetUT4l.3d
List of analytical results for uniform transcendental weight basis functions expanded
near d = 3 to the transcendental weight 12 in terms of alternating Euler-Zagier sums.

hqetUT4l.4d
List of analytical results for uniform transcendental weight basis functions expanded
near d = 4 to the transcendental weight 12 in terms of MZV.

ut2mi.3d
Conversion matrix from the set of UT basis functions to integrals calculated in the
present paper (figure 1) for d = 3 − 2ε. One can obtain list of integrals from basis
UT weight functions with:

Get["ut2mi.3d"].Get["hqetUT4l.3d"]

ut2mi.4d
Conversion matrix from the set of UT basis functions to integrals calculated in the
present paper (figure 1) for d = 4 − 2ε. One can obtain list of integrals from basis
UT weight functions with:

Get["ut2mi.4d"].Get["hqetUT4l.4d"]
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