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1 Introduction

The famous BFKL equation [1, 2], which determines the behaviour of QCD amplitudes at
high energies, is based on the gluon Reggeization. In the BFKL approach, discontinuities
of elastic amplitudes are given by the convolution of the Green’s function of two interacting
Reggeized gluons with the impact factors of colliding particles, the latter describing the
interaction of these particles with Reggeized gluons. The BFKL equation describes the evo-
lution with energy of the Green’s function. The kernel of the equation consists of two parts.
The first one, which is called virtual, is given by the sum of the trajectories of Reggeons.
The second part, called real, is represented by convolutions of vertices that describe the
emission of particles in Reggeon-Reggeon interactions. In the leading logarithmic approxi-
mation (LLA) only a gluon can be emitted in Reggeon-Reggeon collisions. The real part of
BFKL kernel at leading order (LO), entering the LLA BFKL equation, takes contribution
just from the Reggeon-Reggeon-gluon (RRG) vertex, 'ygl R, in the Born approximation. It



was calculated in [3] and is usually called Lipatov vertex. In the next-to-leading logarith-
mic approximation (NLLA), one-loop corrections to this vertex are necessary. There are
gluon and quark corrections, coming from gluon and quark loops, correspondingly. The
corrections contain infrared divergences, which are regularized taking the space-time di-
mension D = 4 + 2e. Of course, gluon corrections are the most complicated ones. They
were calculated firstly in [4], where only terms finite at ¢ — 0 were kept. But later it
was realised that, because of the singular behaviour of the kernel at small values of the
transverse momentum p’ of the produced gluon, the RRG vertex at small p must be known
with accuracy of order e for a soft gluon, i.e. in the region eIn(1/52) ~ 1. Thereafter, the
vertex in the region of such small p’ values was calculated [5] at arbitrary D. These results
were confirmed in [6], where the vertex was obtained with accuracy of order €” in general
kinematics and €' in the small-p region, using the results of [7]. The quark part of the
one-loop correction to the vertex was calculated [8] at arbitrary D from the beginning. In
supersymmetric generalizations, the BFKL kernel contains also the contribution of scalar
particles. This part was found in [9] also at arbitrary D.

At present, the BFKL kernel in the next-to-the-leading order (NLO) is known both for
forward scattering, i.e. ¢ = 0 and vacuum quantum numbers in the ¢-channel [10, 11], and
for t # 0 and any possible two-gluon color exchange in the ¢-channel [12-15]. The kernel
for the forward scattering is widely used in phenomenology (see, for example, [16-19] and
references therein).

The problem of developing the BFKL approach in the next-to-NLLA (NNLLA) and, in
particular, the calculation of the next-to-NLO (NNLO) corrections to the BFKL kernel, has
been standing for a long time. The one-loop central emission vertex for two gluons which
are not strongly ordered in rapidity in N’ =4 SYM and the pure gauge, or ny = 0, part of
the QCD three-loop Regge trajectory have been computed, respectively, in [20] and [21].
Recently, the full QCD three-loop Regge trajectory has been computed in [22] and [23].
It is also important to mention that the BFKL equation, in the LLA and in the NLLA,
is derived using the pole Regge form of QCD amplitudes with gluon quantum numbers in
cross-channels and negative signature. However, this form is violated in the NNLLA. This
was first shown in [24] when considering the non-logarithmic terms in two-loop amplitudes
for elastic scattering. A detailed consideration of the terms responsible for the breaking of
the pole-Regge form in two- and three-loop amplitudes was performed in [25-27]. In [28-
30] it was shown that the observed violation of the pole-Regge form can be explained by
the contributions of the three-Reggeon cuts. A procedure for disentangling the Regge cut
and Regge pole in QCD in all orders of perturbation theory has been suggested in [23].

The NNLLA formulation of BFKL requires not only two and three-loop calculations,
but also higher e-accuracy of the one-loop results. Thus, since the NLO RRG vertex has a
singularity 1/€2, it must be known in general up to terms of order €? to ensure the accuracy
¥ in the part of the kernel containing the product of two RRG vertices. Of course, in the
region of small transverse momentum p of the produced gluon, the accuracy must be higher
(¢3). Fortunately, in this region the vertex was obtained in [5] exactly in e. Therefore, an
urgent task is to calculate the one-loop RRG vertex for any p with accuracy €2. In the
planar maximally supersymmetric NV = 4 Yang-Mills theory, the Lipatov vertex, within
accuracy €2, has been computed in [31].



Another context requiring knowledge of the vertex with high accuracy is related with
the impact factors for the Reggeon-gluon transition, which are the natural generalization
of the impact factors for the particle-particle transitions, entering the discontinuities of
elastic amplitudes. Similarly, discontinuities of amplitudes of multiple gluon production in
the multi-Regge kinematics (MRK) contain Reggeon-gluon impact factors, which describe
transitions of Reggeons (Reggeized gluons) into particles (ordinary gluons), due to inter-
action with Reggeized gluons. These impact factors appeared firstly [32] in the derivation
of the bootstrap conditions for inelastic amplitudes. They contain the Lipatov vertex as
an integral part (see [33] and references therein).

We remind also that the BFKL equation is derived using s-channel unitarity relations
for the elastic amplitudes, with account of contributions of multiple production amplitudes
in the MRK. The discontinuities of these amplitudes are not required in the LLA and
NLLA, because they are suppressed by one power of some large logarithm, in comparison
with the real parts of the amplitudes. But their account in the NNLLA is obligatory. Their
calculation requires the knowledge of the Lipatov vertex with high accuracy.

The discontinuities of multiple gluon production amplitudes in the MRK are interesting
also from another point of view. They can be used [34] for a simple demonstration of
violation of the ABDK-BDS (Anastasiou-Bern-Dixon-Kosower — Bern-Dixon-Smirnov)
ansatz [35, 36] for amplitudes with maximal helicity violation (MHV) in Yang-Mills theories
with maximal supersymmetry (N = 4 SYM) in the planar limit and for the calculations
of the remainder functions to this ansatz. There are two hypothesis about the remainder
functions: the hypothesis of dual conformal invariance [37, 38|, which asserts that the MHV
amplitudes are given by products of the BDS amplitudes and that the remainder functions
depend only on anharmonic ratios of kinematic invariants, and the hypothesis of scattering
amplitude/Wilson loop correspondence [39-42], according to which the remainder functions
are given by the expectation values of Wilson loops. Both these hypothesis are not proved.
They can be tested by comparison of the BFKL discontinuities with the discontinuities
calculated with the use of these hypothesis [43, 44].

One more problem requiring knowledge of the vertex with high accuracy is the proof
of gluon Reggeization, which appeared originally as an hypothesis, on the basis of direct
calculations firstly of elastic amplitudes in two loops [3], then of elastic amplitudes in
three loops and of particle-production amplitudes in one loop [45]. The hypothesis is
extremely powerful since an infinite number of amplitudes in all orders of perturbation
theory is expressed in terms of the gluon Regge trajectory and several Reggeon vertices.
Evidently, its proof is extremely desirable. It was performed both in the LLA [46] and in
the NLLA (see [47] and references therein) using bootstrap relations following from the
requirement of compatibility of the pole Regge form with the s-channel unitarity. It turns
out, that an infinite number of these relations is fulfilled if several bootstrap conditions
are fulfilled [48]. The fulfillment of these conditions has been shown in a number of papers
(see [47] and references therein). However, not all conditions were checked at arbitrary
D. Some of them were checked only in the limit ¢ — 0. One of the reasons for that was
the inadequate accuracy of the Lipatov vertex. This shortcoming was eliminated in [49],
where the one-loop gluon correction to the vertex was obtained at arbitrary D, albeit in



a form containing several integrals. But this form turns out to be inconvenient for some
applications. Therefore, it is desirable to have other representations of the Lipatov vertex
with high accuracy in e.

In this paper we present the result of the calculations of NLO RRG vertex in QCD
with accuracy up to terms of the order €. The paper contains four sections and four
appendices. In section 2 we introduce notations, review the results obtained in [49] and
give the representation of the vertex obtained there. In the section 3 the calculations of
basic integrals entering this representation are described. Section 4 contains our conclusions

and outlook. Appendices contain usual definitions, useful integrals, relations and limits.

2 Review of the Lipatov vertex at one-loop

2.1 The gluon production amplitude

The RRG vertex can be obtained from a generic A+ B — A’ + g + B’ amplitude taken in
MRK and with the gluon emitted in the central kinematical region. In this case we follow
the construction in [49] and consider gluon-gluon collision. We will use the denotations p4
and pp (par and ppr) for the momenta of the incoming (outgoing) gluons, p and e(p) for
momentum and polarization vector of the produced gluon; g1 = pa —pa and g2 = pgr —pB
are the momentum transfers, so that p = g1 — g2. The denotations are the same as in [49],
except that we use p for the “central” outgoing gluon, instead of k. The MRK kinematics
is defined by the relations

> 81,80 > |t1] ~ |ta], (2.1)

where
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In terms of the parameters of the Sudakov decomposition
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the relations (2.1) give
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Here and below, the vector sign is used for the components of the momenta transverse to
the plane of the momenta of the initial particles p4 and pp.

To extract the RRG vertex, we can restrict ourselves to amplitudes with conservation
of the helicities of the scattered gluons. The form of these amplitudes is well known:
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where T} are matrix elements of the colour group generator in the adjoint representation
and the amplitude A* in the Born approximation is equal to C* (g2, q1):
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It was shown in [4] that at one-loop order the amplitude can be presented in its gauge
invariant form,
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The expression for the function r; appearing in the definition of A* is
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and

L s
Fs=T5— L3 31 <sl(—51)52(—52)>13‘ (2.12)

The total amplitude is given in terms of five structures Zs, L3, Zyp, Zsa, ZIs, defined
as [49]
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2.2 The Lipatov vertex

Imposing general requirements of analyticity, unitarity and crossing symmetry, the pro-
duction amplitude must take the Regge form [4, 50]
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where w; = w(t;) (we have chosen p'? as the scale of energy), I'(t;;52) are the helicity
conserving gluon-gluon-Reggeon vertices, R* and L* are the right and left RRG vertices,
depending on ¢ and . They are real in all physical channels, as well as T'(¢;; p2).

In the one-loop approximation, we have
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In the same approximation, we obtain from (2.17)
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the combinations R* + L* and R¥ — L* are respectively related to the real and imaginary
parts of the production amplitude. Using this, we find that
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It is clear that, in order to know the Lipatov vertex at a certain order in the e-expansion,
we must calculate the integrals 73, 744, Z45, and Zs — L3 with the same accuracy.

In the region of small momenta of the central emitted gluon (the soft region, from now
on) the vertex must be known to all orders in e. The soft limit of the integrals entering
the vertex is computed in appendix D. By using egs. (D.1), (D.3) and (D.5), we easily find
that, in the soft limit,

2
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The last two equation confirm the result in [5, 6].

3 Fundamental integrals for the one-loop RRG vertex

In this section we present the result at e?-accuracy of the integrals in the transverse momen-
tum space entering the one-loop RRG vertex, expanding expressions already available in
the literature and, whenever possible, cross-checking them with an alternative calculation.

3.1 Zj3: Bern-Dixon-Kosower (BDK) method
We start from the integral
T, =n'T(1 —€) I3
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where kg, ¢1, g2 are Euclidean vectors in dimension 2+ 2¢ and q,%, ¢, (15 — g2)* # 0.
We can relate this Euclidean integral to a corresponding Minkowskian integral by the
Wick rotation:
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Hence, we need a triangular integral with three massive external legs. This result to all
order in e-expansion can be found in [51], taking care to apply the replacement (e — —e+1),
because they calculated the integral in d*~2¢k, instead we need it in d>*2¢k. One finds that
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Please note that 0; — —0; is equivalent to z; — z; 1. We also observe that ag = a1(qa <>
@1 —@2) and ag = a1(q1 <> ¢2). From this, we realize that the second and the third term of



the summation can be obtained from the first by two simple substitutions. We can rewrite:
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where the operator S acts on a generic function f(q72, @7, p?) as
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3.2 Z3: alternative calculation

We verify the previous result through a different calculation procedure. We introduce the
Feynman parametrization to get

1 1 y5—1

where A = 2¢2 + (1 — )32 and B = A—z(1 — 2)p%. Now, it is convenient to perform the
decomposition
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After this, we can safely expand (1 — %y)6 in the first term and y€ in the second and third
terms, getting
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Integrating over y, we obtain
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In this form, all divergences are contained in the first three terms, which we can

promptly compute, to get
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)—e [§(2)+ZJ_FZ <L12 (1—2)
) } +é? {4(2)— ZJ_ern (Z) <<(2)+1n (Z) (—;—m <1—Z>
+éln <Z>)> —ffbg(s)w%z <L12 (1—2) +92Lis (1—2) +Lis (Z)ﬂ } +O(),

(3.18)

- 11 -



ld 1 B
/0 TAA—B)—

1{a+b+(a—l—b)lnc (a—0b)In (Z)

abc €

—(a—b)lncln(Z) (a+b)C(2) (L122<1 ) L12<1—>)}+62 [“6“’11130
_Lbl <Z>1n2c—lnc<(a+b <L12< ) Liy (1—Z>)>+4bC(3)
~(a=0) ((5) (c@-1w(1-3)m () i (5)) - (1-3) -2 (5))

+0O(e), (3.19)

0‘\@

S|

where a = ¢, b = @7, ¢ = p2. Plugging into (3.16) the results given in (3.17)—(3.19),
one gets an expression for 73, valid up to the order €2, in terms of finite one-dimensional
integrals. A quick numerical comparison shows that this expression is perfectly equivalent
to the one obtained in the previous section.

By limiting the accuracy to the order €, we can express the result in a very compact
form. We calculate the two residual one-dimensional integrals,

/ da:ln( ):—2; [2—111 (i)—i—ijiln (Z)] (3.20)
/dx L12< ) 1b[2—2g(2)—1n<22>+Z+Zln<z>+(a—bc);—cb()a+b)
><<L2<1—Z>—Lig(1—2)+;ln<i>ln<2)>]

(@ —b)? —2c(a +b) + 2
+
2abc

Iope, (3.21)

where

B 1 1 ax + b(1 — x)
lape= /0 de ax +b(1 —x) — cx(1 — x) n ( cx(1l—x) ) ’ (3:22)

Various properties and representations of the integral (3.22), together with its explicit value

for I G2.qzp?> are given in appendix B. Combining everything, we find

I2(1+e) 9 1 1 1
pe T (L L1y
el'(1 + 2¢) #") P2q% P 4Pat

o[ 1 1 1 o1 1 1
+(q?) <_,2_, + = - —»2—»2)—’_(‘]22) <~2~2+ -3 2)

qiq;  a*p?  dip @242 @t G
I-

2

€ - 52 o 52 52
+ =553 (( () + (3 - 2000 — 2407 — 205D 2) (3.23)
a,°q2’p

2 22 =
1»‘127}727
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or

 T1+e
5 el'(1 + 2¢)
. 1 1 1 €2
xS (q”)e<q -+ == — == >+ (@) — G20 — D)2 2 50
{ 2P\ T @ qpt) T qRappt LR 28 Rt ar e

(3.24)

This result, after multiplication by the factor 7!'*<I'(1 — €) (see the definition (3.1)), is
equivalent to (3.13) at the order e.

3.3 I4p and Z44: BDK method
The integral that has to be evaluated is

Ldx aP—2
Ly _/ /7T1+6F

1—=x 1
X -, - - - e N = - - 5
(k2 + (1= 2)(k = @1)2) (K~ (1 2)(@ — @))2 (k= @)k — (@ — @)’
(2.15)
Let us start from the integral Iyp defined as
1 1

Lin==- [ d°k ) 3.25
0= | e e A s e AG e O

Using the BDK method and working in the Euclidean region (s, s1, s2,t1,t2 < 0) the result
for this integral is [51]

q2te 1’*(1 _ 6)P2(1 + 6) 9
Iip = e _ e . .
AB Soto T'(1 4 2¢) 2 {( ag(ar —ap)) " 2 Fy (e, 6,1+

a0y + asas — oz5oz4>
ag(on — as)

a0y + asog — a5a4)

+(—as(ag — ayq)) "¢ o F (e,e,l—i—e;
(—as(as —aq))™ 213 P p——

a10y + asas — (150é4>:|

~((on =)oy — ) o (e, 1 4+ L0005

(3.26)
where
51592 SQtQ StQ
a1 = - 3 Qg = - ) a3 = - 3
StQtl 881t1 8251t1
sty s1t1
=./— = /= 3.27
a 81$2t2 as 882t2 ( )
We then have
2+6 T FZ 2 _ €(—t¢ —t
= PO O0L40 2 [ ) (1 - )
Soto F(l —I— 26 2 (32 — tl)e So — 11
T am ( )
+— €€61+el— 3.28
(tz - t1 t1 — 12 ( )
_ t t t
(=s2) (=t2) (=t F1<€’€’1+6;1_ saty ﬂ
(s2 —t1)(ta — t1)° (s2 —t1)(t2 — t1)

~13 -



Using (A.9), this result can be put in the following simpler form:

2T (1—e)T?(1+€) 2 so—t1
Iyp = S (=s2)2F1 (L6, 1+61—————
L Y e [( $2) 2 1< € 1+€ (—t2)>

t1—t —11)(t1—1
+Hota) o1 (L1 =122 ) - () (111 - ) |
52 s52(—t2)
(3.29)
We re-derive this result by a different method in appendix B.
For the first term in the square roots in (3.26) we have
€ € —€ . . (_t2)
(—tg) (—82) (82 - tl) oF1 le,es 1461 ——"2 ). (330)
S9 — tl
Analytically continuing the result in the region of positive so by the replacement
(—s2) — € sy, (3.31)

using the MRK approximation to neglect (—t2)/(s2—t1) with respect to one in the argument
of the hypergeometric function, and recalling that
e

oF1(e,6,1+¢1)=T(1—€e)'(14¢) = Sn(e) (3.32)
we obtain
(—t2) e ™D (1 — (1 + €) = (—t2)" [cos(we)shfz;) - m] . (3.33)
The second term,
—t989 \ € 52
F 1 ;1 — 3.34
(t1—t2> 2 1(676’ e tl—t2>’ (3:34)

with the help of (A.9) and (A.10) gives, assuming ¢; > ¢,

(~ta) 21 (L1 + 61— T =ty (1 e (BB - i(—emn)) .

59 52 =
(3.35)
The third term,
—( fata >€2F1 (ee I fels 2 ) (3.36)
t1 —t2 Y ’ t1—t2)’ '

using (A.9) and (A.10), again assuming t; > ta, becomes

— (—=t1) 2 Fy (1,6, L+¢ il) = —(—t1)" <1 —€ln (1 - ?) - i(—e)”Lin (2)) :

2 2 oy
(3.37)
We finally obtain

T2t T2 c
_ Fl—egI=1+ );(_tl)eKh

Iip = = —imer (1 — )T (1
1B Soto F(1+26) t1> <e ( E) ( +6)

+1—€ln (tl;t2> —i(—e)’%(n)) —1+e€ln (1 — 2) + i (—e)" Liy, (2)] :

n=2
(3.38)
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Furthermore, starting from the integral in eq. (3.25), using the standard Sudakov de-
composition for the 4-momentum £k, one finds that, in the multi-Regge kinematics (see
appendix C),

(1 —¢) [ T%(e) . —s
S2 [F(2e) (—t2) (ln (—ti) + (1L =€) = 2¢(e) + ¢(2€)> +Zup

(3.39)
where Z,p is exactly the integral defined in eq. (2.15). From this relation we can hence

Inp = —

)

derive an expression for Z4p that, after some manipulations, can be cast in the follow-

ing form:
Tup = ;‘251—1-4_22 % ( _t; [(Z)e <_; + sin?jre) cos(me) — eln (1 — 2)
+nzz:26"§“(n) (1 — (=" (2”_1 - 1))) —1+e€ln <1 — 2) + nz:;(—e)”Lin (2)] .

(3.40)

The result remains valid for o > ;. In particular, truncating the summation at n = 4
gives the desired result.

This result is completely equivalent to the one obtained by calculating directly Z4p
introducing Feynman parameters (see the next subsection). The integral Z,4 is defined
similarly to Zyp in eq. (2.15), up to the replacement ¢ — —g2, implying that

I4A = I4B(t1 4 tg) . (3.41)

3.4 I4up and Z44: alternative calculation

Starting from the expression

Udx dP =2k
Iyp = / / AT = o) (2.15)

X

1—=2 1
(282 + (1= 2)(F = @1)*) (F— (1 = 2)(@ - @)> (k= @)*(k — (@ — (;2))2]
introducing the Feynman parametrization and performing the integration over k, we obtain

I4B_/1dx {/ dz 1—x)(aw—i-(1b(_lai)w)(1—z /d bzl—z] } (342)

Defining

a=q2=—t, b=ql=—1y, c:l—%, (3.43)

we can write Zyp = b 1 F(c), with

F(c):/olcf{/Oldz(l_xcﬁlz_lx_x /dzz — ). (3.44)
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Performing the transformation y = (1 — )z in the first term, we get

F<c):/01df{/omdy(l_m_ /dzz (1—2) 1]. (3.45)

It is very simple to compute the integral for ¢ = 0; we find

1 1z 1

_ e—1 e—1 e—1 e—1

F dz d 1- | 1—
(0) = vy (1-vy) 227 (1-2)
o = LJo

14 1 d
x T
:—/— dz 2711 = 2) /dzz (1—2)" / —
T Jl—z 1—2 T

/ dz 21— 2)'In(1 — 2) = — [/ dz 2711 — 2)° 1} . (3.46)
do [Jo d=¢
The function F'(c) in ¢ = 0 is then

2 €
FO) = 1 (900 = (20) (3.47)

We now compute the derivative with respect to ¢ of the function F' and get

1 1—z g 14 1—y
=(1- e)/ dac/ —ny(I —zc—y)?=(1- e)/ —y?f dz(1 — zc — y)<2
0 0 Y 0o Y 0

- 1/01 Yy (1= 1=y~ (1 -y ) = ?23 (A=ayt 1) (348)

¢ Y

Having this information, we can write

c 2(e) [ c — )1l =
0) —i—/o dz F'(x) = ?ég; P(e) — ¥(2e) —i—/o dx <(1)xl>1 . (3.49)

The integral on the right-hand side can be computed to all orders in e:

/Ocdx<(1_x ) /dx:(lx)e<1i$+;>ﬂ
:6[1—(1—c)€]+/ocd;((1—x)6—1)

= i <6 /01 dz In"(1—cz) — enlln”(l—c)) : (3.50)

= n! T n!
Using
LT ) = (2197 $1a(0) (3.51)
nJo =z T = Lmi= ’

we finally find

/Oc dz (Ml_l> _ i 1 (_ln"(l—c) +e(—1)" sl,n(c)> , (3.52)

|
T el n:

The final result for Z,p is then

IR G 5 o (I (/1) 8 t
= Fog ") 1[¢<e>—w<2e>+ St (T e s (11))]
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The expression (3.53) gives an alternative representation of Z,p, which is completely equiv-
alent to (3.40). Again, the complete €? result is obtained truncating the series at n = 4.

We can achieve an alternative representation in terms of the hypergeometric function.
In fact, we note that

/Ocdx((1—9:)5—1):((1—6)6—1)1nc+6</01C;yln(l—y)ye_/ol_c?ln(l—y)f)

(1—o)

=((1-0)f—1)Inc+(1) —y(1+e) — (gFl(l,e,l +e6l—c)—1 —|—elnc).
(3.54)

The last equality can be proved by using the explicit result for the first integral, i.e.

Ldy d [ldy d I'(1+9)I'(e) 1
n(1 — 6:7/71_56 = - = Z(p(1) = (1 +¢)),
/0 ) n(d =gy = o5 | y( y)y o BTATIT -(¥(1) = ¢(1+¢))
(3.55)
and the following expression for the second, in terms of the hypergeometric function,

Fi(l,e1+el—c) /1 dy ; /1 “dl Y
, €, e1l—c)=c¢ —— Y =¢ | ydln——F—
2 0o y(I1—y(l—c)) 0 (1-y(l—0)

1 1
= —€elnc— 62/0 dyy tny + 62/0 dyy'In(1 — y(1 - ¢))

1—c
= —elnc+ 1+ (1 - c)fe/ dyy* In(1 — ). (3.56)
0
Using (3.54), we obtain
(€)1 (1 (1-of
Tis = Fog? (%+%M)—¢ﬂ+2@—hw— : 2ﬂﬂmﬂ+ql—@),(3ﬂ)

which is completely equivalent to both (3.40) and (3.53).

3.5 Combination Zs — L3
Let us start by considering the pentagonal integral I, defined as

1

1
Iy = [P . . . .
ST (k2 +ie)[(k 4+ q1)? + ie][(k + q2)? + ie][(k + pa)? + ic][(k — pB)? + i€]
(3.58)
In multi-Regge kinematics (and in D = 4 + 2¢), it is given by the following combination:

T — o) [111 ((—s)(«ﬁ ~ @)’
s (=s1)(—s2)

I =

) Is+ L3 — 151 (3.59)

Inverting this relation, we obtain

Ts — L3 =In (M) Iy — mg . (3.60)

Hence, the integral I5 can be used (together with Z3) to calculate Zs — L3 (this combination
is the one appearing in the Lipatov vertex [49]).
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We start by working in the Euclidean region, defined by s, s1, so,t1,t2 < 0, the analyt-
ical continuation to the physical region being obtained according to the prescriptions

(—5) = e s, (—s51) = e sy, (—s59) = e sy, (3.61)

We use the quantities «; defined before, which we recall here:
[ 8189 Soto st
a1 = _— o = — o = - -
! 8t2t1 ’ 2 881751 ’ 3 8281t1 ’
st s1t
gy =4 —— ap =gt (3.27)
Slsth 882t2

Let us define the reduced integral I5 in this way:

I5 = —7TD/2(11(120130£4055f5 . (362)

In ref. [51] it is shown that this integral is given by the recursive relation

s [ (D64 2¢
I =3 [Z%JQ — 25 FIP=OF2 )] , (3.63)
=1

where Aj is the following quantity:

5
Ay = Z(O[ZZ — 200541 + 20[1'0[l'+2) . (364)
i=1
The ~;’s are
V1= -+ a3+ a4 —Qs, (3.65)
Yo =—a1+ o —az+ag+as, (3.66)
Y3 = Q1] — g+ 3 — 0y + Qs , (3.67)
Ya=a1tay—azt+ o —as, (3.68)
V5 = —Q1 + 0 + a3 —ayg + 05 (3.69)
I f) are the reduced version of I f) (apart for a trivial 727¢), i.e.
fi") - w[p ) (3.70)

&%)
3.5.1 Box integrals part
The integrals I f) are box integrals with all external legs on-shell, but one, which is off-shell.
They can be obtained starting from I5 (see figure 1) in this way (apart from a factor 727¢):

e
4

Making the propagator between p4 and pp “collapse”, so that the two on-shell legs
associated with p4 and pp become a unique off-shell external leg with (incoming)
momenta pg + pB.
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Figure 1. Schematic representation of the pentagonal integral. The arrows denote the direction
of the momenta.

¥

Making the propagator between ps and par = pa — q1 “collapse”, so that the two
on-shell legs associated with p4 and p4s become a unique off-shell external leg with
(incoming) momenta q.

. 1Y

Making the propagator between p4 = pa — q1 and q; — g2 “collapse”, so that the two
on-shell legs associated with p4 and g1 — g2 become a unique off-shell external leg
with (outgoing) momenta p4 — go.

. 1Y

Making the propagator between q; — g2 and pgr = pp + g2 “collapse”, so that the
two on-shell legs associated with g1 — ¢o and pgr become a unique off-shell external
leg with (outgoing) momenta pp + ¢;.

e

Making the propagator between pp and pps “collapse”, so that the two on-shell legs
associated with pp and pp/ become a unique off-shell external leg with (outgoing)
momenta gs.

The results for the reduced version of these integrals are

N 2
Iil)(sl,s%s) = 6—2rp (—as(as —ay))” € oFy <6, e,1+e¢

503 + oy — a4a3>
az(as — aq)

a5a3 + o0y — a4a3>

ayg(az — as)

+(—au(a2 —ag)) " 21 (6, 6,1+¢

—((as —as)(a2 —a3))" 211 <e, €1 46— T a0y — 044(%3)}

(a5 — aq)(ag — as)
(3.71)
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~ 2 B
I (s0,t2:t0) = Srv |(an(an = a5)) * aFy (e 1+ ¢ LT 230 20400 )

ag(og — as)
ooy + asas — a5a4>
as(as — o)

+(—as(ag — aq)) " 2F (e, e,1+e¢

_ 1oy + a5 — 50y
(a1 — a5) (a3 — ag))~ o (1 be— )} ,

(1 — as) (a3 — aa)
(3.72)

2(3 2 _ oy + g — Qs
Ii )(s, s1,t2) = E—QTF (—as(ag —aq)) "€ oFy (e,e, 1+¢ )

as(ag —aq)
s + apay — 041015>
ai(oy — as)

+(—Oé1(0[4 — 055))76 o FY (6, €,1+c¢

_ Q205 + iy — Qs
—((ag — a1)(ag — a)) "€ 2 Fy (e,e,1+e;— )]

(a2 — ar)(as — as)
(3.73)

~(4 2 _ aras + asas — Qg
Ii )(s, So,t1) = 6—2rp (—a1(as —ag))” € oFy (e,e, 1+ € )

aj(ag — ag)
a3 + agos — agal)
as(as — aq)

+(—ag(as — 1)) 2F1 <€, e,1+¢

—((a3 —a2)(as —a1)) 21y (6, 6,1+¢ _ Q103 + @05 — 042611)]

(a3 — az)(as — a1)
(3.74)

(5 2 e a1 + oy — o
Ii )(Sl,tl,tg) = E—QT‘F (—as(a] —ag)) € o Fy <6,€, 1+¢ )

az(og — ag)
aras + aaoy — a2043)
as(ay — ag)

—|—(—O¢2(Oé4 — Ozg))_e o F <6, €,1+e¢

~((e1 — as)(au — az) " oFy (e 14 - AT DAL DO Y]

(a1 — az)(ag — a3)
(3.75)
where
L(1—e)I%(14¢€)
(1 + 2¢)

rr = (3.76)

It is clear that with appropriate exchanges of the invariants s, sy, o, t1,%2, they can be
obtained from each other. In particular, as pointed out in [51], starting from one of these
integrals, the others can be obtained by cyclic permutations of the «;’s.

By expanding these results, in multi-Regge kinematics, we have

10 (s, 59, 5) F<1;(€1)£2(€1)+6>622 ((—5(1)(8;82)) {1+Z€2" 2 (1—2%1_1) C(Qn)} , (3.77)

I (sg,t0,t1) = w; (—t1)° KZ) (emr(1—e)r(1+e)
+1—¢€ln <t18—2t2) —i(—e)”((n)) —1+e€ln <1—2) +§:(—e)”Lin <2>] .

(3.78)
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L(1—e)I2(1+4¢€) 2 .
T'(1+2€) 2(t2)

fiS)(s,sl,tg) ~

. (1—e)2(1
IZYL)(S,SQ,tl)Z (1-—el"(1+¢)

e%(_tl)€ {1+eln

F(1—|—26) —S9 -
—e)I? € € X
ff)(sl,tl,m):P(lr(f£2(61)+ )622(—752)6 (2) (e—mr(1—e)r(1+e)
la—11 = n to = ny. [ t2
—l—l—eln( . >—n;2(—6) C(n))—l-i—eln (1—151)—4—”2::2(—6) Li, (751)] .
(3.81)

Again, truncating the summation at n = 4 gives the desired result. The integral I f), up to
trivial factors, coincides with (3.38), as can be easily verified. Since we have computed the
integral Z,p through two independent methods, the integral I f) has been cross-checked.
We can use the technique explained in appendix C to obtain the relation (3.39) and then,
by using the knowledge of 7,5 integral from the alternative method explained in section 3.4,
obtain an alternative expression for I f). This automatically verifies | f’), that is obtained
from I f) by the substitutions so — s1 and ty <> t1. The technique explained in appendix C
can be also applied to I il), I f’), I £4) in order to verify also the results. These latter cases
are really much simpler with respect to the ones explicitly computed in appendix C. We
can also verify these integrals using direct the Feynman technique, as explained in B for

3.5.2 Del Duca, Duhr, Glover, Smirnov result for the f5D=6+26 part

As it can be seen from eq. (3.63), beyond the constant order in the e-expansion, the
pentagon in dimension D = 4 + 2¢ takes a contribution from the pentagon integral in
dimension D = 6+ 2¢. The latter pentagon integral is finite and hence does not contribute
to the divergent and finite parts in (3.63). It starts to contribute at the order e, and
hence, if one wants to obtain the pentagon in D = 4 + 2¢ up to € accuracy, the first two
non-trivial orders of the pentagon in D = 6 + 2¢ must be computed. There are different
results in literature for the 6-dimensional pentagon integral [52-55]; among these, the
one obtained by Del Duca, Duhr, Glover, Smirnov (DDGS) is the most suitable for our
aims, as it is calculated in multi-Regge kinematics and its e-expansion up to the desired
order is given. In [52] the integral is computed by two independent methods: 1) negative
dimension approach and 2) Mellin-Barnes technique. The final result can be expressed in
terms of transcendental double sums that, following ref. [52], we denote by M-functions;
their definition is given in appendix A. Adapting their notation to ours, we define

_ Stl _ tl _ StQ _ tz = (—81)(—82) o 1 _SL‘1
T1=—"==3, L2=—"= =5, P =5 > 1= Ya=—.
5183 P s1s2 P (—s) T2 (:vz )
3.82

In ref. [52] the three regions contributing to the pentagonal are identified as
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e Region I \/z1 + /72 <1
« Region II (a): —\/z1 + /22 > 1
« Region II (b): /21 — /22 > 1

The solution in the Region II (a) is

sp=6t+20 _ L1 —T?*(14¢) | sis9ts ((_51)(_82)>EIH(G) o -
’ N I'(1 + 2¢) st (—s) ppas (Pt t2),  (3.83)
where
ZI])ID((gS(ﬁQ’ tt2) = i(I)I(a) (y1,92) — € i{I(a) (y1,52) + O(€?), (3.84)
with
i1 (y1,y2) =

(—8Iny; —4Iny2) M(0,0,(1,1); —y1,y2) —4Iny2 M((1,1),0,0; —y1,y2)
+ 18M (0707 (172)7 _ylayZ) +18M (03()’ (27 1)’ —3/1,342) _24M (0707 (17 1a 1)5 —ylvyZ)
+ 8M(Ov ]-a (1’ 1)7 _ylay2)+16M(1aO, (17 ]-)7 _ylayQ) _8M((1a 1)705 1a _yl’yZ)

m21n In?y; In 2 1n
+8M((171)>170;_ylay2)_M(07070;_ylyy2) ( 3 y1+ y12 y2+ ) y2_2g(3)

2

5
—M(0,0,1; —y1,92) <2lny1 In 75+ 1In? y1+§> +(6Iny;+3Iny2)M(0,0,2; —y1,y2)

2 2
+ (21n3/1 1ny2+73T> M(1,0,0; —y1,y2) +(4Iny; +4Inye) M(1,0,1; —y1,y2)

+ 4l M(0,1,1; =1, 92) 410y M(1,1,0; =1, 92) + (In2 g1 +72) M(0, 1,05 —y1, 1)
+1InyaM(2,0,0; —y1,y2) —12M(0,0,3; —y1,y2) —6 M (0,1,2; —y1,92)

—12M(1,0,2; —y1,92) —8M(1,1,1; —y1,2) +2M(2,0,1; —y1,2)

—2M(2,1,0;—y1,92), (3.85)

.(Ila
’g ! )(yhy2):

M(0,0,(1,1);—y1,y2) <4lny1 Inys —41n?y; +21In? y2+47r2>

+ (2In*yo —4lny1 Iny) M((1,1),0,0;—y1,y2) + (8Iny1 —12Iny2) M (1,0, (1,1); —y1,92)
+ (4lnys—8Iny1 )M ((1,1),0,1; —y1,y2) + (8Iny1 —4Inya )M ((1,1),1,0; —y1,y2)
—151nyaM(0,0,(1,2); —y1,y2) —151Iny2 M (0,0, (2,1); —y1, y2)

+20Inya M (0,0,(1,1,1); —y1,y2) —4Inya M (0,1, (1,1); —y1,2)

—InyaM((1,2),0,0; —y1,y2) —Iny2a M((2,1),0,0; —y1,2)
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+4lnyoM((1,1,1),0,0; —y1,y2) +32M(0,0, (1,3); —y1,y2) +36M (0,0, (2,2); —y1, v2)
3,1); —y1,y2) —48M (0,0, (1,1,2); —y1,y2) —48M (0,0, (1,2,1); —y1, 42)
2,1,1);—y1,y2) +64M (0,0, (1,1,1,1); —y1,y2) +12M (0,1, (1,2); —y1,y2)
)i =y1,52) —16M(0,1,(1,1,1); —y1,y2) +18M(1,0,(1,2); —y1,72)
+18M(1,0,(2,1); —y1,y2) —24M (1,0, (1,1,1); —y1,42) +8M (1,1, (1, 1); —y1,2)
—2M((1,2),0,1; —y1,y2) +2M((1,2),1,0; —y1,92) —2M ((2,1),0,1; —y1,y2)
+2M((2,1),1,0; —y1,y2) +8M((1,1,1),0,1; —y1, y2) —8M ((1,1,1),1,0; —y1, y2)

+M(070717 y1792 lnylln Ya—

©2ln Yy 2y Inys 20y, 3n2lnys
— —6¢(3
3 2 3 + 2 @)

21ny1 In? 9 Inys +21n3y1 _7r2 Inyo n
2 3 2

M(Ovlvo y173/2

w2 lny; +3ln2y1 Inys B w2 Inys

+ M(1,0,0; —y1,92) 3 5 5

—Iny; In?yo+

4 2
+M(071717 yl:yQ 21n3/11ny2+21n y1_§>
2
+ M(1,1,0;—y1,2) { 2Iny1 Inys—3Iny1 +— 3 >+(lny22lny1)/\/l(2,1>0;y1,yz)

+ M(2,0,0; —y1,92)

31n?
+ M(0,0,2; —y1,12 ( 3lny; Inys+31In?y; — n2 y2—37r2>

y > +(91ny2_61ny1)M(170727 _y17y2>

+ (Alnys—4Iny )M (1,1,1;—y1,y2) + (2Iny; —Iny2) M (2,0,1; —y1,y2)

In2y Inys  72Iny; Iy lny m2In?y, 27t
) _ _ _91 fial

+ (3 g1 —2m% o —72) M(1,0,1; 1,92) +10In g3 M (0,0,3; —y1, )

+ SlnyQM (07 1727 —9173/2) —20M (07054a _yl)y2) —8M (07 ]-a 3) _yl)y2)

—12M(1,0,3; —y1,y2) —6M(1,1,2; —y1,y2). (3.86)
The solution in the Region IT (b) is obtained by the replacement

II(a) /=

11(a)
Ippas (p

11(b) = t .
2, t1, tQ) — IDD((%S(]) 2, t1, tg) = iIDDGS(p 2, to, tl) (387)

in eq. (3.83).
The solution in the Region I can be written as

s6420  TA—eT%1+e€) | stita ((—s1)(—s2)
59 = - (1 + 20) —811822( (1_5) ) Thnes(P> ti:ta) (3.88)
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where III)DGS (p2,t1,t2) can be obtained from Iégé)s (p2,t1,t2) by analytical continuation,

according to the prescription y; — 1/yj.

4 Conclusions and outlook

In this paper we have calculated at the NLO the Reggeon-Reggeon-gluon (also called
“Lipatov”) effective vertex in QCD with accuracy up to the order €2, with e = (D — 4)/2
and D the space-time dimension. The NLO Lipatov effective vertex can be expressed in
terms of a few integrals (triangle, boxes, pentagon), which we obtained at the required
accuracy in a two-fold way: 1) taking their expressions, known at arbitrary e, from the
literature [51, 52] and expanding them to the required order; 2) calculating them from
scratch,’ by an independent method. The purpose of the latter calculation is not only
cross-checking, but also providing with an alternative, though equivalent, expression for
the integrals, which could turn out to be more convenient for the uses of the NLO Lipatov
effective vertex. For instance, the result up to order e of the integral Z3, calculated in
section 3.2, is very compact compared to the result for the same integral computed in 3.1.
It contains the structure I PREERE which has been extensively used in the BFKL literature
(see e.g. [33]).

The integrals Zyp, Zy4 and I f) have been written as expansions to all orders in ¢, in
terms of polylogarithms. The integral 73 has been expanded up to the order €, but can
be expanded to higher orders, if needed. The residual and most complicated term is the
one related to the pentagonal integral in dimension 6 — 2¢. Its expression to the order €? in
MRK is given in section 3.5.2. The knowledge of the one-loop Lipatov vertex in QCD at
any successive order in the e-expansion is completely reduced to the computation of this
integral with higher e-accuracy.

There are a number of reasons motivating the need of the NLO Lipatov effective vertex
with higher € accuracy: first, it is the building block of the next-to-NLO contribution to the
BFKL kernel from the production of one gluon in the collision of two Reggeons; second, it
enters the expression of the impact factors for the Reggeon-gluon transition, which appear
in the derivation of the bootstrap conditions for inelastic amplitudes; these discontinuities
are needed in the derivation of the BFKL equation in the NNLA; third, the discontinuities of
multiple gluon production amplitudes in the MRK can be used for a simple demonstration
of violation of the ABDK-BDS (Anastasiou-Bern-Dixon-Kosower — Bern-Dixon-Smirnov)
ansatz for amplitudes with maximal helicity violation in Yang-Mills theories with maximal
super-symmetry (N =4 SYM) in the planar limit and for the calculations of the remainder
functions to this ansatz.

A Polylogarithms, hypergeometric functions and nested harmonic sums

In this appendix we give some usual definitions and useful relations.

1With the exception of the part of the pentagon integral in D = 4 + 2¢ which depends on the same
integral in D = 6 + 2¢. Nevertheless, in ref. [52] this contribution was computed through two independent
methods. In the case of Zs we have used an independent method valid just up to the order €2.
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Polylogarithms [56]. We define polylogarithms as

) (=D)*z (b In%(t)
Lla+1(2) = T/O dtm (Al)
and Nielsen generalized polylogarithms as
(=1)otb=1 1 na=lIn®(1 — 2t) )
Su(2) = oo 2y, t ©Sai(®) =Liani(s) . (A2)

where a and b are integers. During calculations, the following inversion and reflection
formulas for polylogarithms are useful [56],

n—2
Lin(2) (~1)"Lin (5 ) = =2 0" (=2) = 3 (14 (~1)" ) (1 =21 )g(n—) i (~2),
z n! — 4l
7=0
n—1 p—1 k1. k
In’ z —1)"In"(1—=2 =P,
Snp(2) = Z il {Sn—jm_z 1) ol ( )Sp_kvn_j(l—z)}%— (n!p)! In" zIlnP(1-2),
j=0 k=0
where
Spnp = Snp(l).
In particular, from these relations, we obtain
Lig(2) = —Liy (i) —4(2)—%1n2(—z), Liz(z) = Lis (i) —4(2)1n(—z)—é1n3(—z) :
) Al 7 1 9 1.4
L14(Z) = —L14 <Z> _EC(4)_§C(2) In (—Z)—gln (—Z) y

Lis(z) =¢(2)—Lis(1—2z)—Inzln(1—=2),
Liz(z) = —Lig(1—2)—Lis (1—1) +C(3)+éln3z+C(2)lnz—%ln2zln(1—z),

2
Lig(2) = C(4)—8173(1—2)—}—1112(((3)—8172(1—2))—#11172(((2)—Lig(l—z))—élngzln(l—z).

It is also useful to know that,

d_. o In(l-y) d_ o Lg(y) d _ In?(1—y)
@L12 (y) = T @Lls (y) = g @31,2 (y) = Tay (A.3)
2
S{Lis(y + i)} = 7By~ Din(y),  S{Lis(y + i)} = w0y - 1)L (A.4)
2
Sy +i2)} = 7y — 1) [g(z) ~Lip (3) - Q(y)] . (A.5)

Hypergeometric function 2F;. We can represent the hypergeometric function o F; as
1 1
QF]_ (a, b, C; Z) = m /0 d:I: .’Eb_l(]. — ﬂf)c_b_l(l - Z.’E)_a 3 (AG)

for R{c} > R{b} > 0. The definition is valid in the entire complex z-plane with a cut along
the real axis from one to infinity. Using the integral representation (A.6) and performing

the transformation

z=— i (A7)

z[l—(l—i—%)y]?
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one can prove the following identity
2y (a,b, 1+ b1+ 2) = (—2) " oy (1 +b—ab1+b1+ z’l) : (A.8)
Choosing a = b = €, we get
oF1(1e,14+61+2)= (—2) 2F(e,6,14+e1+271). (A.9)

One can also prove the following expansions [57]:

2F1(1,—e,1-6,2)=1-> €'Li; (2), (A.10)

oF1 (2—2¢,1—¢,2—¢€;2) = 1i {1-1—[1—!—(1—: )111(1 z)}
+[2+(1*Z‘Z>1n(1—z)1n((1—z)e)—(1_z>Lig(z)] &

N {44_111(1_2,) (2(1-1—2)+2(1—2)C(2)+1n(1—z)

z z 3z

X (3(142)+2(1+2) 1n(1—z)—3(1—z)1nz)>

- 1;ZL12 (2) (14210 (1—2))— 2(12_2) (Lig(lz)
+Li32(z) —C(3))]63}+(’)(e4). (A11)

Nested harmonic sums and M functions [52]. The nested harmonic sums are de-
fined recursively by

=y ki Z 5 (A.12)
k=1 k=1

while the M-functions are defined by the double series

M@ F, Ry 21, ) ("1 +”2> Si(n1)S;(no)Se(ny +ma)a'ah? . (A.13)

ni= Ong 0
B Some useful integrals

The integral I,p .. The integral

1 1 az + b(1 — )
be /0 da ar +b(1 —x) — cx(l —z) In < cx(l —x) > (3.22)

is invariant with respect to any permutation of its arguments, as it can be seen from

the representation

1 1 1 1— o — 20 —
Tope :/ dfb’l/ dl‘2/ dxg OU =1 — @2 — @) : (B.1)
0 0 0

(ax1 + bxy + cxs)(x129 + X123 + T23)
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To prove that (3.22) and (B.1) are equivalent, we first integrate over xs and then perform
the change of variables

9 12
r = , z= ,
x1 + T2 (1 —z1)z1 + (1 — z2)z2 — T122
(1—-2)z xz z(1—x)(1—2)
T = ; T2 = ) 3 = ’
z+z(1—2)(1 —2) z4+z(l—2)(1—2) z4+z(l—x)(1—2)
with Jacobian )

[z4+z(1—2)(1-2))3
We obtain

z(l—z)(1—2)
Tope= /1 dx /oo dz ’ (Z+x(l_x)(1_z)>
woe 2(1—2) +brz+cx(l —z)(1 - 2)

- / a(l —x) + bslc —cx(l —x) n <b$c;:(cll(i x)x)) ’ (B.3)

which is equal to (3.22) after the trivial change of variables z <+ 1 — z.

Another useful representation of immediate proof is

1 00 1
Tape = /0 dx/l di tlax(1—2)(t—1)+b(1 —x)+cx]’ (B-4)

In the case when a = ¢2, b = ¢ and ¢ = (1 — ¢2)? = p'?, the explicit solution of the

integral is [13]

1 1 §2$ + q2(1 _ l‘)
I~2»2ﬂ:/d:ﬁ_‘ — - In 1_' 2
4%.ayp? 0o qlr+qt(l—z)—p2x(l —2x) ( 7221 — 2)
2 [ ( psin ¢ ) .
= =SS Inparctan | ————— | + & (—Li e“f’ , B.5
|¢1]|2| sin ¢ P 1—pcos¢ ( 2(p )) (B.5)
where ¢ is the angle between ¢j, ¢ and p = min (I%l, %),

The box integral with one external mass. Here, we derive the result for Iyp in
eq. (3.26), i.e. a box integral with massless propagators and one external mass, using direct
Feynman technique. The integral is

1

L =5 / P T T e Tl F [ pp i (3.25)

Defining

di = k2 +ie,  dy=(k+q)’+ic, ds=(k+q) +ic, dy=(k—pg)+ic,
(B.6)
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we can write

1
:/dx ! 5 1—/dy ! 5 (B.7)
0o  ((1—=z)di + xdy) dads 0 (1 —y)ds + yds)
and hence
(1-2)
d / da:/ dz
d1d2d3d4 / Y 1 — Z 1 — :L')dl + xd4) +z ((1 — y)dg + ydg)]4
(B.8)

After the integration in the d”k, we obtain

Iip = nP/?TI'(4 — D/2)

1 . 1 . 1 2(1— 2)
X/O ’ /0 ’ /0 dy[z(l—z) (—s2a(1 —y) + (by + a(l —y))(1 — x)) —i0]* " P/*

(B.9)
where a = —t1, b = —ty. Performing the trivial integrations over z and x, we have
I (e)
Iip = 7P/?0(1 -
w=m T = 9rny
[ i (=521 = ) — i) = (by + a1 — )]
0o s2(l—y)+by+a(l-y)
(B.10)
The first term in the square bracket gives
B 1 (1_y)5—1 -1
(=52=i0) 0 y(32+a)(1—y)—|—by (82— Il x( 52+a)/b)
111
= (—s9—i0)" " 2= oF) <1,€,1+€;1— (52:“)> .
(B.11)

In the second term, denoting t = by + a(1 — y), one can organize the integral as

b b a 1 1
/dt:/dt—/dt:b/ dac—a/ dx . (B.12)
a 0 0 0 0

In this way, we obtain

1 dy
/o o=y thyrai—g YY) 321»/ >/s )
et b
52b/ da: b—a)(sa+a)/(s2b)) - 82b€2F1< T >
a , _( —a)(s2ta)
82b€2F1 (1,6,1+6,1 —(SQb) > .
(B.13)
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Finally, restoring ¢; and to, we have
2T (1—e)T?(1+¢) 2

Iip= S| (—s2—1i0) 2 Fy  1,6,14€1—
B T Tt & {( $2—10) 2 1( 6 146
(t1—t2)

52

(s2—t1)
(—t2) >

) —(—tl)egFl (1,6, 1+€; 1—

+(—t2)2F (1’6’1+6;1— (SQ_tl)(tl_t2)>}

82(*752)
(B.14)

This result is exact and coincides with that in (3.29).

Feynman integrals with logarithms. In the calculation it happens to come across
momentum integrals that have logarithms in the numerator. We explain below how to
evaluate them, considering the example

7.2
/dD%W. (B.15)
k2(k + ¢2)?

Using In k2= a%(E 2)0‘]a:0 and exchanging the order of integration and derivative, we get

S e
Oa (EQ)lfa(Equ’z)Z oo
= 7Tl+e((j»22)—1+e 9 |:( —»2)ar(1 —a- G)P(G)F(a + 6)

a [ TTA-aleta) L,
— € 26
—#“@%”ﬂrunﬁsU[mﬁ+wuwmma—w1—a—w%>. (B.16)

C Two-dimensional Euclidean and four-dimensional Minkowskian
integrals

In this appendix, we give an explicit derivation of the following relations:

s = TR~ €) [m <(_3)((71 — ‘72)2> T3+ L3 — 15] (3.59)
$ (—s1)(—s2) ’ '
mate —€ 2(¢ —8
iy = -1 )[ﬁégehf*(m(_g)+¢a—a—zwa+w@a)+a3

(3.39)

e Let us start from the definition of I5:

_ 1 /p 1
Is = i /d k(kQ +ie)[(k + q1)? +ig][(k + q2)? + i€][(k + pa)? +i€][(k — pB)? + ic] |

We introduce the standard Sudakov decomposition for momenta,

k=apg+Bpatk, dPk= gdadBdD”kzL, (C.1)
512 59 S1 ‘722
q1 = pAa —pa = —?pB + ;pA +aqiL, q2 = pp’ —PB = —?pB + ?pA +q21 -
(C.2)
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By expressing denominators in terms of Sudakov variables, we can reduce the integration
over « to a simple computation of residues in the complex plane. We have the following
five simple poles:

—'2_. —’2_' 72 _)2_'
Sl O U1 R PO e Yl LT TOTY
Bs s(B+ %) s s(B+ %) §
= ey (C-4)

(14 8)s’ > Bs

We observe that in the region Q = {5 < —1 V [ > 0} the integral always vanishes, since all
poles are on the same side with respect to the real a-axis; in the region Q = {1 < # < 0}
we have contributions from three poles lying in the lower real a-axis: o in the whole
region —1 < 8 < 0, az in the region —22 < 3 < 0 and a3 in the region — q2 < B < 0. The
integral can therefore be expressed as

Y Ly o 1 1
hs= 7T/fl 1+p ! k:|:0é4/88—];2+i5:| [(a4—?)(5%—%)8—(14:4-(71)2%-2'5}

o 1 _ 1
(@a = 1)Bs = 2 i [(aa = 2) (B + )5 — (F + @) + ie]

(" dB D-2 1 1
”/_536+S; I k[azﬁs—Pﬂf} [(QQ—S—l)B—i—%) — (k+ @)? +z’g}

1 1
X

[ag(l +B)s — k2 + is} [(ag —1)B8s — k2 + iE}

w/OAQ /dD 2k ! !
Z B+ q2 {04358 — k24 15} {(03 - *)(5 +2)s — (k+q1)2 + Zf}
1 1

X .
las(1+ B)s — B2 +ie] [(as — 1)Bs — K2 + ie]

(C.5)

Substituting the explicit values of poles and doing simple algebric manipulations, we end
up with (omitting the ie’s in the denominators)

- 3 D—2 L =
I5~ / app /d kk2( Bq)2[(k+B3)%+B(1—B)(—s1)|[k2+B8(1—B)(—s)]

x| agsd [ aP2k(22) = - L
+/0 bp / (S)(k:+cj’1)2(/-c+(1—5)(]’1+ﬁ<72)2[(k+(1—5)5)+ﬁ( —B)a?]
1
X[(E+(1—B)(T) T B(1—B8)(—s2)]

— dp(1— 021 - L . (C6
7T/0 b / $25 [(k+)2)2(k+B%)2((k+B3)2+B(1—B)q3) (€9

The third integral is suppressed in the high-energy approximation; as for the other two,
they can be calculated by first performing the change of variable k — [k in the integration
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over k and then integrating some terms in 8 by using the following integral:

| 525 /51_5+5_ *f %5

_ Dn_
~/d51 /dﬁwwm $(D—n—1)—Ins,
(C.7)

where § is a generic quantity tending to zero, like k2 /s for instance, and n = 5 and 6 in
the cases we are interested in. We obtain

T D—2 1 n (k+ @)*(—s) _ _ _
= e (SR - w9

W[ apsd [ aP—2k—— b :
w [ | R2(F + Q2R+ BD)?IR% + B(L— B)a

To get the desired form, we rewrite the last two terms in the square bracket as an integral

v —u(p -3 = [(ap DT P gL

(C.8)

over [3,

and combine with the last term of the full expression, to get
SN2/
I5: E/dD—Qk_' - 1 - 1n<(k+q2) ( 8))

8 k2(k+q1)?(k+32)? (=s1)(—s2)
_/1 dj db 2]{[ 52 1 ]
shol=B) k2 [(k=B(@~@)(1-AF+B(k-3)2]  (F=Gi+3)*(F—¢)?
=T [Pk L [ln<<—s><qa—a>2 2(k—)°
§ k2 (k=) (k— ) (—s1)(—s2)

_/1 ds db- 2]{:[ /82 B 1 ]
shl=8) k2 [(E=B(G—3)[(1-Bk>+B(k—01)2]  (F—a+3)(k—q1)?
1

+p
™ D—2 B
Sk R ar gy H(E— >>1 |

Expressing the term in the last line as

-2y, 1 1 _ 1
/ ’81—6/ (k — @)2(k — 3)? [BE 24 (1-B)(k—q)?2 E?]’

and performing simple manipulations, we get

_ [ 1 (9@ -D)
b= e ()
a

g L[ (18R
5 k2(k—q1)%*(k—g2)? k2 —q2)?

1 1 1

2 ap—— [ dP 2k~ - - - =

s Jo 15 Pl—p R+ A0—a) [(k—mqa—w (F—d+0)

which, by using definitions (2.13), (2.14), (2.16), leads exactly to eq. (3.59).

B 1

)
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e Let us prove the second relation; again we start from the definition of I43:

1 1
Iap = i /de(k2 +ie)[(k + q1)? + i) [(k + q2)? + ie][(k — pB)? + ie]

(3.25)

We again introduce the Sudakov decomposition (C.1)—(C.2) and observe that we have
four poles:
k2—ic k+q)2—ie s
pr= ; B2 = k+@) —ie sz

as

By = (E+(j’2)2—ie_ﬁ k2—ie
ﬁ)s s’ (a—2L)s s’ (a—1)s"
S

(a—

In the region Q@ = {a < 0 V « > 1} the integral always vanishes, while, in the region
Q = {0 < a < 1}, if we close the integration path over 3 in the half-plane 3 > 0 and use
the residue theorem, we have

1 1
I4B:—7T/ da/dD_Qk —_—
0 l-a (aBys—k2+ie)

1
X - 2 =
[@(Ba+33)s— (k+q1)> +ie][(a— ) (Ba+ ) s — (k+ ) +ie]
51 D—2
+7T/s do;/ - il -
0o a—3J) (afzs—k2+ie)[a(f3+2)s— (k+q1)? +i€][(a—1) B35 — k2 +ic]

(C.9)

In the last expression, we neglected the contribution of the pole §o, which is present in the
region Q' = {0 < a < ¢;%/s}, since it is suppressed in the MRK. For the same reason, in
the previous integrals we approximated a — ¢i2/s with «. Substituting the explicit values
of B3 and f34, one gets (recalling that sys2/s = (§1 — ¢2)? and taking the high-energy limit)

1 1
I4B:7r/ daaQ/dD*qu — , (C.10)
0 kE2(k+ag)?[(k+aq)?+a(l—a)(—sg—ic)]
_(@—=3)’ /1daa2/ aP-2k
52 Jo (k+@)?[(k+(1-a)@)? +a(l-a)g5](k+(1-a)+ag)?

Manipulating the first term and using the integral in eq. (C.7), one can obtain the follow-
ing form:

2T (1 — €)T2(e)

I = 7.2)€ 1 _82> 1 - - :l
= T(26) () {n (—tg +9(1 =€) — (e
p [ da /dD_Qk !
so o (k—q)2(k — (@1 — @))?
@ [t da /dD’Qk !
spJo 1—a (k + @)? {aEZJr(l —a)(EﬂL(fl)Q}
BB e 1 -
sa Jo k2[(k+ a@)? + a(l — ) @2 (k + a(d — q1))?

(C.11)
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In the last integral we perform the transformation

— —»/ — . / ak_;lz . — — —
k—=kK=k—-p, a—d= — with p=q — ¢,
(1—a)k?+ ok’
and get
72T (1 — e)T2(e) ,
Iip = 757 )¢ |1 1-—
1B Sato ['(2e) (@) [n ( 752) Te-o- 1,[)(6)}
+ 1da/dD 2]{ - _’1 - -
So (k—q)2(k — (@1 — @2))?

T 1 da 1

/dD Qk, - - —
s2Jo 1-a (k+@)2 [ak? + (1 - a)(k + @)

22
77/ /fqu . ap . .
52.J0 (k + ap)?[(k + ap)? + a(l — a)p?)[(1 — )k + a(k + §)?]
(C.12)
The last two terms can be shown to lead to
T da/dDQkﬁ L-a -
52 (k—(1—a)(@1 — @))*[ak? + (1 —a)(k — q1)?]
D1 = () o
o Ten @20 - (). (C.13)
so that we finally find
mrate —€ 2(¢ -5
l ((52) v -0 -0 )
2+er 1 dov dD 2k
B / / 7T1+€F 1—¢€)
o 11—« _ 1 ]
[ab* + (1—a)E - @] (F- (1— )@ - @) (- @2~ @ )2
(C.14)

which is exactly eq. (3.39).

D Soft limit

In this appendix we evaluate the soft limit (" — 0) of the integrals considered so far. We
start from Zs, given by eq. (2.13). In the soft limit, the dominant contribution comes from
the region k ~ ¢1 ~ ¢5; hence we can make the replacement

1 1 - 71 7
T with g=1T®
/£2 Q 2 2
and obtain
2
1-3 ~ 1 1 / 2+42¢ _ _’1 ér ( )( 2)6—1 (D 1)
Q2 mteI(1 —¢) E2(k+p)?  Q2T(2¢)
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To obtain the soft limit of Zyp, eq. (2.15), we start from the representation

Ziv = [ ()~ Inl0),
where

l1—=z

1
I5(@) = /0 S P s T

and we observe that, in the soft region

2
_l_
o

G~ G~

Jp(x) becomes

~ 1 1 3 1 - 1 1—x I
Jp(x) (@2)1_5 /o A=l —x)= 1 —2(1 — z)]'—¢ (@2)1—5 /0 dz [z(1 )]
and
— 1d£ 1 2[2(1—2) = — ! 1zz )t 1dj
tn = (62)1_6/0 x 1fxd [=(1 = <Q2)1_5/0 dz [2(1 ) /17z .
2(e
_ P 1 ((e) — B(26)) . (D.3)

['(2¢) (Q2)1-¢

The soft limit of the pentagon integral, eq. (3.58), can be immediately obtained and
reads [49]
2T (1 —€) T2 (e) (

Iy ~
> s T(2¢)

>2\e—1
P00 = 01 =) im). (.4

From this, by using eq. (3.59), we obtain
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