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1 Introduction

Hydrogen atom is the simplest atomic system. Traditionally it served as a touchstone for
testing the bound-state quantum electrodynamics (QED). At present, the precision of both
theory and experiment for the electronic hydrogen has been increased to such an extent
that comparison of calculated and measured transition energies can be used for the most
accurate determination of the Rydberg constant once the contribution of proton (which is
the hydrogen nucleus) structure is established. The latter gets much more pronounced in
the (electronic) hydrogen cousin — the muonic hydrogen. In particular, the Lamb shift in
the muonic hydrogen provides the most precise value of the proton charge radius.1

The calculations of various contributions to the Lamb shift and the hypefine splitting
have a long history starting from refs. [2–5], see also review [6] and references therein. For
higher order corrections these calculations often produced only numerical results, which
might have insufficient accuracy for future comparison of theory and experiment. Also,
despite these efforts, the present theoretical calculations are well behind the experimental
measurements for some physical observables. E.g., the 1S − 2S transition frequency mea-
surements have reached accuracy of a few tens Hz, while the corresponding uncertainty
of the available theoretical predictions is only a few tens of kHz. Therefore, new ways of
Lamb shift calculations are very much welcome. Recent progress in multi-loop calculations
provides an opportunity to apply the developed methods to such calculations.

In the present paper we apply the multi-loop methods to the calculation of the contri-
bution to the Lamb shift (LS) and to the hyperfine splitting (HFS) of the diagram, depicted
in figure 1. The double line denotes the electron propagator in the electromagnetic field of
the nucleus Aµ =

(
Z|e|/r, µ × r/r3

)
. Here Z|e| and µ is the nucleus charge and magnetic

moment, respectively. For LS calculations we neglect the nucleus magnetic field, while
for the HFS calculations we consider linear in µ contributions. Note that the magnetic
moment of the nucleus is the vector operator µ = µS/S. However, since we consider only

1In that regard one should keep in mind the persisting controversy between the muonic hydrogen and
electron-proton scattering experiments.
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Figure 1. Two-loop self-energy diagram in Furry representation. Double lines denote electron
propagators in the external electromagnetic field Aµ =

(
Z|e|/r, µ × r/r3 ).

linear in µ contributions, we can formally treat it as a numeric vector up to the point
where we average the result over the spin wave functions.

The leading in Zα contribution of the diagram in figure 1 to LS and HFS is of the order
O
(
α2(Zα)4me

)
and O

(
α2EF

)
, respectively. This contribution is completely determined by

the ∝ nf terms2 in the slope of the Dirac form factor and the value of the Pauli form factor
of the electron at zero momentum transfer at two loops calculated long ago in refs. [7, 8].
Therefore, we do not consider these contributions. Here e and me is the electron charge
and mass, respectively,

EF = 2S + 1
3Sπ |e|µ(Zα)3m2

e (1.1)

is the Fermi energy,3 S is the nucleus spin, α = e2/(4π) ≈ 1/137.036 is the fine structure
constant.

The next order contribution, O
(
α2(Zα)5me

)
and O

(
α2ZαEF

)
, respectively, to LS

and HFS comes from the diagrams, depicted in figures 2 and 3, which we will refer to as
light-by-light (LbL) contribution and “free loop” (FL) contribution, respectively.

The light-by-light contributions to LS and HFS were calculated in refs. [9–12] and [13,
14], respectively. The result for the Lamb shift was presented in terms of a four-fold integral,
while that for the hyperfine splitting was presented in terms of a three-fold integral. These
integrals were then treated numerically. The free loop contribution to Lamb shift was
obtained in terms of two-fold integrals in refs. [9, 15], while the corresponding contribution
to the hyperfine splitting was obtained in refs. [14, 16] in terms of one-fold integral involving
elliptic function and logarithm (or rather, arctangent).

In a sense, the result of the present paper is the representation of all four contributions
(LbL and FL to LS and HFS) in the form similar to that of ref. [16]. We use modern multi-
loop methods, namely, the IBP reduction [17] and the differential equations method [18, 19].
In order to apply the latter, we cosider the diagrams where the mass of the fermion in
the loop is different from that of the electron line. As a by-product, we also obtain the
contribution of the muon loop for the ordinary hydrogen and that of electron loop for the
muonic hydrogen.

2Here we follow the standard convention that the contribution ∝ nk
f comes from the diagrams with k

closed electron loops.
3Substituting Z = 1, S = 1/2, µ = g

2
|e|
2M

for usual hydrogen nucleus, we obtain EF = 8
3

g
2

me
M

α4me.
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Figure 2. Gauge invariant set of diagrams which corresponds to the light-by-light contribution to
the Lamb shift. Numbers correspond to the enumeration of denominators in eq. (2.4).
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Figure 3. Gauge invariant set of diagrams which corresponds to the free-loop contribution to the
Lamb shift. The second line of diagrams is a one-loop counter-terms. Numbers correspond to the
enumeration of denominators in eq. (2.6).

2 Calculation

We consider the diagrams depicted in figures 2 and 3. The contribution of each set is
gauge invariant and can be calculated independently. Note that for the HFS calculations
one should replace one of the two Coulomb exchanges in those diagrams with the magnetic
exchange corresponding to the contribution of the nuclear magnetic moment.

The external electron legs on the diagrams denote the bound electron wave function,
however, with the precision that we pursue here, the bound-state effect is properly taken
into account by the factor |ψn,l(0)|2 = δl,0

(meZα)3

πn3 , where δ is a Kronecker symbol, n and l
are a principal and azimuthal quantum number, correspondingly. Indeed, the characteristic
loop momenta in the discussed diagrams are ki ∼ me, while that of the wave function
|p| ∼ meZα≪ me. Therefore, we calculate the diagrams in figures 2 and 3 for the external
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electron legs corresponding to free electron with momentum p = meτ , where τ = (1,0) is
the time-like unit vector.

The LbL contribution is both UV and IR finite, while the FL contribution is UV and
IR divergent. In order to obtain the finite result we add one-loop counter terms, depicted
in figure 3 (second line). The two-loop counter terms, as well as the IR subtraction are
expressed via scaleless integrals which are equal to zero in dimensional regularization. In
particular, denoting the momentum of the Coulomb line as k1 = (0,k1), we see that the
two-loop counter terms contain only one scaleless denominator (p− k1)2 −m2

e = k21.
The Lamb shift energy correction can be represented as

δELS = 1
2me

uÔu|ψn,l(0)|2 =
1

4me
Tr
[
Ô(p̂+me)

]
|ψn,l(0)|2 , (2.1)

where uÔu corresponds to the diagrams in figures 2 and 3 with both incoming and outgoing
momenta equal to p = meτ .

In the case of hyperfine splitting we should replace one Coulomb exchange with the
magnetic exchange. Since we use the dimensional regularization, we should avoid using γ5

and εijk because those objects are poorly generalized to the generic spacetime dimension
d = 4− 2ϵ. Therefore we rewrite all formulas involving vector product (a × b)k = εijkaibj

in terms of antisymmetric tensors aibj − ajbi. We obtain

δEHFS = 1
24me

Tr
[
Ôi,j

HFS(γiγj − γjγi)(p̂+me)
]
|ψn,l(0)|2 , (2.2)

where uÔi,j
HFSu corresponds to the sum of the diagrams in figures 2 and 3 in which one of

the two Coulomb exchanges Z|e|γ0/k2
1 is replaced by the “magnetic exchange” µγikj

1/k
2
1.

Differential system and boundary conditions. In order to apply the differential
equations method, we decouple the mass of the bound electron and the mass of the particle
in the loop. We put the latter to 1 while keeping the mass of the bound electron as a free
parameter m.

For the light-by-light contribution we consider the integral family

jLbL(n1, . . . , n9) =
∫
ddk1d

dk2d
dk3

π3d/2

8∏
k=1

[Dk + i0]−nk × δ(n9−1) (−D9)
(n9 − 1)! , (2.3)

where

D1 = (k1 − k2 + k3)2 − 1 , D2 = (k1 − k2)2 − 1 , D3 = k22 − 1 ,
D4 = (k2 − k3)2 − 1 , D5 = k23 , D6 = (k3 + p)2 −m2 , D7 = k21

D8 = 2k2 · p , D9 = 2k1 · τ = 2k01 . (2.4)

The δ-function in eq. (2.3) corresponds to zero energy transfer on the nucleus. Note that
n8 is not positive.

For the free-loop contribution we consider the family

jFL(n1, . . . , n9) =
∫
ddk1d

dk2d
dk3

π3d/2

8∏
k=1

[
D̃k + i0

]−nk ×
δ(n9−1)

(
−D̃9

)
(n9 − 1)! , (2.5)
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Figure 4. Basis of master integrals. Thick and thin black lines correspond to the denominators
with mass 1 and m, respectively. Thick gray line corresponds to δ(−D9), dashed lines correspond
to massless denominators.

where

D̃1 = (k1 − k3)2 −m2 , D̃2 = k22 − 1 , D̃3 = (k2 − k3)2 − 1 ,
D̃4 = (k3)2 , D̃5 = (p− k3)2 −m2 , D̃6 = k21 , D̃7(k1 − k2)2 − 1
D̃8 = 2k2 · p , D̃9 = D9 = 2k1 · τ = 2k01 , (2.6)

where n7 and n8 are not positive.
Making the IBP reduction [17, 20] with LiteRed [21], we reveal 14 master integrals for

light-by-light contribution and 8 master integrals for free-loop contribution. Four master
integrals are common for the two bases. Thus in the merged basis we have 14+ 8− 4 = 18
master integrals presented in figure 4. The first eight graphs correspond to FL basis, while
the graphs 3− 6 and 9− 18 correspond to LbL basis.4

Using the IBP reduction, we construct the differential equations [18, 19] for the master
integrals with respect to m2:

∂m2j =Mj , (2.7)

where j = (j1, . . . , j18)⊺ is a column of master integrals.
We use Libra [22] to manipulate the differential system (2.7). We find it convenient to

work with the master integrals in 2− 2ϵ dimensions and later express the master integrals
in 4 − 2ϵ dimensions via lowering dimensional recurrence relation [23]. Note that the
differential system (2.7) can not be reduced to ϵ-form due to integrals j3−6 which appear
both in FL and LbL contributions.5 The four master j3−6 integrals can be expressed via

4Note that the master integral j10, according to eq. (2.3), contains the derivative of δ-function which
is odd with respect to the substitution k1 → −k1. The remaining factor is easily shown to be an even
function, therefore, j10 is identically zero.

5The irreducibility of block 3 − 6 can be explicitly checked using the criterion of ref. [24].
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hypergeometric functions. In particular,

j
(2−2ϵ)
3 = 21−8ϵm−2ϵΓ(4ϵ)

Γ(ϵ+ 1) 4F3

(1
4 − ϵ

2 ,
3
4 − ϵ

2 , ϵ+
1
2 , 2ϵ+

1
2;

1
2 − ϵ, 1− ϵ, ϵ+ 1;m2

)

−
2−1−6ϵΓ

(
2ϵ+ 1

2

)
Γ
(
3ϵ+ 1

2

)
sin(πϵ)Γ(ϵ+ 1)2 4F3

(
ϵ

2 + 1
4 ,
ϵ

2 + 3
4 , 2ϵ+

1
2 , 3ϵ+

1
2;

1
2 , ϵ+ 1, 2ϵ+ 1;m2

)
.

(2.8)

Due to this reason the corresponding block of matrix M in eq. (2.7) can not be reduced in
ϵ-form. All other blocks can be reduced to ϵ-form. With some trial and error method we
have succeeded to obtain the (A+ ϵB)-form of the differential equation,

∂m2J =M1J , (2.9)

where M1(m2, ϵ) = A(m2) + ϵB(m2) and the matrix A has nonzero entries only in the
columns 3–6. We fix the boundary conditions at the point m2 = 0. The general solution
has the form

J(m2) = U(M1|m2, 0)C0 , (2.10)

where C0 is a column of the boundary constants and

U(M |y, x) = lim
x0→x

Pexp

 y∫
x0

dξM(ξ, ϵ)

xResξ=x M(ξ,ϵ)
0 . (2.11)

Using Libra, we relate the boundary constants C0 to specific asymptotic coefficients of orig-
inal master integrals j1−18 at m2 → 0. We compute these coefficients by using expansion-
by-regions method [25] and direct integration of Feynman parametrization. We find that
the boundary constants C0 are expressed in terms of the following 5 nonzero constants:

[j1]m−1−4ϵ = [j11]m−2ϵ = [j12]m0 =
Γ
(
1
2 + ϵ

)
Γ
(
1
2 + 2ϵ

)
21+2ϵπϵ

, [j2]m−1−4ϵ =
Γ
(
−1

2 − 3ϵ
)
Γ(4ϵ)

2−1+6ϵ
√
πΓ(−2ϵ) ,

[j3]m0 = [j9]m0 =
Γ
(
1
2 + 2ϵ

)
Γ
(
1
2 + 3ϵ

)
Γ(−ϵ)

21+6ϵπΓ(1 + ϵ) , [j3]m−2ϵ =
21−8ϵΓ(4ϵ)
Γ(1 + ϵ) ,

[j15]m0 = j
(2−2ϵ)
15 =

21+2ϵΓ(−4ϵ)Γ
(
1
2 + 2ϵ

)
Γ
(
3
2 + 3ϵ

)
4(1 + 2ϵ)Γ

(
1
2 − ϵ

)2
tan(πϵ)

+
Γ
(
1
2 + 2ϵ

)
Γ
(
1
2 + ϵ

)
41+ϵπ

[
3F2

(
1,−ϵ, ϵ+ 1; 32 ,

1
2 − 2ϵ; 1

)
− 4ϵ+ 1

4ϵ(ϵ+ 1) 3F2

(1
2 , 1, 2ϵ+

3
2; 1− ϵ, ϵ+ 2; 1

)]
, (2.12)

where [jk]mν denotes the coefficient in front of mν in the small-mass asymptotics of j(2−2ϵ)
k .

All but the last constant are trivially expressed in terms of alternating multiple zeta
values. It is not obvious which transcendental numbers might enter the expansion of the

– 6 –
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last constant j(2−2ϵ)
15 . Nevertheless, using the PSLQ and our experience, we have been

able to establish that the ϵ-expansion of j(2−2ϵ)
15 can be written in terms of Goncharov’s

polylogarithms at fourth root of unity. The two first terms of ϵ-expansion read

j
(2−2ϵ)
15 = e−3ϵγE

[1
2 − π

8 +
(
2G+ 3

2π ln 2− 4 ln 2− π

2 − 1
)
ϵ+O

(
ϵ2
)]

, (2.13)

where G = ImLi2(i) =
∑∞

k=0
(−1)k

(2k+1)2 = 0.915965594 . . . is the Catalan constant. For our
present goal we will need only the leading term of this expansion.

ϵ-regular basis. Since the differential system (2.7) for the master integrals can not be
reduced to ϵ-form, we should rely on the Frobenius method for the calculation of the
evolution operator U(m2, 0) in eq. (2.11). The dependence of this operator on ϵ constitutes
substantial technical difficulties and blocks the way to high-precision numerical calculation
suitable for the application of PSLQ algorithm, [26], for the recognition of the master
integrals in the point m = 1. Thus we choose to switch to the ϵ-regular basis [1]. After
finding this basis, we simply put ϵ = 0.

Note that the counter-term diagrams in the second line of figure 3 can also be expressed
in terms of the three-loop master integrals in figure 4 although they have only two loops.
To this end we multiply the corresponding integrals by 1 = −1

Γ[1−d/2]
∫ ddk2

iπd/2D2
. Then the

contribution of counter-terms is expressed via the master integrals with unit mass tadpole
loop, namely, via j1, j2. Luckily, Γ[1 − d/2] in the denominators cancels with the same
Γ in δZ

(1l)
3 = −4Γ(2−d/2)α

3(4π)d/2−1 = −4(1−d/2)Γ(1−d/2)α
3(4π)d/2−1 which stands for the cross in the couter-

term diagrams. Therefore, the finite sum of all diagrams in figure 3 is expressed via the
integrals of the family (2.5) with rational coefficients.6 Then we are in position to state
the existence of ϵ-regular basis [1].

Let us describe how we construct this ϵ-regular basis.

1. We start from the found (A+ϵB)-form. Thus, the coefficients of differential equations
are regular in the limit ϵ→ 0.

2. We determine the highest leading term O(ϵ−n) in ϵ-expansion of the boundary con-
stants. We multiply all integrals by ϵn to make all new functions J finite. The two
next steps are performed in the loop over the row number i.

3. Then we use the following rule of thumb: if for, say, Ji function both the boundary
constant Ci and the right-hand side of the equation are zero at ϵ = 0 is zero, then
the function itself is also zero at ϵ = 0. Therefore, we redefine Ji → ϵJi and modify
respectively the boundary constant Ci → ϵCi and the differential system. The latter
modification is reduced to the multiplication/division by ϵ the i-th column/row of
the matrix A+ ϵB.

4. We also use substitutions of the form Ji → Ji +
∑

k<i ckJk, where the coefficients ck

are rational numbers chosen so as to nullify as many entries on the i-th row of the
matrix M(m2, 0) as possible.

6By “rational” we understand the coefficients which are rational as functions of both ϵ and m2.
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This approach works perfectly for all rows except for the rows 3− 6 corresponding to
the equations irreducible to ϵ-form. For those 4 master integrals we use the presumable
finiteness of the sum of diagrams in figures 2, 3 as a guiding line for finding the relations
between j3−6 near d = 2. We find that

Q(m2, ϵ) =
(
1−m2

) (
2 +m2ϵ+ 12ϵ

)
j3 +

(
78m4ϵ− 25m4 − 72m2ϵ+ 36m2 − 8

)
j4

−m2
(
4−m2 + 6m2ϵ

)
j5 − 48

(
1−m2

)
m2(1− 4ϵ)j6 = O(ϵ2) (2.14)

Thus we choose J(m2, ϵ) = Q(m2, ϵ)/ϵ2 as an element of ϵ-regular basis. Indeed, we see
that after this choice both the boundary constants and the matrix M(m2, ϵ) have finite
limit ϵ→ 0.

The result of our approach is the differential system in which we can simply put ϵ = 0.
The higher orders in ϵ which we miss with putting ϵ to zero are guaranteed not to appear in
our final results, which is the rationale behind the notion of ϵ-regular basis. The resulting
system has the form

∂m2J reg =M(m2)J reg , (2.15)

where the matrix M is strictly lower triangular except for the diagonal 4 × 4 block with
indices 3–6. It is essential that M does not depend on ϵ. The singular points of the
differential system are m2 = 0, 1,∞. Again, we write the solution in the form

J reg(m2) = U(M |m2, 0)C0 . (2.16)

The almost lower triangular structure of the matrix M allows us to write the general
solution in terms of polylogarithms and/or one-fold integrals of j3−6 multiplied by poly-
logarithms. However we choose here to construct the Frobenius expansions near each of
the three singular points of the differential system (2.16), m2 = 0, 1,∞. We match the
obtained expansions pairwise in the points which belong to the intersection of convergence
regions of the corresponding two expansions. For example the expansions near m2 = 0 and
m2 = 1 are connected via the relation

J reg(1/2) = U(M |1/2, 0)C0 = U(M |1/2, 1)C1 . (2.17)

Then the boundary constants at m2 = 1 are expressed as C1 = U−1(M |12 , 1)U(M |12 , 0)C
0.

We calculate 1000 terms of series of U(1/2, 1) and U(1/2, 0) and compute more than 300
digits for C1. In order to use PSLQ recognition, we need to have a basis of appropriate
transcendental numbers and we extract all but one required nontrivial constants from
ref. [16]. Therein the result for the FL contribution to HFS was expressed in terms of the
weighted sum of the integrals (cf. eq. (11) of ref. [16])

{c1, c2, c3, c4} =
1∫

0

dq

q2
[K(q2)− E(q2)]

arctan
(√

2q
1−q

)
1 + q

,

√
2q
1−q

1 + q
,

√
2q

1− q
, q

√
2q

1− q

 ,

(2.18)

– 8 –
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where K(x) and E(x) are complete elliptic integrals. Moreover, using PSLQ it is easy to
establish a relation 6c2 − 5c3 + 2c4 = 0 overlooked in ref. [16]. Using some guess work, we
find the following basis sufficient for our purpose

B = {1, π, ln 2, π2, ζ3, e0, 1/e0, e1, e2} ,

e0 =
3
4π

1∫
0

dqK(q2)
1 + q

√
2q

1− q
= Γ(3/8)Γ(9/8)

Γ(5/8)Γ(7/8) = 1.42812528609616838918477155113 . . . ,

e1 =
2
π

1∫
0

dqK(q2)
1 + q

arctan
(√

2q
1− q

)
= 0.70733097502159315134278673801 . . . ,

e2 =
2
π

1∫
0

dqK(q2)
1 + q

ImLi2

(
i

√
2q

1− q

)
= 1.08354966910460443406693681278 . . . , (2.19)

where Li2(x) is a dilogarithm. The constants c1−4 in eq. (2.18) are expressed as linear
combinations with rational coefficients of {1, e0, 1/e0, e1}:

c1 =
1
2e0

− 7e0
6 + e1 + 1, c2 =

1
e0

+ e0
3 , c3 =

1
e0

+ e0, c4 =
3e0
2 − 1

2e0
. (2.20)

The benefit of using e0, e−1
0 , and especially e1 instead of c1−4 is that their form allowed us

to guess the form of the last nonstandard constant e2, which was deduced from e1 by noting
that arctan (x) = ImLi1(ix) and then replacing Li1 → Li2. To obtain the contributions to
the Lamb shift and the hyperfine splitting we need a few coefficients of the expansion of
Jreg(m2) near the point m2 = 1. This expansion has the form

J reg(m2) = U(M |m2, 1)C1 , (2.21)

where U(M |m2, 1) has the form of generalized power series in 1 − m2. In particular,
U(m2, 1) contains ln(1 −m2). However, we have checked that these logarithms disappear
when U(m2, 1) is multiplied by C1 so that the specific solution has no branching at the
point m2 = 1 as it should be.

The power series (2.21) converge when m2 ∈ (0, 2). To obtain the results for J reg(m2)
at m2 > 2 we pass to the variable z = m2−1

m2 and again match the power series near z = 0
(m2 = 1) and z = 1 (m2 = ∞) at z = 1/2. In this way we obtain the high-precision
numerical result for the column of boundary constants C∞ which define the coefficients in
the asymptotic expansion of J reg(m2) at m2 → ∞. In order to define the analytic form of
C∞ we again use PSLQ recognition with the following basis:

B∞ = (1, π, ln 2, π2, ln2 2, ζ3, i0, 1/i0) , i0 =
Γ(5/4)2

Γ(3/4)2 . (2.22)

The nontrivial constants i0 and i−1
0 were conjectured by examining the large-mass asymp-

totics of j3 from eq. (2.8).
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3 Results

The discussed corrections to the Lamb shift and hyperfine splitting have the following form

δEi
LS = δl,0

α2(Zα)5

πn3
me

(
mr

me

)3
Bi ,

δEi
HFS = δl,0

α2(Zα)
πn3

EF

(
mr

me

)3
Ci , (3.1)

where i = FL,LbL for different contributions and we have recovered the recoil factor(
mr
me

)3
=
(

M
M+me

)3
accounting the main effect of the finite nuclear mass M .

For the case of electron loop in electron atom we have the following result:

BF L = −17267
7560 − 241

324e0
+ 296767e0

132300 − 2e1
3 = −0.072909964469261993898 . . . ,

BLbL = 21401
540 − 383

54e0
− 11e0

10 + 10e1
3 + 16e2

9 + 13π
36 − π2

12 − 406
9 ln 2− 49

9 ζ3

= −0.12291622969679641051 . . . ,

CF L = − 59
270 − 343

1296e0
− 1079e0

10800 + e1
3 = −0.31074204276601754458 . . . ,

CLbL = 46− 39
2e0

− 23e0
6 + 16e1 +

40e2
9 − π2

2 − 32 ln 2− 245
18 ζ3

= −0.47251462820471059187 . . . . (3.2)

Given the representation of eq. (2.19) for the constants e0, e1, e2, the above expressions
provide a one-fold integral representation for the corresponding contributions to Lamb shift
and hyperfine splitting. The numerical values for BF L, BLbL, CF L, CLbL agree with the
results of refs. [9–12, 14–16]. For the case of muon loop in electron atom we have the
following result:

BF L = − 7
60

(
me

mµ

)
+ 109

1512

(
me

mµ

)2

− 3
56

(
me

mµ

)3

+O

(me

mµ

)4
 ,

BLbL =
[
470561
21600 − 437π

720 − 27647
960 ln 2 + 281

2304 ln
(
me

mµ

)](
me

mµ

)2

+O

(me

mµ

)4
 ,

CF L = −1
3

(
me

mµ

)
+ 1751

30240

(
me

mµ

)3

+O

(me

mµ

)4
 ,

CLbL =
[ 5
24 − 2π + 8 ln 2

](
me

mµ

)

+
[
6931861
552960 − π

3 − 38107
2304 ln 2− 805

9216 ln
(
me

mµ

)](
me

mµ

)3

+O

(me

mµ

)4
 . (3.3)

One is tempted to obtain also the results for the contribution of the electron loop in
the muonic hydrogen by making a substitution me → mµ in eq. (3.1) and using the large-m
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asymptotics of J reg. Then the results for functions Bi and Ci have the following form

BF L = −i0
1600
441

√
me

mµ
+O

(
me

mµ

)
, (3.4)

BLbL =
(
−139

18 + 2π2

3 + 4
3 ln 2

)
mµ

me
+ 4187

135 + 7π
36 − 406

9 ln 2 +O
(
me

mµ

)
,

CF L =
(
−13

6 + 2
3 ln 2

)
ln
(
mµ

me

)
+ 379

72 − 14
9 ln 2− π2

18 + 1
3 ln2 2− 72

25i0

√
me

mµ
+O

(
me

mµ

)
,

CLbL =
(
12 + 4 ln 2− 5π2

3

)
ln
(
mµ

me

)
− 13 + 5π2

6 + 2 ln2 2 + 5ζ3 +O
(
me

mµ

)
.

However, for muonic atom the characteristic momenta of bound muon (or the inverse
size of its wave function), mµZα is of the same order, or larger, as the characteristic loop
momenta me even for Z = 1. Therefore, the applicability condition for the approximation
used in the present paper is violated and eq. (3.4) may be considered at most as an order
of magnitude estimate.

4 Conclusion

In the present paper we revisit the contributions of order α2(Zα)5m to the Lamb shift
and of the order α2(Zα)EF to the hyperfine splitting from mixed self-energy-vacuum-
polarization diagrams depicted in figures 2 and 3. We construct the ϵ-regular basis [1] and
explicitly demonstrate that its elements taken at ϵ = 0 are sufficient to express the renor-
malized results. The results have the form of one-fold integral involving elliptic function
and dilogarithm and agree with previously known numerical results. We also obtain the
contribution of the same set of diagrams with different mass of the fermion in the loop
and in the fermion line, which allows us to determined the corresponding contribution of
the muonic loop in the conventional hydrogen as well as the estimate of the electron loop
contribution in the muonic hydrogen.
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