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1 Introduction

Recent advances in spectroscopy of ordinary hydrogen [1, 2] and deuterium [3] and in
their muonic analogs [4, 5] as well as in the electron-proton scattering [6] provide new
opportunities to perform subtle tests of the bound-state quantum electrodynamics (QED).

The hydrogen atom is a system in which the role of the relativistic, radiative, and recoil
effects can be investigated with high precision, both experimentally and theoretically. The
corresponding corrections to energy levels are small compared to the leading term. However,
with the present accuracy achieved in measuring the frequency of specific hydrogenic
transitions, those contributions are large compared with the experimental uncertainty.

One of the most important bound-state QED effects is the Lamb shift. It is responsible
for the 2s1/2–2p1/2 energy splitting, which in the Dirac equation approximation would be
zero. The calculations of various contributions to the Lamb shift have a long history starting
from refs. [7–10], see also [11–14] and references therein. For the s-states all corrections
have been calculated up to the order mα2(Zα)6 ln

(
1/(Zα)2

)
. The mα2(Zα)6 contribution

has not yet been calculated, although this correction may be important already in the next
series of spectroscopic measurements.

In the present paper we calculate one of the previously unknown corrections1 to the
Lamb shift of order mα2(Zα)6, which is connected with the radiative corrections to the
Wichmann-Kroll (WK) potential.

We use modern multiloop methods, based on the integration by parts (IBP) reduc-
tion [16, 17], differential equations approach [18, 19], and dimensional recurrence and
analyticity (DRA) method [20, 21]. Recently, we applied similar approach to the calculation
of certain two-loop corrections to Lamb shift and hyperfine splitting in hydrogen, ref. [22].
In contrast to ref. [22], in the present work we are able to obtain the analytic result in
terms of conventional polylogarithmic constants only. The present calculation provides yet
another example of the effectiveness of multiloop methods for obtaining analytic results in
atomic physics.

1A heuristic estimate of the magnitude of this contribution was given in ref. [15].
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(a) Diagrams with one electron loop. Black squares correspond to the mass counter term iδm.

2× 2×

(b) Diagrams with two electron loops. Black squares correspond to the vertex −iδZA(q2gµν − qµqν).

Figure 1. Feynman diagrams corresponding to the radiative corrections to the Wichmann-Kroll
charge density δρ̃(q). Big black dot on the top of the diagrams corresponds to the insertion of
−ieγ0 vertex.

2 Energy shift due to radiative correction to WK potential

Feynman diagrams for the radiative correction δρ̃(q) to the Wichmann-Kroll charge density
are depicted in figure 1. On the same figure we also show the diagrams with one-loop
conterterms. The black squares on solid lines correspond to the mass counter terms iδm =
im (4πα)m−2ϵ(3−2ϵ)Γ(ϵ)

(4π)2−ϵ(1−2ϵ) , while the black squares on dashed lines correspond to −iδZA(q2gµν −

qµqν) = i (16πα)m−2ϵΓ(ϵ)
3(4π)2−ϵ (q2gµν − qµqν). In principle, we should also account for the diagrams

with one-loop fermion field renormalization and vertex counterterms, but their contributions
cancel due to the Ward identity.

The corresponding correction to the potential δṼ (q) = δρ̃(q) · (e/q2) contributes to
energy shifts. The characteristic atomic momenta q are small compared to the electron
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mass. Therefore, we need the small-q asymptotics of ρ̃(q). This asymptotics can be analyzed
using the expansion by regions approach. There are two regions which are relevant to this
asymptotics. The hard region corresponds to all loop momenta ∼ m. In this region we
expand the integrand of δρ̃(q) in Taylor series in q. The zeroth term corresponds to the
sum of diagrams in figure 1 at q = 0. It is easy to see that, due to the identity

N∑
k=1

Tr
[
γµ1(p̂− l̂1 −m)−1 . . . γµk(p̂− l̂k −m)−1γα(p̂− l̂k −m)−1 . . . γµN (p̂− l̂N −m)−1

]
= − ∂

∂pα
Tr

[
γµ1(p̂− l̂1 −m)−1 . . . γµN (p̂− l̂N −m)−1

]
, (2.1)

this sum can be written as the integral of total derivative which is zero in dimensional
regularization. The sum in the left-hand side of the above identity corresponds to all
possible insertions of the vertex γα in the fermion loop.

The contribution to δρ̃(q) linear in q is zero due to rotation symmetry. Therefore, the
expansion in the hard region starts from q2 term,

δρ̃(q) ≈ (δṼ (0)/e) · q2. (2.2)

Note that the sum of the two diagrams on the last row of figure 1b is suppressed by an
additional factor q2, therefore, they can be neglected within our present accuracy.

There is also a soft region, corresponding to all momentum transfers to the nucleus
q1, q2, q3 = q − q1 − q2 being small. Due to the gauge invariance of the light-by-light block
it is easy to see that the corresponding contribution starts from q4−4ϵ, which is also too
small for our present accuracy.

Eq. (2.2) shows that the potential V (r) = e
∫
eiqrδρ̃/q2dq/(2π)3 is proportional to the

delta function and the Lamb shift contribution can be written as:

δE = |ψnℓ(0)|2δṼ (0) = m
α2(Zα)6

π2n3
Bδℓ,0 , (2.3)

where B is a numerical coefficient to be calculated, m is the electron mass, n and ℓ are the
principal and angular quantum numbers, respectively.

3 Calculation and result

The small-q expansion of the diagrams in figure 1 can be expressed in terms of the integrals
of the family

j(n1, · · · , n14) =
∫
dq1dq2dl1dl2

π2d

12∏
k=1

D−nk
k ×

14∏
s=13

δ(ns−1) (Ds)
(ns − 1)! , (3.1)

where

D1 = 1 − l21 , D2 = 1 − l22 , D3 = 1 − (l2 − q2)2 ,
D4 = 1 − (l2 + q1)2 , D5 = 1 − (l1 + q1)2 , D6 = −(l1 − l2)2 ,
D7 = −q21 , D8 = −q22 , D9 = −(q1 + q2)2 , D10 = (l1n) ,
D11 = (l2n) , D12 = (l1 − q2)2 , D13 = (q1n) , D14 = (q2n) . (3.2)

– 3 –



J
H
E
P
1
2
(
2
0
2
3
)
1
4
7

7

13 14

8

5

2

9

3

6 4

1

Figure 2. Topology corresponding to the integral family in eq. (3.1). Numbers correspond to the
subscript k of the denominator Dk in eq. (3.2).

Figure 3. Master integrals.

Here n = (1,0) is a time-like unit vector and we put m = 1. The functions D1−9 and D13−14
correspond to the denominators of the topology depicted in figure 2. The δ-functions in
eq. (3.1) secure the energy conservation. Note that n10−12 ⩽ 0 and the prescription −i0 for
D1−9 is implied.

Making the IBP reduction [16, 17] with LiteRed [23], we reveal 14 master integrals,
see figure 3.

Note that the counter-term diagrams in figure 1 can also be expressed in terms of the
four-loop master integrals in figure 1 although they have only three loops. To this end we
multiply the corresponding integrals by 1 = −1

Γ[1−d/2]
∫ ddl2

iπd/2D2
. Then the contribution of

counter-terms is expressed via the master integrals with unit mass tadpole loop, namely,
via j1 and j5.

Since the integral family (3.1) contains no dimensionless free parameter, the differential
equations method can not help directly. Therefore, there is a temptation to calculate
the master integrals with the DRA (Dimensional Recurrence and Analyticity) method
introduced in ref. [21]. This method is based on dimensional recurrence relations [20]
and analytical properties of loop integrals as functions of space-time dimensionality d.
Unfortunately, there is a nontrivial 2 × 2 diagonal block in the matrix of dimensional
recurrence, corresponding to the integrals j8 and j9 which belong to one and the same sector.
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Figure 4. Master integrals of the two-scale family. Blue lines denote massive propagators with
mass m.

Although it is, in principle, possible to apply the DRA method also for the cases with
nontrivial diagonal 2 × 2 blocks as discussed in refs. [24, 25], its application in this case is
much more laborious than that for the triangular matrix. Fortunately, for the present task
we may apply a combined approach. First, we use the DRA method for all integrals but j8,
j9, and j14 (the latter integral belongs to a super-sector of the sector of j8,9). In order to
obtain information about analytical properties necessary for fixing periodic functions in
homogeneous parts of the solutions, we use the approach of ref. [26]. Namely, we choose
the integrals which are obviously finite on a sufficiently wide vertical stripe in the complex
plane of d. For example, in order to reveal the analytic properties of the most complicated
integral j13 we use finiteness of the integral j13f = on the stripe Re d ∈ (3, 5].
Reducing j13f to the master integrals, we obtain a number of nontrivial constraints for the
leading expansion terms of j13 on the basic stripe (3, 5]. The results of the DRA approach
have the form of n-fold triangular sums with factorized summand and n ⩽ 3. We use
SummerTime package [27] to calculate the ϵ-expansion of these sums with high precision
and PSLQ algorithm [28] to recognize the result in terms of multiple zeta values.

Note that all three remaining integrals, j8, j9, and j14, contain two disjoint massive
loops. In order to calculate those integrals, we consider a family of integrals with different
masses in these two loops. This family is defined by eqs. (3.1) and (3.2) where one should
replace D1 → D̃1 = m2 − l21, D5 → D̃5 = m2 − (l1 + q1)2 and assume that n6,7 ⩽ 0 (in
addition to n10−12 ⩽ 0). This family corresponds to the denominators of j14, where the
unit mass in the left-most fermion loop is replaced by m. Performing the IBP reduction,
we reveal 14 master integrals depicted in figure 4. We obtain the differential system

∂mj̃ = M(ϵ,m)j̃ (3.3)

for the column j̃ = (j̃1, . . . , j̃14)⊺ and reduce it to ϵ-form using Libra [29]. The general
solution of eq. (3.3) is expressed in terms of harmonic polylogarithms [30]. The boundary
conditions are put at m → 0. We use expansion by regions [31, 32] to fix the required
coefficients in the asymptotic expansion of integrals. The original integrals j8,9,14 are
recovered as

j8 = j̃8
∣∣∣
m=1

, j9 = j̃9
∣∣∣
m=1

, j14 = j̃14
∣∣∣
m=1

. (3.4)
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Note that other integrals in figure 3 which contain two disjoint fermion loops are also
expressed in terms of the master integrals in figure 4:

j1 = j̃1
∣∣∣
m=1

, j3 = j̃2
∣∣∣
m=1

, j4 = j̃3
∣∣∣
m=1

= j̃4
∣∣∣
m=1

, j7 = j̃5
∣∣∣
m=1

, j11 = j̃12
∣∣∣
m=1

.

(3.5)
This provides a number of nontrivial cross checks of the obtained results for the master
integrals.

Finally, we expand the diagrams in figure 1 in q and perform the Dirac algebra using
FeynCalc [33]. After the IBP reduction and substitution of the results for the master
integrals, we obtain our final result for the coefficient B in eq. (2.3). We present the
contributions of diagrams in figures 1a and 1b separately:

B1a = 1456
45 Li4

(1
2
)
− 4511π4

16200 + 182 ln4 2
135 + 274

135π
2 ln2 2 − 2387π2 ln 2

1080 + 199ζ3
45

+ 13057
3240 + 3703π2

5760 = 0.125181281880322 . . . , (3.6)

B1b = 71ζ3
56 − 479

756 + 38401π2

217728 − 283
756π

2 ln 2 = 0.070271202837585 . . . , (3.7)

B = B1a +B1b = 0.195452484717907 . . . . (3.8)

4 Conclusion

In the present paper we obtain the contributions of order α2(Zα)6m to the Lamb shift from
radiative corrections to the Wichmann-Kroll potential depicted in figure 1. Numerically
our result (3.8) appears to be rather small and compatible with the heuristic estimate
B = 0.13±0.13 of refs. [14, 15]. For the calculation of master integrals we use a combination
of the DRA method and the approach based on the differential equations. This calculation
provides yet another example of the effectiveness of multiloop methods for obtaining analytic
results in atomic physics.
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