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Wall stabilization of high-beta anisotropic plasmas in an axisymmetric mirror trap

Igor Kotelnikov," * Vadim Prikhodko," T and Dmitri Yakovlev' *

' Budker Institute of Nuclear Physics SB RAS, Novosibirsk, 630090, Russia
(Dated: February 27, 2023)

The stabilization of the “rigid” flute and ballooning modes both with and without theeffect of additienal
MHD anchors in an axisymmetric mirror trap with the help of a perfectly conducting lateral'wall is studied
using a model pressure distribution of a plasma with a steep-angle neutral beam injectionyat the magnetic
field minimum. The calculations were performed for an anisotropic plasma in a model that simulates the
pressure distribution during the injection of beams of fast neutral atoms into the magnetic field minimum.
It is assumed that the lateral wall is an axisymmetric shell surrounding the plasmasthat follows the shape
of the magnetic field line and is placed at a certain distance to the plasma border;

It has been found that for the effective stabilization of the modes by the lateral'wall only, the parameter
beta (8, ratio of plasma pressure to the magnetic field pressure) must exceed some critical value S.;;. When
combined with the conducting end plates imitating the MHD end stabilizers, there are two critical beta
values and two stability zones 0 < § < i1 and Bz < B < 1 that can merge,making the entire range of
allowable beta values 0 < 8 < 1 stable.

The dependence of the critical betas on the degree of plasma anisotropy, themitror ratio, and the width
of the vacuum gap between the plasma and the lateral wall is studied. In contrastto the previous studies
focusing on a plasma model with a sharp boundary, we calculated the stability zones for a number of diffuse

radial pressure profiles and several axial magnetic field profiles:

Keywords: plasma, MHD stability, ballooning modes, mirror trap, Gas-Dynamie Trap, Compact Axisymmetric Toroid,

WHAM++

I. INTRODUCTION

Continuing the study of ballooning instabilities in
isotropic plasma started in our article [1], in this paper we
present the results of the study of the so-called wall stabi-
lization of rigid flute and ballooning perturbations with.az-
imuthal mode number m = 1 in a mirror trap (also.called
open trap or linear trap) with anisotropic plasma. Tmyits
essence, the wall stabilization of plasma with sufficiently
high pressure is achieved due to excitation of.image cur-
rents in the conducting lateral walls that can either be a part
of the vacuum vessel or be a specially designed conduct-
ing components surrounding the plasma: These currents
are in the opposite direction to the /diamagnetic current in
the plasma, and the opposite currents; as is known, are
pushed apart. Such pushingretuirns the pop4up “tongues”
of plasma back towards the trap axis.

In order to emphasize thesignificanceiof stabilization of
a single m = 1, we should recallwhat constitutes a bal-
looning instability in an open axially symmetric trap. It
is generally accepted to.think of ballooning perturbations
as small-scale deformations of plasma equilibrium with a
large azimuthal mode number m > 1. It has long been
known that the finite:Larmor radius (FLR) effects can sta-
bilize small-scale flute-type perturbations if m > 1 [2]. Bal-
looning perturbations are, in fact, related to flute perturba-
tions; therefore,it is commonly believed that they are also
stabilized by the FLR effects.

* LAKotelnikov@inp.nsk.su
 V.V.Prikhedko@inp.nsk.su
£ D.V.Yakovlev@inp.nsk.su

In their pu’re form, flute perturbations can be detected in
a low-pressure plasma (that is, in the limit of § — 0, where
B istheratio of plasma pressure to the magnetic field pres-
sure). They represent a magnetic flux tube, which, together
with the plasma captured in it, floats to the periphery of
the plasma column without changing its shape and with-
out distorting the magnetic field. The classical method for
stabilizing flute disturbances is to attach the end MHD an-
chors (for example, of the cusp type) to the central section
of on open trap, which “clamp” the ends of the flux tube.
The same “clamping” effect is achieved by placing conduc-
tive plates at the ends of the plasma column. If the ends
of the flux tube are “frozen” into the end plates, the tube
cannot float without bending and deforming the magnetic
field. Thus, the flute perturbation is transformed into a bal-
loon type perturbation. Deformation of the magnetic field
requires energy, which must be withdrawn from the ther-
mal energy of the plasma. Therefore ballooning instability
is possible if plasma beta exceeds a certain threshold value;
it is important to emphasize that this threshold value in ax-
ially symmetric open traps is very high, on the order of 60-
70% [3-5].

The FLR effects are not capable of stabilizing flute and
ballooning perturbations with m = 1. However, they im-
pose rigidity on such perturbations, so that the plasma den-
sity distribution does not change in each cross section of the
plasma column. The plasma column bends, shifting from
the trap axis to different distances in different sections. Sta-
bilization of such a “rigid” mode m = 1 would mean stabi-
lization of all flute and ballooning perturbations, provided
that the modes m > 1 are stabilized by the FLR effects.

Unlike many other studies on the stability of the rigid
ballooning mode m = 1 [6-16], which were focused ex-
clusively on a plasma model with a stepwise pressure pro-
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file along the radius, in our article [1] we studied the stabil-
ity of the m = 1 mode in a plasma with a diffuse pressure
profile, but at that time limited ourselves to the case of an
isotropic plasma. Specifically, we calculated the so-called
critical beta 5., such that the rigid flute and ballooning
modes m = 1 can be stabilized by the lateral conducting
wall without using any other MHD stabilization methods
if 8 > B.i- A second case was also analyzed when the
lateral conductive wall was supplemented with conducting
end plates installed in the magnetic mirror throats, which
simulated the end MHD stabilizers, such as cusp. In this
case, two stability zones were found: the first one at small
beta, § < i, the second one at large beta, 8 > B2 , and
these two zones can merge.

In this article, we study wall stabilization on one partic-
ular model of anisotropic plasma, which allows us to per-
form a significant part of the calculations in an analytical
form. The key equation for solving the problem was de-
rived by Lynda LoDestro [17] in 1986, but, it seems that,
neither she nor anyone else has ever used this equation. We
found a few papers [18-21] that refer to LoDestro’s paper
but do not use her equation. LoDestro’s work was probably
in oblivion for many years due to an early termination of the
TMX (Tandem Mirror Experiment) and MFTF-B (Mirror
Fusion Test Facility B) projects in the USA in the same year
[22]. However, the achievement of high electron tempera-
ture and high beta in the gas dynamic trap (GDT) at Budker
Institute of Nuclear Physics in Novosibirsk [23-32], emer-
gence of new ideas [33] and new projects [34-38] makes us
revisit old results.

Another reason for the loss of interest in the LoDestro
equation could be the insufficient power of computers,of
that era. It is possible to calculate the eritical beta for
a plasma with a sharp boundary without this equation,
which was done by LoDestro’s predecessofs. Asthe plasma
model becomes more complex, the demands on computer
performance and resources increase rapidbl. It takes less
than an hour on a modern desktop PC with eight cores
to recalculate all the graphs presented in our article [1]
for the isotropic plasma model.4But calculations for some
anisotropic plasma models, not yet published, take weeks
and even months of continuous work.

To avoid unnecessary repetitions; we will not analyze the
content of the articles cited above, since their detailed re-
view was previously dene in our article [1], and we will
immediately proceed to the description of the new calcu-
lations. In section II, LoDestro’s equation will be written
and the necessary notation will be introduced. In section
I11, the anisotropic pressure model used below will be for-
mulated. The results of calculating some coefficients in the
LoDestro equation for this model are presented in Appen-
dices A and B. Section TV presents the results of calculating
the critical beta ifi the limit when the conducting wall sur-
rounding the plasma column almost conforms to the lat-
eral boundary of the plasma column, but does not touch
itivIn, this limit, LoDestro’s ordinary differential equation
of second order reduces to an integral along the z coordi-
nate'on the trap axis; the integral turns to zero at the critical

2

beta value. Section V describes the solution of the LoDestro
equation by the shooting method and presents the results
of calculations for several model profiles of pressure and
magnetic field. In section VI, the shooting methodis again
used to solve the LoDestro equation with other,boundary
conditions that imitate the effect of conducting end plates
or MHD anchors installed in' magnetic plugs..The final sec-
tion VII summarizes our results.

II. LODESTRO EQUATION

The LoDestro equation is.a second-order ordinary differ-
ential equation for the function

$(z) =.a(2)B,(2)§,(2), @

which depends on one coordinate z along the trap axis and
is expresSed in terms of variable radius of the plasma col-
umn boundarya = a(z), vacuum magnetic field B, = B,(z)
and{virtual small displacement &, = &,(z) of the plasma
column from the axis. It is obtained on the assumption that

4
« FLR effects are strong enough, m = 1;
+ the paraxial (long-thin) approximation applies;

« the pressure tensor depends only on two functions:

p1(%,B), py(¥,B);

plasma beta is not necessarily small.

The LoDestro equation does not take into account the re-
sistance of plasma and conductive walls. It is also possible
that the assumption about the dominance of the FLR effects
is violated near the boundary of the plasma column, which
may result in an incorrect account of plasma drifts and ro-
tation. Plasma rotation is taken into account by A. Beklem-
ishev’s theory of vortex confinement [39], but it is limited
to the § = 0 approximation. Plasma resistance was taken
into account by Kang, Lichtenberg, and Nevins [40] in an
isotropic plasma model with a sharp boundary.

In its final form, the LoDestro equation reads

_d 2(p) | d¢
- fara- 202

d (B, 2d (D)) | «*(p)
+¢P&(a+zﬁﬁ‘aﬁ*§?

_N@ﬂ_%ﬁ+&f@_%ﬂ,m

2 a, 2\B, a

where the derivative d /dz in the first two lines acts on all
factors to the right of it, the prime (') is a shortcut for d /dz,
and w is the oscillation frequency. Other notations are de-
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fined as follows
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Parameter 1,, used here, has the meaning of the reduced
(i.e. divided by 27) magnetic flux through the plasma cross
section 7a?. It is related to the plasma radius a = a(z) by
Eq. (3). Equation (4) relates the radial coordinate r and the
magnetic flux ¢ through a ring of radius r in the z plane.
The magnetic field B = B(¥, z), weakened by the plasma
diamagnetism, in the paraxial (long-thin) approximation
(i.e., with a small curvature of the field lines) is related to
the vacuum magnetic field B, = B,(z) by the transverse
equilibrium equation (5).

Function A = A(z) is expressed in terms§ of the,ac-
tual radius of the plasma/vacuum boundary a ="a(z) and
the radius of the conducting shell r,, = #,(z), which sur-
rounds the plasma column. In the remainder of the paper
we assume that A is a constant. The case A(z) = A, =
const will be referred to below as the proportional cham-
ber. The shape of the conducting walls of such a chamber
on larger scale repeats the shape of the plasma column, that
is, r,/a = const > 1. Such a chamber isdifficult to man-
ufacture, but the assumption A(z) = const greatly simpli-
fies the solution of the LoDestr¢ equation. The larger the
value of A, the closer the conduecting lateral wall is to the
plasma boundary. The limit-A_ — oo corresponds to the
case when the conductinglateral wall is‘as close as possible
to the plasma boundaryyrepeating its shape, but not touch-
ing the plasma. The limit A — 1'means that the lateral
conducting wall is rémoved to infinity.

Kinetic theory predicts (see, for example, [41]) that the
transverse and longitudinal plasma pressures can be con-
sidered as functions of B'and ¢, i.e. p, = p,(B,¥), pj =
pi(B,¥). In Eg. (2), onie must assume that the magnetic
field B is already.expressed in terms of 1 and z, and there-
fore p, & p,(},2);'p; = p|(¥,2z). The angle brackets in
Eq. (2) denote the mean value of an arbitrary function of ¢
and z overthe plasma cross section. In particular, the aver-
age value {p) of the density p = p(3, z) is calculated using
aformula similar to (8).

The boundary conditions for Eq. (2) and similar equa-
tions in the study of ballooning instability are traditionally

AUTHOR SUBMITTED MANUSCRIPT - NF-105772.R1

set at the ends of the plasma column at the magnetic field
maxima B, = By, where B, = 0and p; = p; = 0. In ac-
cordance with the geometry of actually existing.open traps,
itis usually assumed that the magneticfield is symmetrical
with respect to the median plane z = 0, and the magnetic
mirrors (i.e., field maxima) are located at z = +L.

Traditionally, two types of boundary conditions are con-
sidered. In presence of the conducting end plates directly
in magnetic mirrors, it is required thatithe boundary con-
dition

$=0 (10)

be satisfied at z = £LI7A similar boundary condition is usu-
ally used in studying thestability of small-scale ballooning
disturbances, therebymodeling the presence of a stabiliz-
ing cell behind @magneticamirror (see, for example, [5]).

If the plasma endsiare electrically insulating, the bound-
ary condition

¢ =0 (11)

is applied. Basically, it implies that other methods of MHD
stabilization in addition to stabilization by a conducting lat-
eral wall are mot used. Itis this boundary condition (11) that
was used earlier in the works on the stability of the m =1
ballooning mode.

The LoDestro equation (2) with boundary conditions
(10) or (11) represents a standard Sturm-Liouville problem.
At'the first glance, it may seem that the solution of such
a problem is not difficult to find. However, the LoDestro
equation has the peculiarity that its coefficients can be sin-
gular. In the anisotropic pressure model, which will be for-
mulated in the next section, the singularity appears near
the minimum of the magnetic field in the limit § — 1.
There are indications that our predecessors were aware of
the singularity problem. For example, in Kesner’s article
[13], the graphs in Fig. 2 break off at § ~ 0.9. Unfortu-
nately, he did not leave us recipes for dealing with this sin-
gularity.

III. ANISOTROPIC PRESSURE

In publications on the stability of the rigid ballooning
mode, two models of anisotropic pressure have previously
been used. Kesner in his paper [13] indicates that in the
first model the transverse pressure in a nonuniform mag-
netic field B < B, varies according to the law

p1 X Brznax - BZ! (12)
while in the second model
py (B/Bmax)2(1 - B/Bmax)n_l- (13)

The first model approximately describes the pressure distri-
bution in an open trap, which arises when beams of neutral
atoms (NB) are injected into plasmas at a right angle to the
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trap axis at the magnetic field minimum. This is the so-
called normal NB injection (NBI). The second model cor-
responds to the oblique NBI, which forms a population of
so-called sloshing ions.

In the present paper, we will restrict ourselves to the first
model for three reasons. First, it is relevant to the Com-
pact Axisymmetric Toroid (CAT) at Budker INP [28, 29, 42]
as well as the new Wisconsin HTS Axisymmetric Mirror
(WHAM++) under development at the University of Wis-
consin [37]. Second, in this model, the coefficients in the
LoDestro equation can be calculated without using numer-
ical integration. Finally, in the second model, the ultimate
beta can actually be limited by either mirror or the firehose
instabilities.

In our internal classification, the isotropic plasma vari-
ant is designated ‘A0’, the anisotropic pressure (12), which
is formed during normal NBI, is designated ‘A1’ The
oblique injection simulated by the formula (13) with an ar-
bitrary index n is denoted by ‘An’. The two cases n = 2 and
n = 3 will be dealt with in our next article and are abbrevi-
ated ‘A2’ and ‘A3’. Variations with conducting lateral wall
stabilization will be marked with the letters ‘LW’ (short-
cut for Lateral Wall), and variations with combined lateral
wall stabilization and conductive end plates installed in the
throat of the magnetic plug will be marked with the letters
‘CW’ (shortcut for Combined Wall). The design of the lat-
eral conductive wall in the form of a proportional cham-
ber will be labeled ‘Pr’ (Proportional). Thus, the label ‘Al-
LWPr’ in a figure corresponds to the variant of plasma stabi-
lization with anisotropic pressure of the ‘A1’ type.in a pro-
portional conducting chamber without the effect of the end
MHD stabilizers. The influence of the shape of the lateral
wall on the stability of the rigid ballooning mode will'be
studied in a separate article. In particular, there will be a
comparison of the stabilizing effect of a proportional cham-
ber with a straight chamber, which is assigned the abbrevi-
ation ‘St’ (Straight).

In kinetic theory [41] it is proved that if either of the two
pressures p, and p is given as a function of B, then the
other is uniquely determined using theparallel equilibrium
equation. The latter can be rewtitten in terms of the partial
derivative with respect to B for constant magnetic flux i as

L OB
Another key result of the Kinetic theory is the assertion that
the function p, /B?/alway$ decreases as B increases, i.e.

0 p4

— T2 <.
0B B2 — 0 (15
Using Eq. (14),.0ne can rewrite this last result as
0 pL+ D
3B B =9 (16)

First, for stability against the so-called “firehose mode”, it
is required that

2

B? B
p|\—75pl+7. 17)

4

Second, stability against the so-called “mirror mode” im-
plies that

2
> <pl + %) > 0f (18)
All these equations are satisfied by the funetions'
p.(B.Y) = p() (1 — BBS), (19)
Pi(B.) = p(P)I(L - B/B,)", (20)
p(B, )= p(¥) (1~B/By). (1)

They describe the plasma pressure profile with a peak near
the magnetic field minimum in the median plane of an
open trap. Both functions p, and p; simultaneously van-
ish at B = B;. We,assume that By does not exceed the mag-
netic field B,,,, in'the magnetic mirrors, bearing in mind
that there is some cold plasma in the region B; < B < By
but its pressureiis negligible. Such a profile approximately
describes expected pressure distribution in the CAT device,
where the field By approximately corresponds to the stop
point of sloshing ions.

For'the pressure profile (19) equation (5) can be solved
and the true‘magnetic field B weakened by the diamagnetic
effect can be explicitly expressed in terms of the vacuum

field B,:
_ o |Bi@—2p(®)
B(¥,z) = By B —ap0) (22)

In the second case (13), Eq. (5) can be solved analytically
only if n = 2 or n = 3, but in any case, numerical integra-
tion is necessary when calculating functions such as a and
(p), while for the functions (17)-(19) these integrals can be
calculated analytically.

The pressure functions expressed in terms of B, will be
denoted by the capital letter P,

2 _ n2
PL(BU,¢>=p<¢>BBS By (23)

BZ = 2p($)’
2
2 _
BB, 1) = p() (1 -/ ;_—%) SEe
2 —_—
P(B,.¥) = p(¥) (1 ./ ;_—Zﬁ;) 25)

Turning to dimensionless variables, we will take the mag-
netic field at the turning point B = B, = By as a unit of
measurement, and the vacuum mirror ratio B;/ min(B,) at

! The inequalities (15), (16) and (17) are satisfied if py > 0. The inequal-
ity (18) formally leads to the condition 2p, < BZ, while the transverse
equilibrium equation (5) has a solution in the entire region B, < By
under the obviously more stringent condition 2py < min(B2) < B2.
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the turning point will be further denoted R. Then, keep-
ing the same notation for dimensionless quantities as for
dimensional ones, we have
B,y = min(B,) = 1/R, By =1. (26)

The unit of length along the radius r is further fixed by the
fact that we take the magnetic flux 3, through the plasma
section as a unit of measurement, assuming further that
1, = 1. Asfor the coordinate z along the trap axis, it will be
further normalized to the distance L between the median
plane z = 0 and the magnetic mirror. With this normal-
ization, it turns out that the plugs are located in the planes
z==*l.

Below we represent the dependence of pressure on the
magnetic flux i as

p®) = pofi(®), 27

where the dimensionless function f}(¢) is defined as

1-9yk, ifo<yp<1

28
0, otherwise (28)

Ji(®) ={

for integer values of index k, and for k = oo is expressed
in terms of a 6-function such that 6(x) = 0 for x < 0 and
6(x) =1forx > 0:

Jo@) =61 =) 29)

Parameter beta, 3, is defined as the maximum of the ratio

B = max(2p, /B2). 30)

The maximum is reached on the trap axis (where 1) = 0)
at the minimum of the vacuum field (where B, =.1/R), so
that in dimensionless notation

B N
P=3@+R LD (31)
Parameter p, can vary within. the range 0 <' p, < 1/2R?,
and py — 1/2R? at § — 1. At >.1, plasma equilibrium is
impossible, since Eq. (5) does:not have aicontinuous solu-
tion.

As in our first article,[1], the subsequent calculations
were performed in the Wolfram Mathematica® for four val-
ues of the index k € {1, 2,4, co}. The f; function describes
the smoothest pressure profile: For8/B2 < 1 it approxi-
mately gives the parabolic dependence of the pressure p on
the coordinate®. The larger the index k, the more table-like
distribution p near theaxis of the plasma column is and the
steeper it is neanthe boundary of the column. Index k =
corresponds to a pressure profile in the form of a step with
a sharp boundary.

For thexabove radial pressure profiles, Wolfram Mathe-
matica® was able to calculate integrals (3) and (8) analyt-
ically (with the help of some custom subroutines as de-
scribed in'Appendix D). The results of the calculations are
summarized in Appendixes A and B.

AUTHOR SUBMITTED MANUSCRIPT - NF-105772.R1

An important characteristic of the plasma is the degree
of its anisotropy. If the latter is formally defined as

_ Pi(Byo, 0) — P(Bygs0)
P, (Byo,0) + Py(Byg, 0)°

(32)

relating it to the plasma pressure at the minilmum of the
magnetic field on the trap axis, weobtain

1-8

A=
R

(33)

This shows that the anisotropy¢is greater for smaller R,
reaching a maximum,at R — 1.’ In connection with this
parameter R will sometimesibe called the anisotropy pa-
rameter. The limit R<— oo corresponds to the case of
an isotropic plasma. Calculating this limit in the formu-
las collected in Appendices A and B, one can re-derive the
formulas for isotropic plasma published earlier in Ref. [1].
However, in this article we restrict ourselves to the case
of R <<M, since the plasma pressure should tend to zero
at the mirror throat, where dimensionless B, = M/R and
M = max(B,)/ min(B,) is the mirror ratio. We also note
that the parameter R characterizes the spatial width of the
plasma pressure distribution along the magnetic field lines.
Larger values of R correspond to wider the axial pressure
profiles.

IV. THIN VACUUM GAP

As the lateral conducting wall approaches the
plasma/vacuum boundary, where it produces its max-
imum stabilizing effect, parameter A tends to infinity. In
the limit A — oo, it is possible to make analytic progress
in solving Eq. (2), and, hence, in assessing the effects of a
diffuse profile and anisotropy on the rigid ballooning mode
stability.

Stabilization of the m = 1 mode by a conducting wall in
the A — oo limit was previously studied by Kesner [13], Li,
Kesner and Lane [14] in the case of a plasma with a sharp-
boundary radial profile. In particular, apart from isotropic
plasma Kesner analyzed anisotropic pressure model (13)
and concluded that the critical beta becomes smaller as the
degree of anisotropy increases.

As shown in Ref. [1], in the limit A — oo, the Sturm-
Liouville problem (2), (11) reduces to solving the integral
equation

+1
wZJ @dz =
1 B3
+1p /= 2 —
_ 2(p)a, 1(B, 2d (p)
_J‘_1|:B12) a—v+§<B—v+T> 1_B_12) dz. (34)

It allows one to calculate the squared oscillation frequency
? if the radial profile of pressure p = (p, +p|)/2, density p,
and vacuum magnetic field B, are given. At the margins of
the stable regime, the oscillation frequency is equal to zero,
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Figure 1: Axial profile of the vacuum magnetic field (36)
with mirror ratio M = 8 and different indices q indicated
on the graphs.

w? = 0. In the stability region w? > 0, and instability takes
place if w? < 0.

In a plasma with anisotropic pressure, condition (17) to-
gether with Eq. (5) guarantees that p < B2/2. Hence, the
multiplier (1—p/B2) > 0 and the second term in the square
brackets are always positive. Therefore, the rigid balloon-
ing mode in a plasma with anisotropic pressure can also be
stabilized by a conducting wall located close enough to the
lateral surface of the plasma column.

Further in this section, we present the results of calcu-
lation of the critical value of beta in anisotropic plasma'in
the limit A = oo. The calculation method is described in
detail in our previous article using the example of isotropic
plasma [1]. Here, we restrict ourselves to indicating that
the critical value 3., of the parameter (3, correspondingto
the marginal stability w? = 0, is to be détermined as a root
of the equation

W(g) =0, (35)

where W() denotes the integral on the rh?lt-hand-side of
Eq. (34). Some peculiarities of searching for roots of this
strongly non-linear equationdn the Wolfram Mathematica®
are described in Appendix D.

As in Ref. [1], we have performed, calculations for two
vacuum magnetic field models. However, below we present
the results only for the second model, since the first model
revealed approximately-the same trends as the second one.

In the second model, the vacuum magnetic field was
given by a three-parameter family of functions

By(z) = [1 + (M- 1)sin%(7z/2)| /R (36)

with five valuesiof the mirror ratio M € {24, 16, 8, 4,2} and
three values of the index q € {2, 4, 8}; the latter determines
the width and slope of the magnetic mirrors, as shown in
Fig. 1. The calculations were carried out for discrete values
of the parameter R in the range from R = 1.1to R = M. As
noted,above, the parameter R can serve as a characteristic
of plasma anisotropy. According to the equation (33), the
closer R is to unity, the greater is the degree of anisotropy.

6

Results of calculations are summarized in a series of
graphs in Fig. 2. Within each graph, it is not difficult to de-
tect a trend towards a decrease in the critical value of beta
with an increase in the steepness of theradial.pressute pro-
file as the index k increases from k = 1 to k = co\for a fixed
pair of parameters q and R.

Second trend is that critical beta rapidlyappfoaches zero
at R — 1, but in our calculations we did not take R values
less than 1.1, believing that they are unlikely to be'achieved
experimentally. At R = 1.1,‘critical beta ranged from 0.531
for the smoothest radial profile k'= 1 to 0.178 for a plasma
with a sharp boundary at k = . Forsufficiently large val-
ues of R > 3-5, critical beta approaches unity, and is closer
to unity for smallervaluesiof k./It is significant that with
an increase in R, the stability zone disappears for smooth
radial profiles (primarily for'k = 1).

The dependence on the index g, which characterizes the
width and steepnessiof the magnetic mirrors (the larger
q, the narrower the mirror width), does not seem to be
very significanty except that profiles with an increased q
are more prone to the disappearance of the stability zone
as the parameter R increases. In other words, stabilization
of the rigid ballooning mode is more problematic in traps
with shert and steep magnetic mirrors.

Weé alsonbticed a moderate dependence of the critical
beta on the mirror ratio M. Decreasing M from 16 to 4 re-
duces;the value of 3 to the second or third decimal place.

Although function (36) is smooth everywhere, on the
profile of the plasma boundary a(z) near the median plane
z = 0, a “swell” is formed in the form of a “thorn” with
a large curvature at a single point. An example of such a
“thorn” for ¢ = 2isshown in Fig. 3(a). Atq = 8, the “thorn”
expands, forming the Beklemishev’s diamagnetic “bubble”,
as in Fig. 3(c). The graphs of the plasma boundary a(z) in
Fig. 3 are plotted for different values of k and different val-
ues of B corresponding to them,? but with the same value
of the magnetic flux ¢ = 3, = 1 taken up by the plasma.
Interestingly, such plots of a(z) almost coincide, although
the values of ., for radial pressure profiles with different
k differ quite significantly. Similar effect was reported in
Ref. [1] for isotropic plasma. Note in passing that this effect
simplifies the manufacturing of a proportional chamber.

The formation of a region of large curvature at § — 1
leads to the violation of the paraxial approximation, which
was assumed in the derivation of the LoDestro equation.
The formal condition for the applicability of paraxial ap-
proximation can be written as

2,2
d?a;

l,ba F <1, (37)

where the functions aj. for the pressure profiles with dif-
ferent indices k are defined by Egs. (Al) in Appendix A.

2 The abbreviation ‘N/F’ in fig. 3 and in the table I instead of a number
indicates that . is not found. This can mean both that the root does
not exist, or that it exists, but differs from 1 by no more than 10-°.
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Figure 2: Critical beta in the model.magnetic field (36) versus the anisotropy parameter R for different mirror ratios M

and different indices q infthe limit A'— oo. The stability zone for the radial profile with index k is located above the

corresponding curve. Correspondence of the colors and markers of the curves on the graphs to the index k is shown under
the bottom row of the graphs.

According to their definition/(3), functions a} are propor-
tional to the magnetic flux'9, trapped in the plasma, but
when writing Egs. (A1) parameter 1, was set to unity, so
it was added explicitly to the condition (37). Formulating
the paraxiality condition, we assume that 1), = a2,B,0/2,
where @, is thedadius of the plasma column in the me-
dian plane at vacuum magnetic field.

An analysisof the graphs on the left-hand-side of the con-
dition.(37) for the magnetic field (36) shows that it is most
difficult to fulfill this condition in the case of ¢ = 2, when
the maximum curvature is reached at the median plane

z = 0. In the other two variants g = 4 and q = 8, the first
two derivatives of the vacuum field B,(z) are equal to zero
at z = 0, so the curvature peak is formed at some distance
from the median plane, where the vacuum field is larger
and the local beta value is smaller. For the field of the type
q = 2 near the median plane, we approximately have

B, = By [1 + 2%/21%], (38)

where [ determines the scale of the change in the vacuum
field in this region. Substituting (38) into Egs. (A1) and cal-
culating the left-hand-side of Eq. (37) at z = 0, we obtain
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Figure 3: Axial profile of the plasma boundary in the model magnetic field (36) for A — o0, R = 2,,M = 16, different
parameters g (shown in the graphs) and critical values of beta for different pressure profiles k (also shown in the graphs).
The area occupied by plasma at § = 0 is shaded.
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Figure 4: Axial profile of the displacement ,,(z) of the plasma column in the model magnetic field (36) for 8 = 0.9, A = oo,
R =2, M = 16 and various values of q and k (indicated in the graphs).

the desired constraint on the paraxiality parameter. Forthe
smoothest pressure profile k = 1, this method yields

2 R2—1a_%,0
VI—pBR P

For the other three cases (k € {2,4, oo}), respectively,we
have

< 1. (39a)

Rz —1d%,
ml—z < 1, (39b)
2R 1T (5/4)° g < 1\ (39¢)
V7 -pyaR ’
2 _ 2
R — Brdio <1 (39d)

G- pRE

This shows that the most/severe restriction on the value of
beta takes place for the/steepest pressure profile (k = o).
From Eq. (39d) we obtain the condition

1—4> (@D, (40)

From the formal point of view of a refined mathematician,
it can be true even for 8 — 1 if the parameter a,,,/! tends to
zero even faster,but in real open traps the parameter a,q/1,
although small, has'afinite value. Accordingly, our results
will be unreliable if § is too close to unity.

The displacement profiles of the plasma column &, (z)
are shown in Fig. 4 for all radial pressure profiles k at the
same value § = 0.9. We emphasize that the displacement
is not.constant, although, as shown in [1], ¢(z) = const for
A — 0. At the critical values of beta indicated in Fig. 3, the

&

displacement profiles would be practically the same for all
k, since'the profiles of the plasma boundary a(z) in Fig. 3
practically coincide.

Next section V describes the results of solving the Sturm-
Liouville problem for the LoDestro equation (2) with a fi-
nite value of A. We used the A — oo limit to test conver-
gence of this solution.

V. FINITE VACUUM GAP

Taking into account the symmetry of the magnetic field
with respect to the median plane z = 0, it suffices to find a
solution to Eq. (2) at a half-interval 0 < z < 1. Due to the
symmetry, the desired function ¢(z) must be even, hence

¢'(0) = 0. (41)

As for the point z = 1, according to (11), the function must
satisfy the condition

¢'(1) =0, (42)

which corresponds to the case when the plasma ends are
insulated from the conducting elements of the structure of
the vacuum chamber. An obvious fit to the LoDestro equa-
tion with boundary conditions (41) and (42) is the trivial
solution ¢ = 0. To eliminate the trivial solution, we impose
the normalization condition

$(0) = 1. (43)

It is possible to simultaneously satisfy the three boundary
conditions (41)—(43) when solving a second-order ordinary

Page 8 of 23



Page 9 of 23

oNOYTULT D WN =

differential equation only for a certain combination of the
parameters A, = A(0), 8 and w. If a pair of parameters
Ay (inverse width of the vacuum gap between the plasma
column and the conducting wall) and § (plasma pressure)
is given, the solution of the Sturm-Liouville problem (2),
(41)-(43) gives eigenfrequency w of the rigid ballooning
mode. We will be interested in solving this problem for the
case of proportional chamber when the ratio r,/a is con-
stant (so that the function A(z) is also a constant indepen-
dent of z), and the oscillation frequency is equal to zero,
w = 0. This solution gives critical value of beta, 8., as a
function of A,.

The application of the shooting method for solving such
a problem in the Wolfram Mathematica® system was de-
scribed earlier in Ref. [1] using the example of an isotropic
plasma. Let us focus on its features in application to the
anisotropic model.

In what follows, we denote by zg the coordinate of the
turning point on the z axis, where B = B, = B; = 1, and
p. = pj = 0. For the second magnetic field model (36) we

have
2 [(R=1\"
zg = — arcsin ((M — 1) . (44)

In our model of anisotropic plasma, its pressure is zero in
the region z; < z < 1 between the stop point B = B,/= 1
and the magnetic mirror throat B = B, = M/R. At zero
pressure, the LoDestro equation (2) takes an extremely sim-
ple form

_d d¢
O—E[(A+1)a . (45)
Its solution is the equality
[A(z) + 1] ¢'(2) = const, (46)

where we allow for a moment that A may be a function of z,
leaving the possibility for a future analysissafia conducting
wall with a shape different from proportional one. The con-
stant on its right-hand side can be'found from the bound-
ary condition at z = 1, whete the derivative'¢’'(1) is equal
to zero. From that it follows that the constant on the right-
hand side of Eq. (46) is also zero. Since the factor A(z)+1 s
greater than zero everywhere, we conclude that ¢'(z) = 0
in the entire region z; & z < 1. Thus, it suffices to find
the numerical solution-of the original equation (2) in the
region 0 < z < z;.

It should be taken into account that the derivative ¢'(z)
undergoes a jump.at Z = z¢. Indeed, integrating Eq. (2)
over an infinitesimal neighborhood of the point zg from zg
to zF, we obtain the equation

[Azs) #F 1" (@0)=¢'(z5)] = [Q(zF) — Q(z5)] ¢(Zs()’
47)
in which we took into account that A, ¢ and (p) are contin-
uous at the point z = z, in contrast to the derivative ¢'(z)
and the coefficient
B, 2d _2d 2a

Qz)=5+—=— . (48)

B, a a a,

AUTHOR SUBMITTED MANUSCRIPT - NF-105772.R1

The jump in the coefficient is due to the fact that for B =
B, = 1 the derivative of functions (19) and (21) jumps.
Since ¢’'(z) = 0 and Q(z§) = 0, from Eq. (47) we find
the value that the derivative of ¢’ (z) must have at the point
zg on the right boundary of the interval 0 < z <z, from its
inner side:
o Qzg)

B = gos T (49)
When solving Eq. (2) on theinterval 0 < z'< zg, the bound-
ary condition (49) shouldsbeused instead of (42).

The implementation/of the shooting method in the Wol-
fram Mathematica® system for solving the Sturm-Liouville
problem formulated above was described earlier in Ref. [1]
using an isotropic plasma as an example. Let us briefly re-
peat this descriptionyemphasizing the features characteris-
tic of an anisotropic plasma.

First, the built-in'ParametricNDSolveValue utility finds a
solution tothe ordinary differential equation (2) in the Wol-
fram Mathematica® system with boundary conditions (41)
and (43). Thisutility returns a reference pf to an interpo-
lation function of the z coordinate, which also depends on
the free parameters 3 and A,. Other parameters (M, R, q,
) were giveg as numbers.

At the second step, we have to satisfy the third bound-
ary condition (49). In the Wolfram Mathematica®, function
arguments are written in square brackets, so pf[8,Aql[z]
denotes the solution at z for specified numerical values of
the parameters § and A,. Accordingly, the analogue of
the derivative ¢'(z) is written as pf[8,A,]'[z]. So to solve
Eq. (49) and, thus, find the critical beta it is enough to pass
the equation

prlE. Aol 2] = 2250 pfgAlz]  (50)
to the built-in FindRoot utility or to the RootSearch custom
utility developed by Ted Ersek [43]. Because both of these
utilities miss roots from time to time, we have developed
our own XRS package (see Appendix D).

Our calculations were done for the magnetic field (36)
with mirror ratios M € {4,8,16}, those combinations of
parameters k € {1,2,4, 00}, q € {2,4, 8}, which are listed
in section IV, and for discrete values of A(z) = Ay €
{1,1.001,1.002, 1.003, ... ,400, 450, 500}. For A, = 500, the
critical beta value we calculated differed from the value
found in previous section for Ay = oo only in the third dec-
imal place, while in the isotropic plasma model the differ-
ence was observed only in the fifth decimal place [1]. Pa-
rameter R again varied from R = 1.1to R = M.

Critical beta values for the case A = 1, when the conduct-
ing lateral wall is removed to infinity, have not been found.
However, such values were found for A — 1+. The dis-
cussion of the stability zone at values of A close to unity is
relegated to Appendix C, since it is of academic rather than
practical interest because the stable zone .;; < 8 < 1is
extremely narrow is this case.

Figures 5, 6, and 7 show plots of 8 versus ratio r,,/a =

V(Ao + 1)/(Ag — 1) respectively for mirror ratios 4, 8, 16 at
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the anisotropy, the lower the .,;;) and the spatial width of
the pressure distribution (the larger the R, the wider the
distribution). Comparison of graphs within each row con-
firms a weak tendency noted in section IV to increase crit-
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ical beta as the magnetic mirrors steepen with increasing
index q. Comparison of figures 5-7 for different M demon-
strates some decrease in the stability zone as the mirror ra-
tio increases.

We also see that the most smooth radial profile (k = 1)
is unstable for all ratios r,/a if R > 2and q = 4or q = 8.
For the case of isotropic plasma [1], the stability zone dis-
appeared also for the next steepest profile (k = 2) and suffi-
ciently steep axial profiles of the magnetic field, but in the
case of anisotropic plasma this profile can always be made
stable by decreasing the vacuum gap (i.e. decreasing #,,/a).

For the minimum anisotropy allowed in our calculations,
that is, for R = M, the model of normal injection of neutral
beams (12) and the model of isotropic plasma give close re-
sults. This fact is confirmed by Fig. 8. The small difference
becomes more noticeable for smaller M and larger q.

The main trends identified by our calculations are listed
below:

« Ifthe stability zone can in principle exist for a given set of
parameters M, R, q (i.e. ifa numerical solution of Eq. (35)
was found in section IV for this set at A; = o), then it
emerges if Ay exceeds some minimum value A, > 1.

« This minimum value is smaller for steeper radial pres-
sure profile (larger k), smoother axial profile of the vac-
uum magnetic field (smaller q), smaller mirror ratioxM,
and greater anisotropy (smaller R). The stability zone
narrows with increasing A, and may disappear alto-
gether for smooth pressure profiles (k = 1).

Critical betas for the case Ay = 1, when the conducting
lateral wall is removed (7,,/a = o), have not been found.

« The narrower the vacuum gap between the plasma and
the lateral conducting wall (the larger Ag); the wider the
stability zone (the smaller §_;).

+ The minimum f; found for the studied set of radial
and axial profiles and parameter of anisotropy R = 1.1
is about 18%, which is much lower than the value 70%
reported for isotropic plasmas. We expect B.; — O at
R — 1, but such a limit deessnot seem achievable in a
real experiment.

VI. COMBINED WALL STABILIZATION

Finally, we repeat caléulations of previous section with
a minor adjustment.We take boundary condition (10),
which means that the plasma is frozen into the conducting
end plates, instead of boundary condition (11) describing
insulating ends ef a mirror trap.

In recént paper [1] we reported two critical beta values
for the case of isotropic plasmas, .. and f.: one at low
beta due to.the balancing of the ponderomotive force with
the curvature drive, and one at high 8 due to the proximity
of the conducting lateral wall which enables magnetic line
bending to balance the curvature drive. Corresponding to
twoccritical values of beta, there are two zones of stability.
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The first zone exists at low plasma pressure, at 0 < § <
Berit1» and the second one exists at high pressure, at 5., <
B <1. These two zones merge at larger A, providing overall
stability at any beta. In this section we€xtend these tesults
to the case of anisotropic plasma produced by normal NB
injection. The main difference from the isotropic model is
that the degree of anisotropy provides an additional “knob”
for controlling experimental parameters.

Let’s move on to solving Eq: (2) with the boundary condi-
tions (10) for z = 1, and (41) and (43) forz = 0. As shown
in section V, in the regionzy <z'< 1 the desired solution
satisfies Eq. (46). Noticing that the constant in this equa-
tion is now equal to [A(z,) + 1] §'(zT), rather than zero as
in section V, we find that the derivative ¢'(z) at z = z¢ is
equal to =

I _¢(Zs)
¢'(Z5)= —. (51)
(A + 1105, 27—

Substituting, ¢(zf)rinto Eq. (47) and taking into account
that Q(z§) = 0pwe find the derivative ¢’(z5 ) on the right
boundary of the interval 0 < z < z, from its inner side:

f) 2| L&) L YR
Az +1 Ay +110)

s A(z)+1
(52)

This is the boundary condition that should be used instead
of (49) in the problem of ballooning instability with a com-
bination of wall stabilization and stabilization by conduct-
ing end plates. In the case of A(z) = const under consider-
ation here it reduces to

Qzy) 1
Ag+1 1-—

¢'(z5) = $(z5)- (53)
ZS

Following the same scheme as in Ref. [1], we performed
a series of calculations for the vacuum magnetic field (36)
with three values of the index ¢ € {2,4,8} and a mir-
ror ratio from a limited set M = {24,16,8,4,2}. Param-
eter of anisotropy R < M was taken from the list R €
{1.1,1.2,1.5,2,4,8, 16,24}

A series of graphs in Fig. 9 illustrates the results of calcu-
lations at the minimum degree of anisotropy, i.e. at R = M,
when the instability zone has the maximum dimensions.
Zone of instability in this and subsequent figures for each
radial pressure profile with a given index k € {1, 2,4, oo}
lies between the lower and upper curves of the correspond-
ing color. They represent .. and B, respectively. If
there is only one curve, as in Fig. 9(a) for the profile k = 1,
we interpret it as B.;y. If there are no curves of a given
color on a graph, we suppose that the corresponding pres-
sure profile is stable in the entire range of 0 < § < 1 and
in the entire range of values of r,,/a, which is shown in the
graph. We have made the last two statements, analyzing
the evolution of the instability zone as the parameters of the
problem, such as r,/a, R, M, change continuously. Strictly



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - NF-105772.R1

14
8 AO-LWPr: M=16, g=2 (@) 8 AO-LWPr: M=16, g=4 (b) 8 AO-LWPr: M=16, g=8 (©)
1.00f » S Cmminios 1.00} e 1.00} ¢ =
0.98} 0.98f
0.95] 096
0'94 0.96]
0.90} : b
092 0.94
0.85] 0.90} 0.92f
rola 0.88 rola t rola
1 2 5 10 1 2 5 10 1 2 5 10
B AO-LWPr: M=4, g=2 (d) B AO-LWPr: M=4, q=4 () B AO-LWPr: M=4, g=8 )
1.00} m= N ————— 1.00} NS 1.00} S
0.95[ 0.95¢ 0.95¢
0.90}
0.90}
0.85] 0.90f
0.80¢ ) 0.85¢ ; )
1 2 5 10 ™2 1 2 5 10 ™ 1 2 5 10 ™2
a1 2 4 o a1 4 o a1 2 4 o
B8 A1-LWPr: M=16, R=16, g=2 (@) B A1-LWPr: M=16, R=16, q=4 (b) B8 A1-LWPr: M=16, R=16, q=8 (©
1.00} == PeP=U—u—u 1.00F e, 1.00}F SR
0.98} 0.98}
0.95¢ 3 &
o
0.90} : b
0.920 0.94
0.85/ 0.90; 0.92
0.88} 0.90}
" 2 5 10 fula 1 2 5 10 fula 1 2 5 10 fula
8 A1-LWPr: M=4, R=4, g=2 (d) 8 A1-LWPriM=4,R=4, q=4 () 8 A1-LWPr: M=4, R=4, q=8 )
1.00f g 0es-0-0—5—=n 1.00} 2 woss-u—5—n 1.00} S
0.95} 0.95; 0.95[
0.90}
0.90} iy 0.901!
0.85} .
0.85]
0.80¢ N 0.85]
1 2 5 10 fy/a 1 2 5 10 fula 1 2 5 10 fula
-1 2 4 o o a1 4 = oo a1 2 4 o o

Figure 8: Comparison of the isotropic plasma model [1] with the anisotropic plasma model (12) with minimum anisotropy
R = M. Graphs in the upper pairand lower pair of rows show the critical beta for isotropic plasma and anisotropic plasma,
respectively.

speaking, we should have verified these conclusions by cal-
culating the sign of @?4However, our numerical code does
not currently provide this.eption.

In the range r,,/a to(the left of the left edge of the dis-
played interval\(i.e., in'the region where the ratio r,/a is
relatively small) all'radial profiles are stable over the entire
interval 0 < 8 <(1. It is easy to see that smooth pressure
profiles'(k,= 1, k = 2) are more stable than steep profiles
(k = 4, k = 00)1The same trend also takes place for small-
Scale ballooning perturbations when using end MHD sta-
bilizers [5].

In' the opposite case r,/a — oo the upper stability zone

becomes extremely thin (or even disappears for smooth ra-
dial profiles), but it is located in the immediate vicinity of
the = 1 boundary, where the paraxial approximation
does not work. At the same time, the lower zone remains
quite wide. This fact is in good agreement with the results
of calculating the small-scale ballooning instability thresh-
old [3-5], as we emphasized in the introductory section I.

Surprise is caused by another fact, namely: the disap-
pearance of the instability zone at r,,/a — oo as the ra-
dial pressure profile is smoothed out. For the sharpest pro-
file k = o0, the instability zone is present on all graphs in
Fig. 9; for the k = 4 profile it is visible in seven out of eleven
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Figure 9: Stability zone for model magnetic fiéld (36), anisotropic plasma pressure model (12) simulating normal NBI, pro-
portional conducting chamber combined with end MHD anchors; q € {2, 4,8}, M € {24, 16, 8,4}, and minimal anisotropy
R = M. The unstable zone is located between the lower curve S (,/a) and the upper curve B, (%, /a) of one color; the
stability zone is shaded for a plasma with a sharp boundary (k = o), for which it has the minimum dimensions; corre-
spondence of the jindex k to the color of curves is shown at the bottom of the figure. Compare with fig. 10.

graphs, for the profile k = 2 onlyin two, and for k = 1 only
in one. We interpret the absence of a,gap between the lower
and upper stability zones for a given ratio x,/a as the stabil-
ity of rigid ballooning perturbations over the entire interval
0 < f < 1. But then the conclusion is inevitable that a suf-
ficiently smooth radial pressure profile can be stable in the
absence of a lateral wall for any value of (5.

For comparison; Fig. 10 shows the results of calcula-
tions for isotropic plasma with the same combinations of
indices q and mirror ratios M as in Fig. 9. As can be seen
from. these two figures, 9 and 10, the dimensions of the
instability zones for the same mirror ratio are relatively
close, but in the case of an anisotropic plasma they are

still smaller, which becomes more noticeable as the mir-
ror ratio decreases. Both in the case of anisotropic and
isotropic plasma models, the dimensions of the instability
zone i < B < Peirz (Which is not shaded) are maximum
for the smoothest magnetic field profile with index q = 2.
They are minimal at g = 8.

On the contrary, as can be seen from the analysis of fig-
ures 5, 6 and 7 in section V, with only wall stabilization im-
plemented without end plates installed, the instability zone
at B < B getsslightly larger as g increases. In case of com-
bined stabilization, for a fixed set of parameters g, M, R the
instability zone is the widest for the steepest radial pressure
profile (k = o) and may be completely absent for smooth
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Figure 10: Stability zone for model magnetic field (36), isotropic plasma pressure, proportional conducting chamber com-

bined with end MHD anchors; g € {2,4,8},/M € {24,16,8,4}. The unstable zone is located between the lower branch

Berin1 (hw/a) and the upper branch g, (%,/@) of the same curve of one color; the stability zone is shaded for a plasma with

sharp boundary (k = o), for which.it has minimum dimensions; correspondence of the index k to the color of curves is
shown at the bottom of the figure. Compare with Fig. 9.

profiles (k = 1, k =(2). Without stabilization by the con-
ducting end plates, the opposite situation takes place: the
stability zone is smaller and may be completely absent for
smooth profiles. Tt meansithat the effect of end plates dom-
inates. Another important effect of end MHD stabilizers
is a much stronger dependence on the mirror ratio M and
the axialiprofile of the magnetic field characterized by the
index q.

A seriesiof graphs in Fig. 11 illustrates the dependence of
the stability/instability zones on the anisotropy parameter
Ruata fixed index g = 2 and a fixed mirror ratio M = 16.
The unshaded zone of instability noticeably decreases with
increasing anisotropy (with decreasing parameter R) and

may even disappear, as in Fig. 11(a,b) for all smooth radial
profiles (k € {1, 2, 4}).

A series of graphs in the final Fig. 12 shows the depen-
dence of f.; on the anisotropy parameter R for different
values of the mirror ratio M and index q characterizing the
width of the magnetic mirrors in the case when the lateral
conducting wall is removed (formally has an infinite radius
r,)- All these graphs confirm the tendency noted above to
expand the lower stability zone with smoothing of the ra-
dial pressure profile up to the occupation of the entire inter-
val 0 < 8 < 1, which is admissible under the condition of
transverse equilibrium of the plasma column in the mirror
trap. Also noteworthy is the fact that the stability zone no-
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Figure 11: Stability zone versus ratio r,,/a for model magnetic field (36), proportional conducting chamber and anisotropic

plasma pressure model (12) simulating normal NBI at combined stabilization by proportional conducting chamber and end

MHD anchors; g = 2, M = 16, various anisotropy R € {1.1,1.2,1.5,2,4;8}. Instability zone is located between S (%,/a)

(lower curve) and B, (h,/a) (upper curve of the same color); stability.zone is shaded for a plasma with a sharp boundary
(k = ), for which it has the minimum-dimensions.

ticeably increases as the mirror ratio decreases. Note that
the absence of graphs for the case M = 2, q € {4,8} in
Fig. 12 means that there is no instability zone even for the
sharpest radial profile k = co.

Summing up everything said in this section, we can state
the following:

« Two stability zones are found for moderate values of pa-
rameter A and a sufficiently large mitror ratio M, The
lower zone 3 < fB i exists even for A =1.

« With other things being equal, the instability zone is the
widest for the steepest pressure profile (k = oo0) and
might not exist at all for Smooth radial profiles (k = 1
or k = 2). Recall that in section V it is for the stepwise
profile that the instability.zone had theiminimum dimen-
sions.

« For a fixed value of the parameter A, the stability zones
expand and can mérge with adecrease in the mirror ratio
M and/or a smoothingof the radial pressure profile (with
a decrease in k).

« Zone of instability decreases and may even disappear as
the plasma anisotropy increases (as the parameter R de-
creases)sThe dimensions of the unstable zone are maxi-
mum/'at the minimum studied degree of anisotropy R =
M, considered for a given mirror ratio M. In this limit,
the dimensions of the unstable zone are close to those
found for anisotropic plasma.

If an instability zone exists between two stability zones
for some combinations of the parameters k, q, M, and

R, then it disappears if Ay > Ay > 1. The value of
A is smaller for lower values of k and M, and is also
smaller for larger q. The largest value A, = 1.52(¥,/a =
2.20140) in our calculations was found atq = 2, M =
R =24,k = .

« With a not too large mirror ratio, and/or a sufficiently
high plasma anisotropy, and/or a sufficiently steep mag-
netic field, and/or a sufficiently smooth pressure profile,
and/or sufficiently close lateral wall, the rigid balloon-
ing mode m = 1 can be stabilized at any feasible value of
beta.

VII. CONCLUSIONS

In the present work, we show the feasibility of stabiliza-
tion of the m = 1rigid flute and ballooning modes in an axi-
ally symmetric mirror trap by a conducting axially symmet-
ric shell that follows the shape of the plasma border. The
stabilizing effect is calculated using an anisotropic plasma
model (12), which simulates normal (steep-angle) injection
of fast neutral beams. Unlike most predecessors, who stud-
ied not quite realistic stepwise radial plasma pressure pro-
file, we considered a series of diffuse pressure profiles (28)
with different degrees of steepness, as well as several ax-
ial profiles of vacuum magnetic field given by the function
(36) with varying mirror ratio and axial gradient near the
mirrors.

Stabilization by a conducting wall without any additional
means of MHD stabilization is achieved at a sufficiently
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high plasma pressure, when the parameter § (the dimen-
sionless ratio of the plasma pressure to the magnetic field
pressure) exceeds a certain critical value 3. Therefore,
our goal was to calculate this critical value and study its
dependence on the degree of plasma anisotropy, the shape
of the radial pressure profile, the axial profile of the mag-
netic field, the mirror ratio, and the size of the vacuum
gap between the plasma and the conducting wall. For cal-
culations, we developed a numerical code written in Wol-
fram Language, which solved Eq. (2), previously derived by
Lynda LoDestro.

Our calculations showed that the stability zone expands
significantly due to a decrease in the critical beta 3 as the
degree of plasma anisotropy increases. The mirror ratio and
axial profile of the magnetic field have relatively smaller ef-
fect on the value of 8,;;. The dependence of S on the ra-
dial profile and the gap width between the plasma column
and the lateral conducting wall are more significant.

From a practical point of view, a noticeable decrease in
the value of 3, is achieved if the radius of the conduct-
ing wall r,, exceeds the plasma radius a by no more than 2
times, 7,/a < 2. The influence of the conducting wall prac-
tically disappears (in the sense that ., — 1) ifr,/a > 4.
For effective wall stabilization, the ratio r,/a must be less
than the indicated limits. On the other hand, too small a
vacuum gap between the plasma and the wall can lead to
direct losses of fast ions as well as gas desorption from the
walls, resulting in degradation of the plasma parameters.
For this reason, plasma stabilization using only the lateral
wall might seem difficult to implement, but the:parameter
range near r,/a = 2 seems quite comfortable from the point
of view of many experimenters.

Even more promising is the stabilization of the rigid bal-
looning mode with a combination of a conducting lateral
wall and conducting end plates, which imitate the attach-
ment of the end MHD anchors to the central cell ofa mirror
trap. In contrast to the pure wall stabilization, mitror ra-
tio and magnetic field profile have strfong effectofthe com-
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bined stabilization.

Our calculations have shown the great efficiency of this
method of stabilization. We found the existence,of two sta-
bility zones. One at low beta due to the balancing of the
lateral wall effect with the curvature drive, and one at high
B due to the proximity of the conducting wall which en-
ables magnetic line bending to balance the curvature drive.
Corresponding to two critical values,of beta, there are two
zones of stability. The first zone exists at low plasma pres-
sure, at 0 < f < B, and the second one exists at high
pressure, at B, < § <laThese two zones merge, making
the entire range of allowable beta,values 0 < § < 1 stable,
as the mirror ratio decreases, as the vacuum gap between
the plasma and thedateral wall decreases, or as the plasma
pressure anisotropy increases.
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Appendix A: Computing a}

Indicating the values.of k as a subscript, we write down the result of calculating the integral in Eq. (3) by Wolfram

Mathematica®:

@ = BBy — /(B2 — 2p,) (B — 2po) + (B2 — B) | In
Po

B + B,

\/BS2_2PO+\/BIZJ_2p0

; (Ala)

Fltan™! 2po B} — B} —E|tan™! 2po B} — B} " By 2po .
BS —2po | | BS —2py BS —2po | | BS —2py B,\| B} —2p, |’

(Alb)

2 2
1.5 2P0 2P ); (Alc)
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B¢ -2
=B, (A1d)
Bs —2p,

Here F(¢|m) and E(¢p|m) are the elliptic integral of the first and the second kinds, respectively., and F,(a; byyb,; ¢ x, y) is

the Appell hypergeometric function of two variables.

Appendix B: Integrals P

Indicating again the values of k as a subscript, we write down the result of calculating the integral in Eq. (8) by Wolfram

Mathematica®:

a? 1
71 (p1h = ~16B.oe {BS:‘),BU — 3B;B} + 8p¢ + (—B? + 4p, + 3B}) \/(Bs2 —2po) (B§*= 2pp)
sPo ~

+ (B +2B2B} - 3B7) | In

\/Bs2—2P0+\/Bg—2P0

B; + B,

(Bla)

2 _p2
V2B ((Bs2 —2po) (B3 +4p0)F(tan_1< 2Po ) ‘ Bj — B; )

B —2po | | BS —2py

+(Bg_zpo)(Bg—z(B,%+2po))E(tan‘1( 2 )‘Bg_BSZ))]

B; —2p, | | BS — 2po

—4(Bs — B,)(By(Bs + By) +2py)}; (Blb)

2
a5 1 1

> (P1), 12B? /Po (B% _ ZPO)

2
a 11155 2p
> (P1)y = {5 (Bs2 - 2Po) (BLZ; + SPO)FI (4_1’ 357 _Bsz

5
+2po (—2B% +3B2 +8py) F, (—; =

4

2
’_zpo >+
=2py Bt —2pg

19 2pg 2po >_

3B — 20) (5% - 2p0) (BB, + 8p0)] / [50B,/(82 = 2p0) (B2~ 2p0) i (B10)

2 —
M —1). (B1d)
Bv - 2p0

Here F(¢|m) and E(¢p|m) are the elliptic integral of the first and the second kinds, respectively., and F;(a; b, by; ¢; x,y) is

the Appell hypergeometric function of two variables.

Appendix C: Minimal A

The existence of a stability zone, even in the § — 1
limit, with a very large gap between the conducting wall
and the plasma, was previously discovered for the case of
an isotropic plasma [1], and then it was surprising. For
Ay = 1.01; the radius of the conducting wall r,, is approx-
imately 14 times larger than the plasma radius a. In the
general case, the minimum A, for which the critical beta
values were found was the smaller, the steeper the radial
pressure profile (the larger the parameter k). It also de-

(

creased as the axial profile of the vacuum magnetic field
was smoothed (with a decrease in the index q) and the mir-
ror ratio M decreased. In the previous [1] article, we did
not set out to accurately calculate A;,, but simply chose
the minimum values of A, from the available list of discrete
values for which we calculated ;.

In the present work, we tried to calculate A,;, more ac-
curately. The difficulty of such calculations is that the co-
efficients of the LoDestro equation are singular at the point
z = 0in the limit § — 1. On the other hand, we showed
above that the LoDestro equation is inapplicable in this
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M=16, B =0999
kg R 12 15 2 3 4 6 8 12 16
2 | 213 262 401 645 118 17.7 303 440 754 113.
1| 4 | 255 361 105 N/F N/F N/F N/F N/F N/F N/F
8 | 274 416 239 N/F N/F N/F N/F N/F N/F ,N/F
2 | 1.069 110 1.17 122 126 127 129 129 1.30 1.30
2] 4 | 115 123 141 159 177 186 194 198 202 2.04
8 | .19 131 1.59 1.92 234 258 283 296 3.08 315
2 | 1.013 1.022 1.038 1.051 1.061 1.065 1.068 1.069 1.070°.1.070
4| 4 | 1030 1.052 1.095 1.13 1.17 1.18 1.19 1.20 1.20m 1.20
8 | 1.044 1076 1.14 121 127 130 1.32 133 4.34 135
2 [1.0033 1.0059 1.011 1.015 1.018 1.019 1.019 1.020 1.020 1.020
co| 4 [1.0073 1.013 1.025 1.034 1.042 1.045 1.048 1.04971.049 1.050
8 | 1.011 1.019 1.037 1.053 1.066 1.071 1.075 1.077 1.079<1:079
M=8, B=0999 M=4, . B=0999
qu 11 12 15 2 3 4 6 8 qu I1n 42 15 2 3 4
2 | 213 261 397 627 108 150 21.6 264 2| 212 | 260 389 584 872 102
1| 4 | 254 358 98 N/F N/F N/F N/F N/F| | 144 {1253/ 352 888 N/F N/F N/F
8 | 272 410 202 N/F N/F N/F N/F N/F 80 270 400 159 N/F N/F N/F
2 | 1.069 1.10 1.17 122 126 127 128 1.29 2 1069 1.10 1.17 121 125 126
2| 4 | 115 123 140 157 173 1.80 1.87 190 | [2» 4 | 1.14 122 138 153 165 170
8 | 1.19 131 157 187 221 239 257 2.64 8 | 1.19 130 153 1.78 202 211
2 | 1.013 1.022 1.038 1.051 1.061 1.064 1.067 1.068 2% 1.013 1.022 1.038 1.050 1.059 1.062
4| 4 1030 1051 1.093 1.13 116 1.17 118 119 || 4| 4 | 1030 1..050 1.090 1.12 1.15 1.16
8 | 1.043 1.074 114 120 125 128 /129 1.30 8 | 1.042 1.072 113 118 123 1.4
2 [1.0033 1.0059 1.011 1.015 1.018 1.019 1.019 1.020 2 [1.0033 1.0059 1.011 1.014 1.017 1.018
| 4 [1.0073 1.013 1.024 1.034 1.041 1.044 1.046 1.047| |co| 4 [1.0072 1.013 1.024 1.032 1.039 1.041
8 | 1.010 1.019 1.036 1.051 1.063 1.067 1.071,1.072 8 | 1.010 1.018 1.034 1.047 1.058 1.061

Table I: Minimal A_;, for there to exist a 8, in the tested range for the magnetic field (36) and anisotropic pressure model
(12).

limit, since the paraxial approximation isviolated at8 — 1.
Nevertheless, we searched for the roots of the dispersion
equation (49) with respect to A, for four sufficiently large
beta values, 5 € {0.999,0.9999, 0.99999, 0:999999}. The val-
ues of A;, calculated in this way are given in tables I for
8 = 0.999.

A cursory analysis of these tables shows that A,;, notice-
ably increases as the parameters g and R increase, that is,
both as the magnetic mirrors steepen and as the anisotropy
decreases. On the contraty, A,,;, decreases with an increase
in the parameter k, thatis, with asteepening of the radial
pressure profile, and this/decrease is especially noticeable
at lower anisotropy. The'same tendency towards a decrease
in Ap;, is observed, as the mirror ratio K decreases.

The smallest value A ;, = 1.0000000000024 was found
in the case §'=0.999999, k = o0, q = 2, K = 16.

Appendix D: Search for the roots of a nonlinear equation

The search for the roots of Egs. (35), (49) and (53) was
initially carried out using the FindRoot utility built into
the Wolfram Mathematica® library. FindRoot searches for

a root near an initial guess S, passed to it. Success or
failure in finding the root with this utility depends very
much on luck in choosing ... Therefore, as an additional
means of searching for roots, the RootSearch package was
included, which was developed by Ted Ersek [43]. This
package contains a utility of the same name that searches
for all roots within a given interval.

In some intermediate version of our numerical code, a
root found by the RootSearch utility was passed as Sy
to the FindRoot utility to recheck the result of calculation
of Bii- In rare cases, when only one of the two utilities
found a solution to Egs. (35), (49) or (53), the code was
analyzed in order to improve it. In particular, the formu-
las that Wolfram Mathematica® obtained when calculating
the integrals a® and (p) were improved. For example, in
the formula (Alc) for a3, the number of Appell hypergeo-
metric functions was reduced from four to one, and in the
formula (B1c) for (p) ,» from six to two. A side result of such
code optimization was the “expulsion” of complex numbers
in the intermediate calculations of the integral (35). Due
to rounding errors for such numbers, it sometimes hap-
pened that the integral (35) took on a complex value with
a small but finite imaginary part. In such cases, FindRoot
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skipped the root of Eq. (35). In cases where both FindRoot
and RootSearch did not find a solution to Eq. (35), it was
considered that the solution did not exist.

Unfortunately, after all this effort, the FindRoot and
RootSearch bundle of utilities kept missing roots of
Eqgs. (35), (49), (53). The problem of losing roots was solved

22

by applying the ideas formulated in the post of user with
the nickname matheorem in the mathematica forum on the
stackexchange.com portal. Using his code sample [44] and
some of the code from Ted Ersek’s RootSearch [43] pack-
age, we wrote a XRS package that replaced the FindRoot and
RootSearch utilities.
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