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Abstract.
Loop integrals and methods of their evaluations are vital for perturbative calculations in

any quantum field theory. As the order of perturbation theory increases the complexity of the
relevant multiloop integrals explodes rapidly. In the present contribution I review methods of
modern multiloop calculations with the emphasis on the method based on the IBP reduction
and differential equations.

1. Introduction
High-precision theoretical description of Standard Model (SM) processes is of crucial importance.
In particular, this precision is a necessary condition for searches of New Physics — new particles
and interactions — which is expected to reveal itself as small deviations from SM predictions.
From the computational point of view, our ability to obtain high-precision results depends
crucially on multiloop calculation techniques. The complexity of the multiloop calculations
grows both qualitatively and quantitatively in an explosive way with increasing the number of
loops and/or scales. Therefore, in this field new methods and approaches are always in demand.
Recently the multiloop calculations have experienced a great progress. This was possible due to
the rise of computers, on one hand, and due to the adaptation of methods from several branches
of mathematics, on the other hand. Nowadays we have a full stack of tools for perturbative
calculations, but still we need more. In the present contribution I will discuss some of the
available tools and methods.

2. IBP reduction
Perturbative calculations in quantum field theory start from the generation of diagrams which
contribute to a specific chosen order. While the number of these diagrams rapidly grows as we
go for higher orders, this step is well automatized [1, 2, 3] and is never a bottleneck in real-life
calculation.

The first stage which may provide substantial difficulty is the IBP reduction [4, 5]. The
standard approach to the IBP reduction is the following. Given an L-loop Feynman diagram
with E + 1 external legs, we consider a family of integrals labeled by n = (n1, . . . , nN )

j(n) =

∫
dµL

N∏
k=1

D−nk
k , dµL =

L∏
k=i

ddli, (1)

where D1, . . . , DM are denominators of the propagators corresponding to the internal lines of the
diagram and DM+1, . . . , DN are so called irreducible numerators, chosen such that any scalar
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product li ·qj , involving loop momentum (li is a loop momentum and qk is either loop or external
momentum), can be uniquely expressed as a linear function of Dk. In particular, N is equal to
the number of such scalar products,

N = L(L+ 1)/2 + L · E . (2)

We assumed here that D1, . . . , DM are linearly independent, i.e., that any nonzero linear
combination of Dk depends on loop momenta. Otherwise, we have to perform first a multivariate
partial fraction decomposition [6, 7, 8].

There are infinitely many integrals in this family, corresponding to different choices of
multiindex n ∈ ZN , however, there are also infinitely many relations between them. These
relations come from the identities∫

dµL
∂

∂li
· qj

N∏
k=1

D−nk
k = 0 . (3)

This identity corresponds to the fact that the integral of a total derivative is zero in dimensional
regularization. Explicitly differentiating under the integral sign and expressing emerging scalar
products via Dk, we obtain the linear combination of integrals of the form (1) with shifted
indices. Introducing operators A1, . . . , AN and B1, . . . , BN acting as

(Akj)(. . . , nk, . . .) = nkj(. . . , nk + 1, . . .), (Bkj)(. . . , nk, . . .) = j(. . . , nk − 1, . . .), (4)

we can represent resulting IBP identities in the following form

[C
(ij)
kl AkBl + C

(ij)
k Ak + C(ij)]j = 0, (5)

where the coefficients C
(ij)
kl , C

(ij)
k , C(ij) depend on the choice of the operator ∂

∂li
· qj in Eq. (3),

in particular, C(ij) = δijd. IBP identities can be used for expressing more complicated integrals
via simpler ones. A nontrivial net result of this reduction is that any integral of a given family
(1) can be expressed as linear combination of the so called master integrals, see Refs. [9, 10].

A standard approach to the IBP reduction is described in Ref. [11]. Schematically, this
approach involves the following steps:

(i) Choose admissible ordering among integrals of the family in Eq. (1).

(ii) Generate IBP identities to some fixed depth.

(iii) Solve these identities using Gauss elimination and collect the resulting reduction rules in a
database.

Obtained reduction rules can then be used for the IBP reduction. With some reservations, this
is the approach implemented in most of the public reduction programs: FIRE [12], Kira [13],
Reduze 2 [14] and some private packages1. Recently this method has been augmented by using
mappings of coefficients in the IBP identities onto finite fields Fp for several values of p and then
using a reconstruction procedure [16, 13].

A few years ago there appeared some ideas of making IBP reduction in parametric
representations. In Ref. [17] it was shown how to derive IBP identities starting from the
representation [10]

j(n) =
j̃(n)

Γ((L+ 1)d/2− |n|)
=

Γ(d/2)

Γ((L+ 1)d/2− |n|)

∫
Rn
+

G−d/2
∏
k

dxkx
nk−1
k

Γ(nk)
, (6)

1 The LiteRed program uses a more complex approach, which resembles a manual search of symbolic reduction
rules, see [15].
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where G = U + F is the sum of two Symanzik polynomials. Namely, it was shown that the
syzygy module of the ideal generated by ∇G,G can be used for constructing IBP identities.
Each syzygy

Q(x) ·∇G+Q(x)G = 0 (7)

gives rise to the IBP identity of the form similar to Eq. (5):[
d

2
Q(A) +Q(A) ·B

]
j̃ = 0 (8)

Note that a similar approach for the Baikov representation [18, 19] was suggested in Ref. [20, 21].
In order to explain the benefit of the IBP identities in the parametric representation (6), we
note that this representation does not require the introduction of irreducible numerators. The
number of parameters is equal to the number of internal lines of the diagram, I. From graph
theory we have the restriction I ⩽ E+1+3(L− 1), where E+1 is the number of external legs.
Therefore, the number of parameters grows linearly with the number of loops, while the number
of scalar products, Eq. (2), grows quadratically. Thus, it is quite meaningful to expect that for
higher loops the IBP reduction using the parametric representation is advantageous compared
to the conventional approach based on momentum representation. We would like to mention
one important practical issue related to finding the syzygy module. This is a routine procedure
in computational commutative algebra which is implemented, in particular, in Singular CAS.
However, the corresponding procedure returns redundant generating set of syzygies module,
which typically includes very cumbersome elements. These elements have no practical value and
should be detected and removed for the sake of efficiency.

Recently, an approach based on the intersection theory has been suggested in Refs. [22, 23].
Within this approach the integral is understood as a pairing between differential M -form and
M -dimensional integration cycle:

⟨ϕ|C] =

∫
C

G−νϕ , ν = d/2 . (9)

In particular, the integral in Eq. (6) corresponds to ϕ ∝ ∧kdxkx
nk−1
k . This bilinear form

can be naturally understood as a pairing between (elements of) twisted de Rham cohomology
and twisted homology groups since the integral depends only on the corresponding equivalence
classes2. The twisted differential is defined as

dν = d− ν d lnG ∧ . (10)

Cho and Matsumoto in Ref. [24] introduced a pairing ⟨ϕ1|ϕ2⟩ between differential forms which
is invariant under shifts

ϕ1 → ϕ1 + dνχ1, ϕ2 → ϕ2 + d−νχ2. (11)

In other words, this is a pairing between twisted de Rham cohomologies with differential dν and
d−ν . Then the idea of Refs. [22, 23] is to use the decomposition

⟨ϕ|C] =

K∑
k=1

ak ⟨ϕk|C] , ak =

K∑
i=1

〈
ϕ|ϕ̃i

〉 (
I−1

)
ik

(12)

2 Strictly speaking, the integration domain Rn
+ in Eq. (6) requires analytical regularization to avoid the surface

terms.
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Here

I =

[〈
ϕi|ϕ̃j

〉
1⩽i,j⩽K

]
(13)

is the so called intersection matrix, {ϕ1, . . . , ϕK} and {ϕ̃1, . . . , ϕ̃K} form the bases of twisted de
Rham cohomologies with differential dν and d−ν , respectively

3. This gives the decomposition
of integral ⟨ϕ|C] =

∫
C G−νϕ in terms of master integrals ⟨ϕk|C]. Note that the coefficients ak

in front of the master integrals are defined via ⟨. . .⟩ pairing. This pairing can be simpler to
calculate than the original integral ⟨ϕ|C], Eq. (9). This is especially true for 1-forms (M = 1)
corresponding to one-fold integrals. In Ref. [22] two recipes for finding ⟨ϕ1|ϕ2⟩ in this case have
been given. One is based on expansion near zeros of polynomial G, another uses expansions near
zeros of ∂G. The first recipe is difficult to generalize to the case of n > 1 integration variables
as in this case the zeros of G form n− 1 dimensional varieties. The second recipe can be easily
generalized to M > 1, however, it works only for logarithmic forms. Recent papers [25, 26] try
to elaborate more effective algorithms of calculating the M -form intersection numbers, however
the efficiency of this approach is under question (which one may conclude, in particular, from
rather simple examples presented in those papers). Therefore, the perspectives of using the
intersection theory for the reduction purpose are still quite unclear.4

The next stage of multiloop calculations is the evaluation of master integrals. In the next
section we describe an approach based on differential equations for the master integrals.

3. Differential equations for master integrals
In order to obtain the differential equations for master integrals, we differentiate them with
respect to external parameter x (mass or kinematic invariant) and reduce the result of
differentiation to master integrals [28, 29]. Then we obtain the differential system of the form

∂

∂x
j = Mj (14)

Here j is a column of master integrals and M = M(ϵ, x) is a matrix with elements being
rational functions of ϵ = 2−d/2 and x. Note that for applications in calculation of the radiative
corrections we need the solution of this system in the form of expansion in ϵ.

There has been a great progress in the automatic solution of such differential systems after
Henn’s paper [30], where it was observed that upon a wise choice of master integrals (canonical
basis) the system acquires a very special form with the matrix in the right-hand side having the
form

M(ϵ, x) = ϵS(x). (15)

In Ref. [31] the algorithm of finding the transformation matrix T was presented, such that
the change of function j = TJ results in the differential system in ϵ-form:

∂

∂x
J = ϵS(x), S(x) =

∑
k

Ak

x− ak
J . (16)

The advantage of the differential system in ϵ-form is that its general solution

U = Pexp

[
ϵ

∫
dxS(x)

]
(17)

3 One can choose to use the same set of differential forms {ϕ1, . . . , ϕK} to label bases in both dν and d−ν de
Rham cohomologies.
4 One might think of following the opposite direction: use conventional multiloop methods to calculate the
intersection matrix and twisted Riemann relations. Namely, the conventional IBP reduction provides a rather
powerful tool to construct the differential systems which in turn can be used for the calculation of the intersection
matrix along the lines of Ref. [27].
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can be readily expanded in ϵ-series in terms of multiple polylogarithms [32].
The algorithm of Ref. [31] consists of three stages:

(i) Reducing to global Fuchsian form. The result of this step is the system (14) with

M =
∑

k
Ak(ϵ)
x−ak

.

(ii) Normalizing the eigenvalues of the matrix residues. The result is the system (14) with

M =
∑

k
Ak(ϵ)
x−ak

such that all eigenvalues of any Ak are proportional to ϵ.

(iii) Factorizing ϵ. The result is the system in ϵ-form (16).

A simplified description of the first step can be found in Ref. [33, Section E.8]. Two first stages of
this algorithm involve sequences of “elementary” transformations, each of them slightly improves
properties of the system.

There are three public codes which implement this algorithm: epsilon [34], Fuchsia [35],
and Libra [36]. These programs have been already used in many physical applications. In
particular, Libra has been used in calculations of 4-loop form factors recently finished [37].
This program has proved to be able to handle huge systems of a few hundreds of differential
equations.

Note that the existence of a rational, or even algebraic, transformation matrix T (ϵ, x) which
reduces the system to ϵ-form is very unexpected. In other words, given a differential system
with some random rational matrix M(ϵ, x), all chances are that it can not be reduced to ϵ-form.
The more remarkable is the fact that so many differential systems which emerge in multiloop
calculations can be reduced to this form.

With some reservations, the reducibility of the system to ϵ-form means that its solution is
expressible via multiple polylogarithms5. However, there are many known examples of integrals
which can not be expressed via polylogarithms. Perhaps, the most famous is the two-loop sunrise
integral which can be expressed via complete elliptic integrals K(x) and E(x). Therefore, it is
important to have a rigorous criterion of (ir)reducibility of the differential system to ϵ-form.
Such a criterion has been elaborated in Ref. [38]. It is based on the following simple proposition
[38, Proposition 1]: when the system is normalized at some point (i.e., all eigenvalues of the
matrix residue at this point are proportional to ϵ), any further transformation which preserves
this property should be given by a transformation matrix which is regular and invertible at this
point.

Then, according to Ref. [38], in order to find the rational transformation to ϵ-form or to
prove that it does not exist, one should use the following refined algorithm

(i) Choose some point, say x0 = ∞.

(ii) Reduce the system to Fuchsian form in all points but maybe x0. If this is not possible, then
the system is not regular. In the context of multiloop calculations this usually signals an
incomplete IBP reduction.

(iii) Normalize eigenvalues of the matrix residues the system to Fuchsian form in all points but
x0. This step can be performed iff after the previous step matrix residues have the form
n+kϵ with integer n. If this is not so, the system can not be reduced to ϵ-form with rational
transformations.

(iv) Now choose another point, say x0 = 0 and perform two previous steps.

(v) Let T∞0 be the transformation matrix obtained at the previous step. According to the
proposition mentioned, this matrix can be singular only at two points, 0 and ∞. Then we

5 If the transformation matrix and final system in ϵ-form requires algebraic extensions, the emerging iterated
integrals are, in general, not expressible via polylogarithms.
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can use Birkhoff-Grothendieck factorization6 [39, 40] to decompose T as

T = L(z)D(z)R(z−1) , (18)

where L(z), L(z)−1 and R(z−1), R(z−1)−1 are polynomial in their arguments and D(z) =
zdiag(n1,...,nm). Then the reduction to ϵ-form is impossible unless D is an identity matrix. If
D = 1, apply transformation R−1 to secure normalization at all points.

(vi) Factorize ϵ. If this step can not be performed, the system can not be reduced to ϵ-form.

If the system is not reducible to ϵ-form, one might ask if there exists some more general
form, yet simple enough for a systematic treatment. From many examples it seems that any
differential system for master integrals can be transformed to the form (14) with

M(ϵ, x) = A(x) + ϵB(x). (19)

Such a form would at least allow to systematically organize the ϵ expansion of non-
polylogarithmic master integrals. A universal algorithm of finding such a form would be a
clear advance. It worth noting that the form (19) is not specific enough as any transformation
independent of ϵ preserves this form only altering A(x). Perhaps, understanding how to fix this
arbitrariness is necessary for the reduction algorithm to appear. In Ref. [41] it was noticed that
in many cases the irreducible diagonal blocks can be reduced to (ϵ+1/2)-form, which corresponds
to A(x) = B(x)/2. However, there are examples where neither ϵ-form nor (ϵ+ 1/2)-form exist.

4. Conclusion
To summarize, the multiloop calculations have experienced a great progress during last ten
years. In this contribution I have presented a short review of existing approaches and some
ideas suggested recently. Two essential ingredients of modern methods are the IBP reduction and
solution of differential equations for master integrals. Both these steps are highly automatized
and are ready for treatment of very complicated families involving hundreds of master integrals.
However, a systematic approach to the calculation of non-polylogarithmic multiloop integrals is
yet to be developed.
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