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We discuss the influence of various contributions of the ΛcΛ̄c potential on the energy dependence of the
cross section eþe− → ΛcΛ̄c near the threshold. New BESIII experimental data on the cross section and
electromagnetic form factors GE and GM are taken into account. Our predictions are in good agreement
with experimental data. We predict a bound state ofΛcΛ̄c at energy ∼38 MeV below the threshold that may
manifest itself in anomalous behavior of light meson production cross sections in a given energy region.
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Introduction. Currently, much attention has been drawn to
the study of processes inwhichhadrons are produced ineþe−
annihilation near the threshold and a strong energy depend-
ence of the cross sections is manifested. For instance, these
processes are eþe− → pp̄ [1–6], eþe− → nn̄ [7–10],
eþe− → BB̄ [11,12], J=ψðψ 0Þ → pp̄π0ðηÞ [13–15],
J=ψðψ 0Þ → pp̄ωðγÞ [15–19], eþe− → ΛΛ̄ [20–22],
eþe− → ΛcΛ̄c [23–25], and eþe− → ϕΛΛ̄ [26]. The energy
dependence of the corresponding cross sections can be
successfully explained by the interaction of produced
hadrons (the final-state interaction) [27–43].
The processes of hadroproduction near the threshold in

eþe− annihilation can be described as follows. First, a
quark-antiquark pair is produced at small distances ∼1=Q,
whereQ is the invariant mass of produced particles. Then at
distances ∼1=ΛQCD a process of hadronization takes place.
A system of produced hadrons can be described by some
wave function ψðrÞ. Since the relative speed of hadrons
near the threshold is small, they interact with each other for
quite a long time. As a result, the wave function ψðrÞ differs
significantly from that in the case of noninteracting
hadrons. In this picture, the amplitude T of hadroproduc-
tion can be represented in the form T ¼ T0 · ψð0Þ, where
T0 is the amplitude of quark-antiquark pair production at
small distances, and ψð0Þ is the wave function of a hadronic
system at distances r0 ≲ 1=ΛQCD. Close to the threshold, a
characteristic size of the wave function is much larger than
r0. The amplitude T0 depends weakly on energy near the

threshold, while the function ψð0Þ has a strong energy
dependence. Thus, final-state interaction of hadrons is
responsible for the strong energy dependence of the cross
section. Note that the specific form of wave functions
depends on quantum numbers of produced particles (spin,
isospin, orbital angular momentum, etc.). However, the
behavior of cross sections near the threshold has some
common features.
First of all, we note that the shapes of cross sections near

the threshold are approximated not by the usual Breit-
Wigner formulas, but the Flatté formulas and their gener-
alizations [44]. These formulas are applicable if there is
either a loosely bound state or a virtual state in a system of
produced hadrons. In the first case there is a bound state
with the energy ε < 0, jεj ≪ jUj, where U is the character-
istic value of potential (energy ε is counted from the
threshold of hadronic pair production). We will call this
case a subthreshold resonance. In the second case there is
no loosely bound state, but a slight increase of the depth of
the potential results in its appearance. In this case we will
talk about an above-threshold resonance. In both cases, the
modulus of the scattering length a in the system of
produced hadrons is much larger than the characteristic
size R of the potential. For a subthreshold resonance, we
have a > 0 and ε ¼ −1=Ma2. In the case of a virtual state
we have a < 0, and the energy of the virtual state by
definition is ε ¼ 1=Ma2 ≪ jUj (here M is the mass of the
produced hadron). A detailed discussion of this picture can
be found in Refs. [38,40].
The Flatté formula is expressed through a small number

of parameters (a scattering length, an effective range of
interaction) [45]. Therefore, to describe the near-threshold
behavior of cross sections we can use any potentials that
reproduce the required values of these parameters. The
most convenient way to describe near-threshold resonances
is using a potential in its simplest form (for example, in the
form of a rectangular potential well), finding the
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corresponding wave functions and fitting the parameters of
the potential to achieve the best agreement with exper-
imental data. Such approach makes it easy to take into
account the Coulomb interaction of produced charged
particles, difference in particle masses in the case of several
channels, and other specific effects. This approach turned
out to be especially convenient for the description of several
coupled channels [40].
In this work we use our approach to describe the cross

section ofΛcΛ̄c pair production in eþe− annihilation near the
threshold. Experimental data for the cross section of this
process were presented in Refs. [23–25]. In the first two
papers the cross section of the process was measured, but the
data on the electromagnetic form factorswerevery limited. In
a recent paper [25] experimental data for the cross section of
the process were obtained with much higher accuracy than
in [23,24]. Note that the data on the cross sections in
Refs. [23,25] differ noticeably from each other. Also in
Ref. [25] the values of electric form factor GE and magnetic
form factorGM ofΛcweremeasured. The latter circumstance
allows one to reduce significantly the uncertainty of various
contributions to the ΛcΛ̄c interaction potential.

Theoretical approach. The approach to the description of
the cross section of process eþe− → ΛcΛ̄c is similar to the
case of pp̄ and nn̄ pair production in eþe− annihilation
near the threshold (see Refs. [30,31] and references
therein). However, the case of ΛcΛ̄c pair production is
simpler than pp̄ and nn̄ production. Firstly, ΛcΛ̄c is
produced only in the isospin state with I ¼ 0, in contrast
to the case of a nucleon-antinucleon pair which can have
isospin I ¼ 0 or I ¼ 1. In addition, for a nucleon-
antinucleon pair it is necessary to take into account the
isotopic invariance violation (the proton and neutron mass
difference and absence of Coulomb interaction for nn̄ pair).
Also, for a nucleon-antinucleon pair it is necessary to take
into account the noticeable imaginary part of the optical
potential, which takes into account the high probability of
pair annihilation into mesons. We have checked that in the
case of ΛcΛ̄c the potential can be considered as a real
quantity.
A pair ΛcΛ̄c produced in eþe− annihilation has quantum

numbers JPC ¼ 1−− and the total spin of the system is
S ¼ 1, while the orbital angular momentum l can be zero or
two due to the tensor forces. Thus, the interaction potential
of Λc and Λ̄c can be written as (ℏ ¼ c ¼ 1)

VðrÞ ¼−
α

r
þVSðrÞδl0þ

�
6

Mr2
þVDðrÞ

�
δl2þVTðrÞS12:

ð1Þ

Here α is the fine-structure constant, VSðrÞ and VDðrÞ are
the contributions to the central potentials in S-wave and
D-wave, respectively, VTðrÞS12 is the tensor potential,

S12 ¼ 6ðS · nÞ2 − 4 is the tensor operator, S is the spin
operator of the ΛcΛ̄c pair, and n ¼ r=r. Note that VDðrÞ
differs from VSðrÞ due to spin-orbit interaction. Separating
the angular and radial variables, we obtain the equations
for the radial part uðrÞ of the wave function corresponding
to the S-wave, and the radial part wðrÞ corresponding to the
D-wave:

�
p2
r

M
þ VðrÞ − E

�
ΨðrÞ ¼ 0; ð2Þ

where M is the mass of the Λc baryon, E is the energy of a
pair, counted from the threshold, and ð−p2

rÞ is the radial
part of the Laplace operator. The wave function ΨðrÞ of the
Schrödinger equation (2) has two components, namely,
ΨðrÞ ¼ ðuðrÞ; wðrÞÞT . In this basis, the potential VðrÞ can
be written in a matrix form

VðrÞ ¼
 

− α
r þ VS −2

ffiffiffi
2

p
VT

−2
ffiffiffi
2

p
VT − α

r þ 6
Mr2 þ VD − 2VT

!
: ð3Þ

The Schrödinger equation (2) has two linearly indepen-
dent solutionsΨ1ðrÞ¼ ðu1ðrÞ;w1ðrÞÞT andΨ2ðrÞ ¼ ðu2ðrÞ;
w2ðrÞÞT , having different asymptotic behavior at large
distances; see [37] for more details. Electromagnetic form
factors of Λc are expressed through these solutions as
follows:

GE ¼ G
�
u1ð0Þ −

ffiffiffi
2

p
u2ð0Þ

�
;

GM ¼ G
�
u1ð0Þ þ

1ffiffiffi
2

p u2ð0Þ
�
: ð4Þ

Here G is the amplitude of theΛcΛ̄c pair production at small
distances. Near the threshold we can consider G to be
independent of energy. However, in order to describe
experimental data in a wider energy region, it is convenient
to represent G in the form G ¼ G0 · FDðQÞ, where G0 is a
constant, and the dipole form factor FDðQÞ reads

FDðQÞ¼ 1�
1−Q2

Q2
0

�
2
; Q¼ 2MþE; Q0 ¼ 1GeV: ð5Þ

It is seen that the ratioGE=GM is independent ofG and equals

GE

GM
¼ u1ð0Þ −

ffiffiffi
2

p
u2ð0Þ

u1ð0Þ þ 1ffiffi
2

p u2ð0Þ
: ð6Þ

Thus, the ratio GE=GM differs from unity only due to the
contribution of the D-wave arising due to tensor forces. At
threshold the contribution of the D-wave is zero so that
GE ¼ GM. The integrated cross section of the ΛcΛ̄c pair
production has the form
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σ ¼ πkα2

2M3
jGj2
�
ju1ð0Þj2 þ ju2ð0Þj2

�
; ð7Þ

and its strong energy dependence is determined by the
functions ju1ð0Þj and ju2ð0Þj.
It has been pointed out in the Introduction that, to

describe near-threshold behavior of the cross section,
one can use different shapes of potentials, and the param-
eters of these potentials can be found by comparing
theoretical predictions with experimental data. In our work
we choose these potentials in the form of rectangular
potential wells

VnðrÞ ¼ UnθðRn − rÞ; n ¼ S;D; T; ð8Þ

where θðxÞ is the Heaviside function, Un and Rn are some
fitting parameters. In addition, for convenience of numeri-
cal calculations the tensor potential is regularized at small
distances by the factor

FðrÞ ¼ ðbrÞ2
1þ ðbrÞ2 ð9Þ

with b ¼ 10 fm−1. In fact, the results are almost indepen-
dent of the specific value of the parameter b.
The parameters of potentials providing the best agree-

ment with experimental data [24,25] for the cross section
and for the electromagnetic form factors GE and GM are
given in Table I. Figure 1(a) shows a comparison of the
energy dependence of the cross section (7) with exper-
imental data [24,25]. The energy dependencies of jGE=GMj
and jGMj are shown in Figs. 1(b) and 1(c), respectively. It is
seen that our prediction for σ, jGE=GMj and jGMj are in
good agreement with experimental data. The corresponding
ratio χ2=Ndf is 1.5, where Ndf is the number of degrees of
freedom. For the parameters specified in Table I, our model
predicts a bound state with energy E0 ¼ −38 MeV. This
bound state may manifest itself in anomalous behavior of
light meson production cross sections in eþe− annihilation
near E0 corresponding to Q ¼ 4545 MeV (cf. [31] and
references therein).

Conclusion. Using the latest BESIII data [24,25] on the
cross section of ΛcΛ̄c pair production in eþe− annihilation
and corresponding electromagnetic form factors GE and
GM, analysis of various contributions to the Λc and Λ̄c

(a)

(b)

(c)

FIG. 1. (a) Cross section of the process eþe− → ΛcΛ̄c in the energy region from the threshold to 400 MeV. (b) Ratio of electric and
magnetic form factors of the Λc baryon. (c) Magnetic form factor. The curves correspond to the predictions of our model. The
experimental data are from Refs. [24,25].

TABLE I. The parameters of the potential of ΛcΛ̄c interaction.

VS VD VT

U (MeV) −1025 −156 −64
RðfmÞ 1.05 1.99 0.78
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interaction potential was carried out. The consideration is
based on an approach using effective potential. Good
agreement was obtained of our predictions with experi-
mental data. Since the ratio jGE=GMj differs significantly
from unity in a wide energy region, an account for tensor
forces (VT) is crucially important, although jVT j ≪ jVSj
(see Table I). Note that an account for the potential VD,
which differs from VS due to the spin-orbit interaction, is

also important. Influence of Coulomb interaction is notice-
able only in a narrow energy region near the threshold of
ΛcΛ̄c production. We predict existence of a narrow
subthreshold resonance in the system ΛcΛ̄c at energy
∼38 MeV below the threshold. This bound state may
manifest itself in anomalous behavior of light meson
production cross sections in a given energy region.
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