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A new dark sector antibaryon, denoted yp, could be produced in decays of B mesons. This Letter presents
a search for Bt — wp + p (and the charge conjugate) decays in e ¢~ annihilations at 10.58 GeV, using data
collected in the BABAR experiment. Data corresponding to an integrated luminosity of 398 fb~! are analyzed.
No evidence for a signal is observed. Branching fraction upper limits in the range from 10~7—107> are

obtained at 90% confidence level for masses of 1.0 < m,,

< 4.3 GeV/c?. The result is also reinterpreted to

provide the first limits on a supersymmetric model with R-parity violation and a light neutralino.
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The existence of dark matter (DM) is established from
astrophysical observations [1-3]. Measurements of the
cosmic microwave background (CMB) by the Planck
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satellite [4] have shown that only ~15% of the matter
content of the universe can be accounted for from standard
model (SM) particles. The remaining fraction is referred to
as DM. Understanding the mass scale and nature of DM is
one of the most pressing issues of modern particle physics.

Another pressing issue is understanding the baryon
asymmetry of the universe (BAU) [5]. A dynamical
mechanism, baryogenesis, is required to produce an initial
excess of baryons over antibaryons consistent with CMB
and big-bang nucleosynthesis (BBN) measurements [6,7].

Published by the American Physical Society
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In Ref. [8] a new dark sector antibaryon [9], yp, is
proposed, which can also explain the BAU. In this model,
baryogenesis occurs due to out-of-thermal-equilibrium
production of b and b quarks in the early universe through
the decay of a massive, long-lived scalar field. The b and b
quarks hadronize into B?, B®, and B* mesons. The B°-B°
mesons then undergo CP-violating oscillations before
decaying into a SM baryon B, yp, and any number of
additional light mesons M. These CP-violating oscillations
can originate from the SM or beyond the standard model
(BSM) processes. The term B mesogenesis is coined to
describe this mechanism. Decays of B mesons into yr, are
mediated by new particles introduced at the TeV scale. In
this scenario, matter-antimatter asymmetries are generated
in the visible and dark sectors with equal magnitudes but
opposite signs, keeping the total baryon number conserved.
Current bounds on the semileptonic charge asymmetry in
the decays of BY and B set a lower bound on the total
branching fraction BF (B — BypM) 2 107 assuming that
the observed baryon-antibaryon-asymmetry is explained
solely by the mesogenesis mechanism of Ref. [10].

We present herein a search for the exclusive decay Bt —
wp + p and its charge conjugate. We utilize the hadronic
recoil B-tagging method as outlined in Ref. [11]. One of the
B mesons from ete™ — BB~ is fully reconstructed from
known hadronic decay modes, and is referred to as the
Byyg [11]. The rest of the event [12], which must include the
proton, is then assigned to the other B meson, denoted as
the Bg,. Previous limits have been provided from a
reinterpretation of a search for decays of b-flavored
hadrons with large missing energy at LEP [10,13]. In
addition, direct searches for the TeV-scale mediator at the
LHC [14,15], and DM stability, require 0.94 <m, <
3.5 GeV/c? [10].

Constraints on exclusive decays (with a single SM
baryon in the final state) are calculated using phase-space
considerations for different baryons [10]. The results
depend on the effective operators O, ; = (wpb)(q;q;)
mediating the decay, where i and j specify the quark
content, g; = u, ¢ and g; = d, s. There are four possible
flavor-combination operators of interest for B meson
decays. The decay presented here probes O,,;. New limits
on B® - yp + A from BABAR are presented in Ref. [16],
which probes the O, operator. Since the presented search
is not sensitive to the Dirac or Majorana nature of the
invisible particle, it is potentially sensitive to other models
predicting B™ — invisible + p. In our conclusion, we also
reinterpret the search for a supersymmetric model with
R-parity violation and a light neutralino [17]. In addition,
since we seek a charged final state, the result could also be
reinterpreted as a search specifically for charged B meso-
genesis, as described in Ref. [18]. Charged B-mesogenesis
scenarios are being actively probed at several collider-based
and neutrino experiments. The result from the present work
can provide a relevant constraint for these studies.

The BABAR detector is described in Refs. [19,20] and
consists of several subsystems arranged in a cylindrical
structure around the eTe™ interaction point. Charged-
particle momenta are measured by a five-layer double-
sided silicon vertex tracker and a 40-layer multiwire drift
chamber, both operating in the 1.5 T magnetic field of a
superconducting solenoid. The particle identification (PID)
for protons, kaons, and pions uses the specific energy loss
measured in the tracking detectors and the measurement of
the Cherenkov angle provided by the internally reflecting,
ring-imaging Cherenkov detector. Photons are detected in
the electromagnetic calorimeter (EMC). Muon identifica-
tion is provided by the instrumented flux return. Protons are
identified using BABAR likelihood-based particle identi-
fication algorithms detailed in Ref. [21]. There is a
negligible difference in the reconstruction efficiencies of
protons and antiprotons.

The data sample used corresponds to an integrated
luminosity of 398.5 fb~! [21] collected at the PEP-II
ete™ storage ring at SLAC. A further 32.5 fb~! is used
to optimize the analysis strategy and is excluded from the
sample used to obtain the final result. At PEP-II, 9 GeV
electrons collide with 3.1 GeV positrons at c.m. energies
near 10.58 GeV [Y(4S) resonance]. The average cross
section for BYB~ pair production of electron-positron
annihilation is o(ete™ — BTB™) ~ 550 pb; thus the data
sample corresponds to ~2 x 10% produced BB~ pairs.

Monte Carlo (MC) generators are used to simulate
background events that emanate from inclusive ete™ —
BB (EVTGEN [22]) or continuum e’ e~ — ¢qg(q = udsc)
processes (JETSET [23,24]). Signal events are generated
using EVTGEN. Samples were made for eight different yp
mass hypotheses: 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, and
4.2 GeV/c?. The propagation of particles through the
detector is simulated using the GEANT4 toolkit [25].

The reconstructed By, must have a c.m. energy (Egmg)
within £0.2 GeV of the beam energy, E;.,., in the c.m.

frame. The energy-substituted mass is defined as
mesc® = \[Ee — Py ¢’ where Py is the three-
ag ag

momentum of By, in the c.m. frame. We require mgg of
the B, to lie within the nominal B* mass range defined by
5.27-5.29 GeV/c>. When multiple By, candidates are
found in one event, the one that has the lowest value of
AE = Ey,,, — Ep_ 1s selected.

On the signal side, the presence of one and only one
charged track is required, and it must be consistent with the
proton hypothesis. To suppress the remaining inclusive
background, we use a single multivariate classifier based on
a boosted decision tree (BDT) algorithm which is trained
on the combined background and signal MC samples. The
BDT includes the following kinematic variables from the
Bye: AE and mgg; information about the hadronic decay
channel and its purity [11]; and the magnitude of the thrust
vector, defined as the sum of the magnitudes of the

201801-2



PHYSICAL REVIEW LETTERS 131, 201801 (2023)

BABAR

5
10 -o-data

~ cC

10% - _
b B uu,dd,ss
S 403 - BB
g ms%E’
[%2]
o 10? — signal
<
wm

-1 -08 -06 04 02 0

Vepr

02 04 06 08 1

FIG. 1. BDT response for data and all backgrounds. The signal
shown is an inclusive signal sample including all eight simulated
signal samples.

momenta of all tracks and calorimeter clusters projected
onto the thrust axis [11]. The following features from the
B, are also included: the total extra neutral energy on the
signal side in the c.m. frame; the cosine of the polar angle
of the missing momentum vector recoiling against the B,y
meson and the signal candidate in the laboratory frame; the
number of neutral particles and the number of z° candidates
on the signal side, where a 7° candidate is two photons with
an invariant mass within 15 MeV/c? of the nominal z°
mass (134.9 MeV/c? [6]). Additional features include the
ratio of the second to zeroth Fox-Wolfram [26] moment for
all tracks and neutral clusters (denoted as R,), and the
cosine of the thrust vector. These features are uncorrelated
(in most cases < 50%) for both signal and background
events. The features that provide the most discriminating
power are mgg, purity and decay information, R, and thrust
vector magnitude. An additional criterion that no neutral
pion candidates should present on the signal side is applied
before the final analysis, at which point no extra neutral
candidates remain.

Figure 1 shows the distribution of the BDT responses
(vgpr)- Events are required to have vgpp > 0.95, which
retains >99% of all the simulated signals and 0.0028% of
the simulated background.

Figure 2 shows the distribution of mgg for inclusive MC
background, signal, and data. The signal events peak
around the nominal B meson mass and background events
are dominated by the continuum events.

Known discrepancies in the simulation [27] of the BB
and of gg events are corrected for, in a two-stage process,
based on an analysis of the distribution of R, (Fig. 3). First,
a correction factor for the gg samples, f,; = 1.05 + 0.03,
is extracted from the R, > 0.7 region. Similarly, a correc-
tion factor, fzz = 0.85£0.07 for the BB samples is
extracted from the R, < 0.7 region, assuming an equal
contribution to the correction from both B°B® and BT B~. In
both cases, the uncertainties are purely statistical. Under the
assumption that f 55 is independent of the B, decay mode,
the signal efficiency is also rescaled by fpp.

Entries per 0.002 GeV/c?

0
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me[GeV/c?]
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—e— data - ¢C
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| B

FIG.2. The energy-substituted mass (mgg) of the By,, candidate
for MC background processes and data. An example signal
distribution is shown with arbitrary normalization (no correction
applied).

—— signal

The signal efficiencies are extracted as the ratios of
selected events to the total generated from the eight simulated
signal samples. The signal efficiency varies from 0.001 45
for m,, = 1.0 GeV/c* to 0.0006 for m, = 4.2 GeV/c%
The largest loss of efficiency comes from use of the standard
BABAR reconstruction algorithm and the requirements of a
proton track, with no accompanying charged particles on the
signal side. The efficiencies extracted from the eight signal
samples are fitted with a smooth seventh-order polynomial,

1 4
0 BABAR
B ut,dd,ss
10°
[aV)
S
o
g
o 10°
o
c
w
10
0O 01 02 03 04 05 06 07 08 09 1
R2
FIG. 3. Simulated distributions of the ratio of the second-to-

zeroth Fox-Wolfram moment for all tracks (denoted as R,).
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FIG. 4. Missing-mass distributions after all selections are
applied for a simulated signal sample with m,, =2 GeV/c?
(solid green line), inclusive SM background (stack histograms)
and data (black dots). In total 46 events remain in the data and 48
remain in the inclusive SM MC sample.

with y?/ndf = 0.98, to allow interpolation at any inter-
mediate mass hypothesis.

The missing mass (71,,), Which in the case of a signal
would be the y mass, is calculated from the four-momenta

of the signal B, and proton:

Muiss® = \[(Ep,, = Ep)* = B, — B3> (1)

sig
where (ﬁgsig , Egsig) and (p;, E}) are the four-momenta of the
signal Bg, and proton, respectively, in the c.m. frame.
Figure 4 shows the missing-mass distribution for the data,
background, and an example signal hypothesis after all
selection criteria have been applied. For each signal mass,
the missing-mass distribution is fitted with a double-sided
Crystal Ball [28,29] function to extract the signal mass
resolution. The resolution is obtained from the fits to the
signal MC and defined as ¢,, = FWHM/2.35; it varies
from ~110 MeV/c? at m,; = 1 GeV/c? to ~11 MeV/c?
at my;s = 4.2 GeV/c?. The resolutions for all mass values
in the search region are interpolated from the fit to the eight
signal samples using an exponential function, the y*/ndf
of the fit was 1.1.

A scan is performed across the missing-mass distribution
with a step size equal to the signal mass resolution (o,,)
interpolated from fits to the signal MC samples. In total 127
mass hypotheses were considered in the range 1.0 <
Mpiss < 4.29 GeV/c?.

The largest systematic uncertainty comes from the data-
MC correction (8.2%) and affects the signal efficiency. The
uncertainty on the correction factor includes several con-
tributions including imperfections in the modeling of
reconstruction and particle identification. In addition, there
are normalization uncertainties in the yield of B™ B~ pairs
which include the uncertainty on the number of Y(4S5)
mesons (0.6% [30]); the uncertainty on the Y'(4S) - B*B~
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o ____ BABAR Experiment
% (this work)
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FIG. 5. Derived 90% CL upper limits on the branching fraction
BT — yp + p and the charge conjugate for the BABAR dataset
corresponding to 398 fb~!. The theory expectations for the three
effective operators are from Ref. [10].

branching fraction (1.2%); and, the uncertainty on the
signal efficiency due to the PID algorithms incorrectly
identifying a proton or antiproton track (1%). The total
uncertainty on the signal efficiency is 8.4%.

In the absence of a signal, 90% confidence level (CL)
upper limits on the branching fractions are derived using a
profile likelihood method [31]. A Poisson counting approach
is followed using only the data. The number of signal and
background events are assumed to follow Poisson distribu-
tions, and the efficiency is assumed Gaussian with a standard
deviation equal to the total systematic uncertainty. For a
given yp, mass hypothesis, the signal region is defined in the
data as the region m,, — 50, < mys < m, + 506, the
sidebands ([+56, +100] and [-100, —56]) on either side of
this window are classified as the background region.

Figure 5 shows the resulting 90% CL upper limit on the
branching fraction. The largest local significance is 3.5¢ at
3.3 GeV/c? which results in a 1o global significance.
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FIG. 6. Derived 90% CL upper limits for the BABAR dataset
corresponding to 398 fb~! on the RPV coupling A}, for the
process B* — 7° + p using the conversion factors presented in
Fig. 2 of Ref. [17].
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Almost all the available parameter space for the (’)i;
operators is constrained with the BABAR dataset.
However, operator O!, remains mostly unconstrained
between 1.9-3.0 GeV/c? and below 1.5 GeV/c>

Our result can be reinterpreted to constrain other models
with missing mass in the final state, including the R-parity
violating (RPV) supersymmetry process BT — ¥, + p,
where 7, is the lightest neutralino. In Fig. 6 the branching
fraction upper limits obtained in the present analysis are
converted to limits on the RPV coupling 17,5 divided by the
relevant squark mass squared as a function of the neutralino
mass. These are unique limits, there are no previous results
for this channel.

To summarize, a search for B™ — yp + p has been
presented. This is the first attempt to directly search for this
channel. No signal is observed, and 90% CL upper limits
from 10771073 are set on the branching fraction. A large
fraction of the B-mesogenesis parameter space is excluded
by this measurement. Our result also constrains the
branching fraction upper limits on the RPV coupling,

!\3» divided by the relevant squark mass squared as a
function of the neutralino mass, at the level 1077—107° for
0.5 < my < 4.29 GeV/cz. In addition, we note that the
limits (outlined in the Supplemental Material [32]) can also
be reinterpreted to provide constraints on other models,
e.g., charged B mesogenesis.
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