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Abstract—We investigate the asymptotic behavior of the charge density ρind(r) induced by an azimuthally
symmetric potential well of finite radius R. The analytic expression for ρind(r) at the distances r  R is
obtained. It is shown that, for a wide range of potential parameters, the induced charge density can be rep-
resented as ρind(r) = F(r) , where F(r) depends only on distance and  depends on the parameters of
the potential. We also investigate the behavior of the induced charge density when the potential well depth
close to the critical value.
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1. INTRODUCTION
It is well known that the external field leads to the

appearance of polarization effects in the material.
For example, in the impurity field, the induced
charge density ρind(r) arises; the external magnetic
field induces the current and can also lead to the
appearance of the Aharonov–Bohm effect. Such
phenomena can be described as vacuum polarization
effects, i.e., the polarization of the ground state of
the system. Vacuum polarization effects arise in var-
ious systems. In the quantum electrodynamics, the
charge density induced by the Coulomb field of the
nucleus is considered [1–4]. The charge density
induced by the field of the Coulomb impurity in
graphene was considered in [5–16]. The induced
charge density in graphene in the case of a localized
potential was studied in detail in [17].

In the present paper, we study the behavior of the
charge density induced by a localized potential in
two-dimensional transition metal dichalcogenides
(TMDs). These materials are the so-called graphene-
like or Dirac materials, since the motion of charged
single-particle excitations of the electron gas are
described by the (2 + 1)-dimensional Dirac equation
[18]. Note that the dimensionless coupling constant
between electrons (analogous to the fine structure
constant) is not small in the TMDs, so some variant of
(2+1)-dimensional quantum electrodynamics with
strong interaction is achieved in the TMDs. In addi-
tion, in experiments it is possible to create various
external fields, including quite strong ones. There-
fore, the study of the effects of vacuum polarization
by external fields in the TMDs also allows one to

study nonperturbative effects similar to the effects of
quantum electrodynamics, for example, the elec-
tronpositron pair creation by a strong field and the
Klein paradox.

In two-dimensional Dirac materials, the charge
density induced by the Coulomb field, as well as non-
perturbative effects, were considered in [19, 20]. We
consider the charge density ρind(r) induced by an axi-
ally symmetric potential well of the depth U and the
characteristic radius R. We calculate the function
ρind(r) analytically at the distances r  R for the vari-
ous values of the band gap and potential depth. To cal-
culate the asymptotics, we use Green’s function
method for the electron in the external field, devel-
oped in [21]. We show that, in the wide range of the
potential parameters, the induced charge density can
be represented as ρind(r) = F(r) , where the coeffi-
cient  depends on the shape of the potential and
does not depend on the distance r, while the function
F(r) does not depend on the potential.

The paper is organized as follows. In Section 2 we
derive the general expression for the induced charge
density. In Section 3 we obtain the equation for
Green’s function. In Section 4 the wave functions
and the behavior of energy levels for bound states of
the electron in the potential well are considered.
In Section 5 we calculate the asymptotics of the
induced charge density. In the Conclusions, we dis-
cuss the results.
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Fig. 1. Analytic properties of Green’s function of  and
integration contour. The cuts and the poles are shown as
thick lines and crosses, respectively.
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2. GENERAL DISCUSSION

The charge density induced by the potential V(r)
can be presented in the following form:

(1)

where e is the electron charge, the coefficient N = 4
reflects the spin degeneracy and valley degeneracy in
TMDs, and Green’s function G(r, r'| ) satisfies the
equation [18]

(2)

Here σ = (σx, σy), σa are the Pauli sigma matrices,
p = –i (∂/∂x, ∂/∂y) is the momentum operator, and Δ
is the half of the band gap,  is the dimensional con-
stant of the rate. The sigma matrices correspond to the
pseudospin degrees of freedom. Since the spin–orbit
interaction constant is small [18], we omit the term
related to it in Eq. (2). We consider the potentials V(r)
that go to zero fast enough at the distances R; i.e.,
V(r) ≈ 0 at r  R. Below we set  =  = 1. The Green’s
function of the electron in the field of the potential
well has cuts and poles corresponding to the states of
the continuous spectrum and bound states of the elec-
tron, respectively. In Fig. 1 we show schematically the
cuts and the poles of Green’s function. The thick lines
and crosses correspond to the cuts and poles, respec-
tively. The cuts are located on the real axis in the inter-
vals (–∞, –Δ] and [Δ, ∞). The poles located in the
interval (–Δ, Δ). The contour of integration over C goes
below the real axis in the left half-plane and above real
axis in the right half-plane; it crosses the real axis
between the left cut of Green’s function and the pole
that corresponds to the bound state with the lowest
energy (see Fig. 1). Such a choice of the integration
contour means that all states with energies  are
occupied. Using the analytical properties of Green’s
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function, we deform the contour of integration over  so
that it coincides with the imaginary axis, perform the
change of variables  → i , and obtain

(3)

where

(4)

ψn(r) is the wave function of the electrons with the
energy  < 0. Therefore, to calculate the induced
charge density, it is necessary to find Green’s function
and the wave functions of the bound states.

To find the asymptotics of the induced charge density
at distances r  R, it is convenient to represent the equa-
tion for Green’s function in the following form [21]:

(5)

where G(0)(r, r'|i ) is the solution of Eq. (2) in the case
V(r) = 0. In Eq. (5), the scales of distances r and R are
separated, because on the right-hand side of the equa-
tion only the function G(0) depends on r, while the
arguments r1 and r2 of the functions G are localized on
the scale R; i.e., r1, 2 ~ R, because the potential V(r) is
nonzero at the distances r ~ R. This separation of
scales allows us to calculate the asymptotics of the
induced charge density [21].

Using Eqs. (4), (5), we represent (r) in the form

(6)

Here, (r) is the linear in the potential V(r) con-
tribution and (r) is the contribution of higher
orders in the potential:

(7)
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G(0)(r, r'|i ) and G(r, r'|i ).
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3. GREEN’S FUNCTION
IN A POTENTIAL WELL

The solution of (2) in the case V(r) = 0 has the form

(9)

where ρ = r – r', κ = , Ka(b) is the Macdonald
function.

For an azimuthally symmetric potential well, it is
convenient to represent Green’s function in the form

(10)

We substitute this representation in Eq. (2), take
into account the following representation for the δ
function

(11)

and obtain:

(12)

Functions  and  can be expressed through
 and  as follows:

(13)

Therefore, to calculate Green’s function, it is nec-
essary to solve two equations (12).

4. ELECTRON WAVE FUNCTION 
IN THE POTENTIAL WELL

To calculate the induced charge density, it is neces-
sary to find the wave function for the electron ψn(r) in
the potential well (see (3)). The equation for the wave
function has the form [18]

(14)

The wave function and the spectrum depend on the
specific shape of the potential. Let us consider in
detail the solutions in the case of a potential well:

(15)

where θ(x) is the Heaviside step function; R and U are
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functions for the potential are known; see e.g., [22].
The substitution of the wave function in the form

(16)

to (14) leads to the solution [22]

(17)

(18)

where σ = 1 for m  0 and σ = –1 for m < 0,  is the

bound state energy, and μn =  is the
Bessel function of the first kind. The bound state

energy  = , Ja(b) is the Bessel function.
Energy  depends on m. Coefficients g and h can be
found from the wave function normalization condi-
tion and from the continuity conditions for the func-
tions un(r) and dn(r) at r = R [22]:

(19)

(20)

The continuity conditions lead to the equation for
the bound state energies :

(21)

One can check that each energy level  smoothly
decreases from Δ to –Δ as U increases from zero to
some critical value of the potential depth Uc, at which
the energy level reaches the value –Δ and disappears
from the discrete spectrum. At this potential depth
value, the processes of electron–hole pair creation
arise [22, 23] (the analogue of the of electron–posi-
tron pair creation in quantum electrodynamics). As an
example, in Fig. 2 we show the dependence of the
energy of the lowest bound state on the potential depth
for RΔ = 1. The value of the critical depth of the poten-
tial Uc is different for different energy levels. The min-

φ
φ

 
ψ =  

 

( )
( )

( )
n im

n i
n

u r
e

id r e
r

| |

| |

( ),
( )

( ), ,
m n

n
m n

J r r R
u r h

gK r r R
μ <=  μ > �

| |

| |

( ),
( )

( ), ,

n
m n

n
n

n
m n

n

J r r R
U

d r h
g K r r R

+σ

+σ

σμ μ <
 + + Δ=  μ μ >
 + Δ

�

�

e

e

≥ en

+ − Δe
2 2( )n U

μ� n Δ − e
2 2

n

en

μ
=

μ�
| |

| |

( )
,

( )
m n

m n

J R
g

K R

+

−

+

+ + Δ Δ μ Δ μ= + Δ + Δ −π 

Δ + − + Δ + ++
μ μ

× μ μ 


�

2 2
2 1

2

2

2

1

1

( ) ( )
2

( 2 ) (2 1)( (1 ))

( ) ( ) .

n m n m n

n n

n n n

n n

m n n n

U J R J Rh
UR

U m
R

J R J R

e

e e

e e e

en

+σ +σμ μσμ + Δ =
μ + + Δ μ μ

�

� �

e

e

| | | |

| | | |

( ) ( )( ) .
( ) ( ) ( )

m n m nn n

n n m n m n

J R RK
U J R K R

en
YSICS  Vol. 136  No. 6  2023



754 TEREKHOV

Fig. 2. Dependence of ratio /Δ on U/Δ for RΔ = 1.
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imum value of Uc corresponds to the disappearance of
the lowest bound state. At the critical value of the
potential depth, the peculiarities of the induced charge
density arise (see, e.g., [17]).

To obtain the induced charge density, it is neces-
sary to calculate the potential depths U0 at which the
energies of the bound states become equal to zero (see
(3)). Also, to study the behavior of the induced charge
near the critical value of the potential depth, it is nec-
essary to calculate the value Uc. The values U0 and Uc
can be found numerically for arbitrary values of Δ
and R. For this, Eq. (21) is solved numerically for

= 0 and  = –Δ, respectively. However, when the
parameters R and Δ satisfy the relations RΔ  1 or
RΔ  1, the values U0 and Uc can be found analytically.
So, we set  in Eq. (21) and find solutions in the lead-
ing and next-to-leading order over smallness parame-
ters. In the case RΔ  1, we have

(22)

For RΔ  1, we obtain

(23)

where gc is the smallest positive solution of the equa-
tion J0(gc) = 0 (gs ≈ 2.4). To find Uc, we set  = –Δ in
(21), for Uc solve the equation, and obtain

(24)

In the case RΔ, the solution has the form
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When RΔ  1, we have

(26)

Note that, in the case of RΔ  1, the values of U0
and Uc coincide in the leading order in RΔ  1; i.e.,

(27)

5. ASYMPTOTIC BEHAVIOR
OF THE INDUCED CHARGE DENSITY

The asymptotic behavior of the induced charge
density depends on the relation between the distance r,
the characteristic width R of the potential well V(r),
and the Compton wavelength of electron in the mate-
rial 1/Δ. We will consider two cases. In the first case,
R  r  Δ–1. The second case corresponds to the rela-
tions r  R and r  Δ–1, but the relation between R and
Δ is arbitrary. In the first case (R  r  Δ–1), when cal-
culating the asymptotics of the induced charge den-
sity, the main contribution to integral over energy 
comes from the region  ~ 1/r. At such energies, the
band gap can be neglected, since rΔ  1. Therefore,
the result for the asymptotics of the induced charge
density rind(r) coincides with the result of [17], where
the induced charge density in graphene was consid-
ered. We consider the second case in detail below.

To calculate (r) at r  R, we substitute Green’s
function (9) to Eq. (7) and obtain
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where ρ = |r – r'|. The main contribution to the inte-
gral over the variable r' comes from the region R. Since
r  R and r  Δ–1, the argument of the Macdonald
function obeys the condition κρ  1. Substituting the
asymptotics of the Macdonald function for large argu-
ments [24],
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in Eq. (28), using the Laplace method, we calculate
the integral over  and obtain
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In this case we integrate over directions of the vec-
tor r' and obtain

(32)

where

(33)

(34)

and Im(x) is the modified Bessel function of the first
kind. One can see that the linear in the potential con-
tribution to the induced charge density decreases
exponentially at large distances.

To calculate the asymptotics of (r), we substi-
tute Green’s functions (9) and (10) in Eq. (8); then we
set r1 = 0 and r2 = 0 in the arguments of the functions
G(0), use the asymptotics of the Macdonald function
(29), integrate over the directions of the vectors r1 and
r2, take into account the condition (31), use relations
(13), and get
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tions of Eqs. (12).
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To obtain these equations, we multiply both sides
of Eqs. (12) by r'V(r')Im(κr') and integrate over r'. The
boundary conditions for functions have the form

(39)

We express (r) through (r, i ) and
(r, i ) and obtain

(40)

Thus, to calculate function (r), it is necessary to
find the functions (r, i ) and (r, i ).

Let us assume that functions (r, i ) and
(r, i ) do not contain singularities at small ; then

the integral over energy can be calculated analytically
using the Laplace method:

(41)

where

(42)

One can see that the dependence of the induced
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(15). The solutions of Eqs. (38) for the potential (15)
have the form

(43)

(44)

where  = . Coefficients  and 
can be found from the continuity conditions for the
functions (r, i ) and (r, i ) at r = R. We do not
demonstrate the explicit form of the coefficients due
to their cumbersomeness.

We substitute (43) and (44) to (40), perform simple
transformations, integrate over r1, and obtain the fol-
lowing expression:
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sum the result for (r) with the function (r) cal-
culated for the potential well (15) (see (32)) and obtain

(52)

Let us consider the dependence of the function (r)
on the depth of the potential well.

For r  1/Δ, the function e–2κr changes sufficiently
at  ~ Δ/ , i.e., at   Δ. Assuming that the
denominator Dm does not have singularities at small ,
we calculate the integral and get

(53)
where

(54)

Thus, the function (r) is the product of the func-
tion depending on r and the coefficient , which
depends on the parameters of the potential and does
not depend on r.

In the case U  Δ, we obtain

(55)

This result is consistent with the contribution 
for the potential (15). The denominator in the expres-
sion (54) equals to zero at potential values U = U0 that
satisfy Eq. (21) at  = 0. Therefore, for U = U0, the
function  has the singularity. In order to calculate
correctly the function (r) (52) for U close to U0, we
extract the dependence of the denominator Dm on  at
small . To do this, we expand the denominator Dm
over , keep the linear in  terms, and obtain the fol-
lowing expression:

(56)

where x0 = R , βm = ,
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Let us investigate the behavior of one of the terms
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eter β0 in the denominator, which becomes small when
U close to U0. Using U and U0, we build the dimen-
sionless parameter λ = r|β0/α0|. If λ  1, then we put

= 0 in the denominator, because the convergence
of the integral is determined by the exponential func-
tion and the integral converges on the scales  ~
Δ/ . In this case, the result for this term coincides
with that obtained earlier. If the parameter λ  1,
then the convergence of the integral is determined by
the denominator, so we can neglect the energy
dependence in the exponential function. Calculating
the integral, we find

(58)

Note that for λ  1, the dependence of the function
(r) on r differs from its behavior for the case λ  1.

However, for a fixed U different from U0, i.e., for a
fixed ratio β0/α0, one can find a sufficiently large r
such that the asymptotics (52) is correct.

Despite the fact that the function (r) has discon-
tinuity at U = U0,

the induced charge density has no such behavior at
U = U0. Because when the pole of Green’s function
appears in the left half-plane, we must add the contri-
bution of this pole to the function (r) (see (3)). Sub-
stituting (17)–(20) in (16) and setting m = 0,  = 0, we
obtain the contribution of the pole at U = U0 + 0:

(59)

Thus, the induced charge density is continuous at
U = U0.

For the values of the potential depth close to Uc,
i.e., when the ground state energy is close to –Δ, the
function (r) decreases as e–2rΔ/r3/2 (see (53)), while
the square of the wave function decreases as

h2g2 , (see (17), (18)). This means that,
at large distances r   1, the main contribution to
the induced charge density gives the wave function
corresponding to the state with energy  = –Δ + δ .
Here, δ   Δ. However, the coefficient h2g2 tends to
zero as the energy level approaches the valence band
(δ  → 0). Therefore, there is the region of the dis-
tances at which | (r)|  |e||ψ0(r)2|. Assuming δ  to be
sufficiently small, we obtain a condition for this
region:

(60)
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At such distances, the induced charge density coin-
cides with the function (r); i.e., ρind(r) = (r). At

, the behavior of the induced charge density is
determined by the behavior of the wave function, so
ρind(r) decreases as exp{–2r }. For U = Uc, the
bound state disappears from the discrete spectrum. It
leads to a steplike change in the induced charge den-
sity when U reaches Uc:

(62)

At U = Uc + 0, the process of electron–hole pair
creation occurs. The electrons are localized on scales
much smaller than r, while holes go to infinity. There-
fore, at U > Uc the total induced charge differs from
zero and equals eN (see [17], [23]).

Let us consider the behavior of the induced charge
density in the case of RΔ  1. For U < Δ, we substitute
the asymptotics of the Macdonald function for small
arguments

(63)

to Eq. (54); use the analytic continuation of the Bessel
function; and get

(64)
where Γ(x) is the Euler gamma function. The main
contribution to  comes from the term with m = 0;
the other terms are suppressed by powers of the
parameter RΔ. The substitution of Eqs. (64), (33) to
(53) gives

(65)

This result coincides with (r) calculated for the
potential (15) in the case of RΔ  1 (see (32)). The
corrections in the parameter U can be found easily. To
calculate the corrections, it is necessary to expand the
Bessel functions in Eq. (54).

In the case of U > Δ, we extract the leading contri-
bution in parameter RΔ and get

(66)

The function  is regular at U = Δ and equals
(64). In the case U  Δ, we have

(67)

One can see that function  has a singularity at
U = gc/R. This value of the potential is obtained in the
leading order in RΔ. As was mentioned earlier, the sin-
gularity occurs at U = U0, but with our accuracy U = Uc
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(see (27)). Because the two values coincided and for
U > Uc the bound state with the minimum energy disap-
pears from the spectrum, the induced charge density
coincides with the function . Thus, for RΔ  1 we get

We emphasize that this expression is not valid for
the value of the potential depth close to Uc. Note also
that the sign of the induced charge density changes
abruptly at U = Uc.

Let us study the behavior of the induced charge
located at large distances in the case RΔ  1:

(68)

To calculate Q>(r) in the leading order in RΔ, we
substitute (r') (see (56)) instead of ρind(r') to (68),
keep the term with m = 0, calculate β0 and α0 in the
leading order in the parameter RΔ, integrate over r',
change the variable  → /Δ, and obtain

(69)

If

then
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If

then
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Thus, the charge outside the circle of radius r
changes abruptly when the critical depth of the poten-
tial is exceeded.

Let us consider the behavior of the induced charge
Q<(r) inside the circle of the radius r. For UR < gc, the
total induced charge Qtot = Q<(r) + Q>(r) = 0 equals
zero; therefore, Q<(r) = –Q>(r). When UR is greater
than the minimum gc, the total induced charge is
Qtot = eNM, where M is the number of critical values gc
less than UR; i.e., the number of levels that disap-
peared from the discrete spectrum. This is due to pro-
cesses similar to those of the electron–positron pair
creation [23]. Therefore, in the case of RΔ  1 and
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when the parameter UR is greater than the minimum
value gc, we get Q<(r) = eNM + Q>(r). Since the
induced charge Q>(r) is exponentially small, we have
Q<(r) ≈ eNM.

Note that the solutions for the induced charge and
the induced charge density are correct when the
potential depth less than gc/R, because for gc we obtain
a many-body problem. For U greater than the mini-
mum critical value, the field creates four electron–
hole pairs. The holes go to infinity, and the electrons
are localized either on R or on the scale of the Comp-
ton wavelength of an electron in the material 1/Δ; see
[23, 25]. Therefore, when calculating the induced
charge for U > Uc, it is also necessary to take into
account the potential induced by the created elec-
trons.

6. CONCLUSIONS
In this paper, we consider the behavior of the charge

density induced by the potential well. We have shown
that, in the wide range of the parameters of the potential
well, the induced charge density can be represented as a
product of the function depending on the distance r and
the function depending on the parameters of the poten-
tial well; i.e., the dependences on distance and the
parameters of the potential are factorized. As the poten-
tial depth approaches the critical value, there is the range
of the distances (60) at which the induced charge density
is represented in the factorized form. When the potential
well depth exceeds the critical value, the induced charge
density changes abruptly by a value proportional to the
square of the wave function that disappeared from the
discrete spectrum state (62). For the potential (15) in the
case of RΔ  1, we found the analytical expression for
the induced charge density (53), (33), (66). Also, we
considered the behavior of the induced charge inside
and outside the circle of large radius.
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