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ELEMENTARY PARTICLES AND FIELDS
Theory

Calculations of Scalaron Decay Probabilities
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Abstract—The particle production through the scalaron decays is considered for several different channels.
The central part of the work is dedicated to a study of the decay probability into two complex minimally
coupled massless scalars. The calculations are performed by two different independent methods. In addition
we calculated the decay probability into real minimally coupled massless scalars, conformally coupled
massive scalars, massive fermions, and gauge bosons. The results are compared with the published papers
which in some cases disagree with each other.

DOI: 10.1134/S1063778823030031

1. INTRODUCTION

The popular now mechanism of the Starobinsky
inflation is based on the introduction of the additional
term quadratic in scalar curvature, R, into the canon-
ical Hilbert–Einstein action [1]:

S(R2) = −M2
Pl

16π

∫
d4x

√
−g

[
R− R2

6M2
R

]
, (1)

where MPl ≈ 1.2× 1019 GeV is the Planck mass and
MR is a constant parameter with dimension of mass.
According to the estimate of [2] the magnitude of
temperature fluctuations of cosmic microwave back-
ground (CMB) demands MR ≈ 3× 1013 GeV.

Nonlinear in curvature terms (as well as the
terms containing Ricci and Riemann tensors) arise
as a result of radiation corrections to the energy–
momentum tensor of matter in curved space–time [3]
(see also [4], section XVI). However such terms
appear naturally with the normalizing mass of the
order of the Planck mass, MPl ∼ 1019 GeV, while
the necessary value of MR in action (1) is about 5–6
orders of magnitude lower.

Due to the nonlinear term in the action curvature,
R becomes a dynamical variable and we can speak
about new gravitational scalar degree of freedom,
scalaron, with mass equal to MR.
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As is argued e.g. in review [5], cosmological evo-
lution in R2-modified theory is naturally divided into
the following four epochs:

1) inflation, when R slowly decreases from some
large value R/M2

R � 102,
2) curvature oscillations, which at MRt � 1 (here

and below time t = 0 corresponds to the onset of
oscillation phase) are described by the expression:

R(t) = −4MR
cos(MRt+ θ)

t
, (2)

leading to efficient particle production through the
scalaron decay and consequently to the universe
heating; the Hubble parameter at this stage behaves
as [6]

H ≡ ȧ

a
=

2

3t
[1 + sin (MRt+ θ)] , (3)

3) transition of the scalaron domination regime
to the dominance of the produced matter of mostly
relativistic particles, and

4) transition to the conventional cosmology gov-
erned by the General Relativity.

In this paper we confine ourselves to the epoch of
the universe heating and calculate the rate of the pro-
duction of different types of particles with the aim to
resolve some discrepancies in the existing literature.
The main attention is paid to the case of scalaron
decays into complex minimally coupled massless
scalars, which has not been previously considered
in the literature. We perform the calculations in two
different independent ways: the usual calculations of
the matrix element of the external field R(t) between
vacuum and a pair of the scalar particle state and
calculating quantum corrections to the scalaron
equation of motion. The latter method is analogous
to those considered in [7–9]. We have also studied
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scalaron decays into real minimally coupled mass-
less scalars, conformally coupled massive scalars,
massive fermions, and massless gauge bosons. In
the latter case the decay is induced by the conformal
anomaly.

The action (1) is presented in the so-called Jordan
frame. We prefer to use it because the equation of
motion of the scalaron field in this frame has the
form of the usual Klein–Gordon equation, see below
Eq. (5). However in several papers as e.g. in [10]
the so-called Einstein frame is used. Both frames are
presumably equivalent, but the equation of motion in
the Einstein frame is considerably more complicated.

In the course of this paper we assume that the
metric is the spatially-flat Friedmann–Lemaître–
Robertson–Walker (FLRW) one with the interval

ds2 = dt2 − a2(t)δijdx
idxj , (4)

where a(t) is the cosmological scale factor and the
Hubble parameter is expressed through a(t) as H =
ȧ/a.

As one can see from Eq. (4) the metric tensor gμν
is taken with the signature convention (+,−,−,−).
The Riemann tensor describing the curvature of
space–time is determined according to Rα

μβν =

∂βΓ
α
μν + . . . , Rμν = Rα

μαν , and R = gμνRμν .
Equation of motion for the curvature scalar which

follows from action (1) has the form:

D2R+M2
RR = −8πM2

R

M2
Pl

T μ
μ , (5)

where D2 = gμνDμDν , Dμ is the covariant derivative
in metric (4) and T μ

μ is the trace of the energy–
momentum tensor of matter, which comes from the
canonical matter action omitted in Eq. (1). The con-
crete forms of the matter action are presented in what
follows. For homogeneous R = R(t):

D2R =
(
∂2
t + 3H∂t

)
R. (6)

The effective action of the scalaron field leading to
equation of motion (5) can be taken as

AR =
M2

Pl

48πM4
R

∫
d4x

√
−g

×
[
(DR)2

2
− M2

RR
2

2
− 8πM2

R

M2
Pl

T μ
μR

]
. (7)

To determine the energy density of the scalaron
field we have to redefine this field in such a way that
the kinetic term of the new field enters the action
with the usual coefficient 1/2. So the canonically
normalized scalar field is [6]:

Φ =
MPl√
48πM2

R

R. (8)

Correspondingly, the energy density of the scalaron
field is equal to

ρR = ρΦ =
Φ̇2 +M2

RΦ
2

2
=

M2
Pl(Ṙ

2 +M2
RR

2)

96πM4
R

. (9)

2. SCALARON DECAYS INTO SCALAR
PARTICLES

We assume that the actions of the non-interacting,
except for coupling to gravity, complex and real scalar
fields with mass m have respectively the forms:

Sc[φc] =

∫
d4x

√
−g(gμν∂μφ

∗
c∂νφc

−m2|φc|2 + ξR|φc|2), (10)

Sr[φr] =
1

2

∫
d4x

√
−g(gμν∂μφr∂νφr

−m2φ2
r + ξRφ2

r). (11)

If the constant ξ is zero, fields φ’s are called minimally
coupled to gravity; for ξ = 1/6 they are called confor-
mally coupled, because in this case the traces of the
energy–momentum tensors of the fields φc,r vanish.

The equation of motion both for real and complex
fields φ’s has the form

D2φ+m2φ− ξRφ = 0, (12)

which in metric (4) transforms to

φ̈− Δφ

a2
+ 3Hφ̇+m2φ− ξRφ = 0, (13)

where Δ is the three-dimensional Laplace operator in
flat 3D-space.

The energy–momentum tensor of φ is defined as
the variation of the action over the metric tensor:

Tμν =
2√−g

δS

δgμν
. (14)

Correspondingly for the complex field

T (c)
μν = (∂μφ

∗
c)(∂νφc) + (∂νφ

∗
c)(∂μφc)

− gμν

(
gαβ∂αφ

∗
c∂βφc −m2|φc|2

)

+ ξ (2Rμν − gμνR) |φc|2

− 2ξ
(
DμDν − gμνD

2
)
|φc|2, (15)

where Dμ is the covariant derivative in metric (4). The
trace of this tensor is

T (c)μ
μ = 2(6ξ − 1)∂μφ

∗
c∂

μφc + 2ξ(6ξ − 1)R|φc|2

+ 4(1 − 3ξ)m2|φc|2. (16)

Note that for ξ = 1/6 and m = 0 the trace vanishes.
For the real field φr the energy–momentum tensor

has the same form with twice smaller coefficients.
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Fields φ’s enter the equation of motion forR (5) via
the trace of their energy–momentum tensors. Taking
quantum average of T μ

μ over background “filled” by
classical scalaron field R, but devoid of φ-particles,
we can obtain equation for R with an account for
particle production. As we see in what follows, in
the particular case of harmonic oscillations of the
scalaron, particle production can be described by the
simple term ΓṘ/2.

2.1. Decay Into a Pair of Minimally Coupled
Massless Scalars

The scalaron decay width into two massless (or
very low mass) scalar bosons was calculated in [1,
9, 11]. Here we follow our paper [9], where another
approach was used based on papers [7, 8], which
allows to derive closed equation for an arbitrary time
evolution of the source field (in our case the scalaron,
R(t)), while the traditional methods are valid only for
the harmonic oscillations of the source.

According to Eq. (10) the action for the complex
massless scalar field with minimal coupling to gravity
has the form:

S(00)
c [φc] =

∫
d4x

√
−ggμν∂μφ

∗
c∂νφc (17)

and leads to the following equation of motion:

φ̈c + 3Hφ̇c −
1

a2
Δφc = 0. (18)

It is convenient to study particle production in
terms of the conformally rescaled field, and the con-
formal time defined according to the equations:

χc = a(t)φc, dη = dt/a(t). (19)

The FLRW metric (4) in conformal time is trans-
formed into

ds2 = a2(η)
(
dη2 − δijdx

idxj
)
. (20)

The last factor in brackets is equal to the flat Min-
kowski metric. Such metrics are called conformally
flat.

The curvature scalar in metrics (4) and (20) is
expressed through the scale factor as

R = −6
(
Ḣ + 2H2

)
= −6a′′/a3, (21)

here and below prime denotes derivative with respect
to conformal time.

The equation of motion for the conformally rescaled
field χc takes the form:

χ′′
c −Δχc +

1

6
a2Rχc = 0, (22)

while action (17) turns into

S(00)
c [χc] =

∫
dηd3x

×
(
χ′∗
c χ

′
c −∇χ∗

c∇χc −
a2R

6
|χc|2

)
, (23)

where ∇ is three-dimensional gradient in flat space.
Equation (5), which describes the scalaron evolu-

tion, can now be written as:

R′′ +
2a′

a
R′ + a2M2

RR

=
16π

a2
M2

R

M2
Pl

[
χ′∗
c χ

′
c −∇χ∗

c∇χc +
a′2

a2
|χc|2

− a′

a
(χ∗

cχ
′
c + χ′∗

c χc)

]
. (24)

Our aim is to derive a closed equation for R taking
the average value of the χ-dependent quantum oper-
ators in the r.h.s. of Eq. (24), in presence of classical
curvature field R(η). The consideration essentially
repeat those of [7], where the equation was derived in
one-loop approximation.

Equation (22) can be transformed into the follow-
ing integro-differential equation convenient for per-
turbative solution:

χc(x) = χ(0)
c (x)

− 1

6

∫
d4yG(x, y)a2(y)R(y)χc(y)

≡ χ(0)
c (x) + δχc(x), (25)

where χ
(0)
c satisfies the free equation χ′′

c −Δχc = 0
and the massless Green’s function is

G(x, y) = G(x− y)

=
1

4π|x − y|δ
(
(x0 − y0)− |x− y|

)

≡ 1

4πΔr
δ(Δη −Δr). (26)

Here Δη = x0 − y0 and Δr = |x− y|. Since Δr =
|x− y| ≥ 0, the condition Δη ≥ 0 is also to be ful-
filled.

The free field χ
(0)
c is quantized in the usual way:

χ(0)
c (x) =

∫
d3k

2Ek(2π)3

[
âke

−ikx + b̂†ke
ikx

]
, (27)

where xμ = (η,x), kμ = (Ek,k), E2
k − k2 = 0, and

âk is the annihilation operator for particles, while b̂†k is
the creation operator for antiparticles. The creation–
annihilation operators satisfy the commutation rela-
tions: [

âk, â
†
k′

]
= 2Ek(2π)

3δ(3)(k− k′), (28)
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and analogously for b̂k. All other commutators van-
ish.

The particle production effects are assumed to
weakly perturb the free solution, so Eq. (25) can be
solved in the first order perturbation approximation as

χc(x) � χ(0)
c (x)

− 1

6

∫
d4yG(x− y)a2(y)R(y)χ(0)

c (y)

≡ χ(0)
c (x) + χ(1)

c (x). (29)

Now we calculate the vacuum expectation values of
the various terms in the r.h.s. of Eq. (24), keeping

only the contribution from the terms linear in χ
(1)
c .

The terms of zero order which are bilinear in χ(0)

and its derivatives have nothing to do with particle
production and can only change the parameters of the
theory through the renormalization procedure.

We need to calculate the products of the quantum
operators of the kind:

〈χ(0)
c (x)χ(1)∗

c (x)〉

= −1

6

∫
d3ydy0G(x− y)a2(y0)

×R(y0)〈χ(0)
c (x)χ(0)∗

c (y)〉, (30)

where dy0 ≡ dηy is the time component correspond-
ing to the space coordinate dy.

The vacuum expectation values of the creation/an-
nihilation operators are

〈b̂†k1
b̂k2〉 = 0,

〈âk1 â
†
k2
〉 = 2Ek(2π)

3δ(3)(k1 − k2), (31)

where in the last equation we have used commuta-
tor (28).

Now using expansion (27) we find

〈χ(0)
c (x)χ(1)∗

c (x)〉

= −1

6

∫
d3k

2Ek(2π)3
d3ydy0G(x− y)a2(y0)

×R(y0)e
−iEk(x0−y0)+ik(x−y). (32)

Let us first integrate over angles in d3k =
E2

kdEkd(cos θ)dφ:

〈χ(0)
c (x)χ(1)∗

c (x)〉

= − 1

48π2

∫
d3ydy0dk

eikΔr − e−ikΔr

iΔr

× e−ikΔηG(x− y)a2(y0)R(y0). (33)

For brevity we used the notation k = Ek = |k|.

Next we integrate over d3y = d3Δr using the
delta-function in the expression for the Green func-
tion (26) and obtain:

〈χ(0)
c (x)χ(1)∗

c (x)〉 = i

48π2

×
∫

dy0dk
(
1− e−2ikΔη

)
a2(y0)R(y0). (34)

Therefore,

〈|χc(x)|2〉 � 〈2Re(χ(0)
c χ(1)∗

c (x))〉 = − 1

24π2

×
∫

dy0dkRe
(
ie−2ikΔη

)
a2(y0)R(y0). (35)

The integral over dk can be taken according to the
equation:

∞∫

0

dkeiαk = πδ(α) + iP
(
1

α

)
, (36)

so we arrive finally at

〈|χc(x)|2〉

� − 1

48π2

∫
dy0a

2(y0)R(y0)P
(

1

Δη

)
. (37)

The upper limit of integration is imposed by the con-
dition Δη ≥ 0, see Eq. (26).

The dominant contribution to the particle produc-
tion comes from the first term in the r.h.s. of Eq. (24).
So we have to calculate the expectation value:

〈(χ(0)
c (x))′(χ(1)

c (x))′∗〉

= −1

6

∫
d3ydy0

∂G(x − y)

∂x0
a2(y0)

×R(y0)〈(χ(0)
c (x))′(χ(0)

c (y))′∗〉. (38)

Taking into account that ∂G(x− y)/∂x0 = −∂G(x−
y)/∂y0 and integrating by part over dy0 we get

〈(χ(0)
c (x))′(χ(1)

c (x))′∗〉

= −1

6

∫
d3ydy0G(x− y)a2(y0)

× [R′(y0)〈(χ(0)
c (x))′χ(0)∗

c (y)〉
+R(y0)〈(χ(0)

c (x))′(χ(0)
c (y))′∗〉], (39)

where the derivative of a2(y0) is neglected because it
is slowly varying function of time.

In complete analogy with the calculations made
above we find

〈(χ(0)
c (x))′(χ(1)

c (x))′∗〉

= −1

6

∫
d3k

2Ek(2π)3
d3ydy0G(x− y)a2(y0)
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× e−iEk(x0−y0)+ik(x−y)
(
−iEkR

′ + E2
kR

)
. (40)

Integration over directions of d3k leads as above to

〈(χ(0)
c (x))′(χ(1)

c (x))′∗〉

= − 1

48π2

∫
d3ydy0dk

eikΔr − e−ikΔr

iΔr
e−ikΔη

×G(x− y)a2
(
−iEkR

′ + E2
kR

)
. (41)

After integration over d3y with G(x− y) given by
Eq. (26) we arrive at

〈(χ(0)
c (x))′(χ(1)

c (x))′∗〉

=
i

48π2

∫
dy0dk

(
1− e−2ikΔη

)

× a2(y0)
(
−ikR′ + k2R

)
. (42)

Using equations

2ik exp(−2ikΔη) = ∂y0 exp(−2ikΔη),

4k2 exp(−2ikΔη) = −∂2
y0 exp(−2ikΔη)

and integrating by parts we obtain

〈|χ′
c(x)|2〉

� − 1

192π2

∫
dy0a

2(y0)R
′′(y0)P

(
1

Δη

)
. (43)

In a similar way we get

〈|∇χc(x)|2〉

� 1

192π2

∫
dy0a

2(y0)R
′′(y0)P

(
1

Δη

)
, (44)

〈(χ∗
c(x)χ

′
c(x) + χ′∗

c (x)χc(x))〉

� − 1

48π2

∫
dy0a

2(y0)R
′(y0)P

(
1

Δη

)
. (45)

Inserting these expressions into (24), we obtain a
closed integro-differential equation for R, which we
will transform into ordinary differential equation for
harmonic oscillations of R neglecting the slow power
law decrease of its amplitude at the scale of very fast
oscillations.

By the same reason the scale factor, a(t), varies
very little during many oscillation times, ω−1 = M−1

R .
Thus, we expect that dη/η ∼ dt/t and that the domi-
nant part in the integrals in (29) is given by derivatives
of R, since R′ ∼ ωR+ t−1R � ωR, because ωt � 1.
So the dominant contribution of particle production is
given by expression

〈(|χ′
c(x)|2 − |∇χc(x)|2)〉

� − 1

96π2

η∫

η0

dη1
a2(η1)R

′′(η1)

η − η1
, (46)

and is reduced to

R̈+ 3HṘ +M2
RR

� − 1

6π

M2
R

M2
Pl

1

a4

η∫

η0

dη1
a2(η1)R

′′(η1)

η − η1

� − 1

6π

M2
R

M2
Pl

t∫

t0

dt1
R̈(t1)

t− t1
. (47)

The equation is naturally non-local in time since the
effect of particle production depends upon all the his-
tory of the system evolution.

Rigorous determination of the decay width of the
scalaron is described in [9]. Here we present it in a
simpler and intuitively clear way. We will look for the
solution of Eq. (47) in the form:

R = Ramp cos(ωt+ θ) exp(−Γt/2), (48)

where Ramp is the slowly varying amplitude of R-
oscillations, θ is a constant phase depending upon
initial conditions, and ω and Γ are to be determined
from Eq. (47). The term 3HṘ is not essential in the
calculations presented below and will be neglected.
The exponent is taken equal to Γt/2 so the scalaron
energy density would decrease as exp(−Γt).

Assuming that Γ is small, so the terms of order of
Γ2 are neglected and treating the r.h.s. of Eq. (47) as
perturbation we obtain:[(

−ω2 +M2
R

)
cos(ωt+ θ) + Γω sin(ωt+ θ)

]
e−Γt/2

=
1

6π

ω2M2
R

M2
Pl

e−Γt/2

t−t0∫

0

dτ

τ
[cos(ωt+ θ) cos(ωτ)

+ sin(ωt+ θ) sin(ωτ)]. (49)

The first, logarithmically divergent, term in the in-
tegrand leads to mass renormalization and can be
included into physical MR, while the second term is
finite and can be analytically calculated at large up-
per integration limit ωt according to the well-known
integral

∞∫

0

dτ

τ
sin(ωτ) =

π

2
. (50)

Comparing the l.h.s. and r.h.s. of Eq. (49) we can
conclude that ω = MR and the width of the scalaron
decay into a pair of “charged” (complex) minimally
coupled massless scalars is

Γc(ξ = 0,m = 0) =
M3

R

12M2
Pl

. (51)
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To find the decay width of the scalaron into a pair
of neutral (real) scalars we can apply the following
arguments. The scalaron interacts with the trace of
the energy–momentum tensor of the complex scalar,
φc, see (16), and the neutral one, φ0, so the interaction
term is proportional to

(2∂μφc∂
μφ∗

c + ∂μφ0∂
μφ0)

= (∂μφ1∂
μφ1 + ∂μφ2∂

μφ2 + ∂μφ0∂
μφ0)

= ∂μφ∂
μφ, (52)

where φc = (φ1 + iφ2)/
√
2, φ∗

c = (φ1 − iφ2)/
√
2, and

φ = (φ1, φ2, φ0) is the isotopic vector. Isotopic in-
variance leads to equal number of the produced φ+,
φ−, and φ0 particles, as is well known to be realized in
pion physics. Hence the width of the scalaron decay
into a pair of neutral (real) identical particles should
be evidently twice smaller, than the width of the decay
into the charged ones and so

Γr(ξ = 0,m = 0) =
M3

R

24M2
Pl

. (53)

The latter result agrees with those presented e.g.
in [10, 11]. However, is it twice larger than the width
of the scalaron decay into two real massless scalars
calculated in paper [2], Eq. (76).

2.2. Decay Into a Pair of Minimally Coupled
Massless Scalars, Another Method

Now we calculate the rate of the scalaron decay
into the same channel, as is studied in the previous
subsection, in a different way dealing with the energy
loss of the scalaron into the produced particles. To
this end we will use the equation of motion of the
decay products (22) and calculate the energy density
of particles χ and anti-χ created by the oscillating
gravitational field of the scalaron per unit time, ρ̇χ.
Then we compare it to the energy density of the
canonically normalized scalaron field (8).

In what follows we use for R the solution (2): R =
−4MR cos(MRt+ θ)/t. For this R the energy density
of Φ, as follows from Eq. (9), is equal to

ρΦ =
Φ̇2 +M2

RΦ
2

2
=

M2
Pl(Ṙ

2 +M2
RR

2)

96πM4
R

≈ M2
Pl

6πt2
(for MRt � 1). (54)

Note that this is formally equal to the critical energy
density for matter dominated universe.

Due to the energy conservation ρ̇χ + ρ̇χ̄ = 2ρ̇χ =
−ρ̇Φ. So for the rate of the energy dissipation of the
scalaron we find:

Γ = − ρ̇Φ
ρΦ

=
2ρ̇χ
ρΦ

, (55)

where ρ̇χ is calculated along the standard lines of
particle production theory in external time-dependent
fields, see e.g. [12–14].

According to the Parker theorem [15, 16] mass-
less particles are not created by conformally flat
FLRW metric. This is fulfilled for massless spin-
1/2 fermions, massless gauge boson (up to conformal
anomaly [17]), but is not always true for scalar
bosons, because the latter are conformally invariant
only for ξ = 1/6.

The particle production in conformally flat FLRW
background is convenient to study in terms of con-
formal time as described above in Eqs. (19)–(23). In
what follows we closely follow book [14]. The quan-
tum field operator describing the created particles is
assumed to satisfy the equation:

χ′′ −Δχ+ f(η)χ = 0. (56)

We omit here subindex c at χc for brevity, because
only complex field χ is considered in this section.
Field χ̄ satisfies the Hermitian conjugate equation.
The function f(η) is a classical external field produc-
ing quanta of χ and anti-χ particles.

The amplitude of production of a pair ofχ and anti-
χ bosons with momenta k1 and k2, respectively, is
equal to the matrix element of the interaction term
between vacuum and the corresponding particle–
antiparticle state:

A(k1, k2)

=

∫
dηd3xf(η)〈k1,k2|χ†(η,x)χ(η,x)|0〉. (57)

Recall that we use conformal time dη = dt/a(t) and
conformally transformed field χ = aφ.

The quantum field operators are expanded in terms
of the creation/annihilation operators as given by
Eq. (27). The “bra” state of the produced pair of χ
and χ̄ quanta is defined in terms of these operators as

〈k1,k2| = 〈0|âk1 b̂k2 . (58)

Now keeping in mind that the annihilation operator
acting on the vacuum state to the right annihilates
the state, âk|0〉 = 0, and correspondingly 〈0|â†k = 0,
so applying commutation relation (28) we obtain:

A(k1, k2) =

∫
dηd3xdk̃dk̃′〈0|âk1 b̂k2 â

†
kb̂

†
k′ |0〉

× f(η)eiη(Ek+Ek′ )−ix(k+k′)

= (2π)3δ(3)(k1 + k2)

∫
dηf(η)eiη(Ek1

+Ek2
), (59)

where dk̃ = d3k/(2Ek(2π)
3) and Ek = |k|. Hence

|A(k1, k2)|2 = (2π)3V δ(3)(k1 + k2)
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×
∣∣∣∣
∫

dηf(η)eiη(Ek1
+Ek2

)

∣∣∣∣
2

, (60)

here the following identities are used:∫
d3xe−ikx = (2π)3δ(3)(k)

and δ(3)(k = 0) = V/(2π)3, (61)

where V is the total space volume.
The Fourier transform of the source can be simply

calculated for the case of harmonic oscillations

f(η) = f0 cos(ωη) =
f0
2

(
eiωη + e−iωη

)
, (62)

where f0 is slowly changing compared to cos(ωη)
function of η, so we consider it as a constant. Taking
into account that the energy of the created particles
should be positive, Ek1,2 > 0, we obtain∣∣∣∣

∫
dηf(η)eiη(Ek1

+Ek2
)

∣∣∣∣
2

=
π

2
f2
0 δ(ω − Ek1 − Ek2)Δη, (63)

where we used that δ(0) = Δη/(2π) and Δη is the
time duration of the process, presumably ωΔη � 1.

So the χ-particle production rate per unit volume
and unit conformal time is

dn
(tot)
χ

dη
=

2dnχ

dη
=

2

VΔη

∫
d3k̃1d

3k̃2|A(k1, k2)|2

= π(2π)3f2
0

∫
d3k̃1d

3k̃2δ
(3)(k1 + k2)

× δ(ω − Ek1 − Ek2) =
f2
0

16π
. (64)

Now we have to express f(η) = f0 cos(ωη) through
R(t). Comparing Eq. (22) with (56) and using Eq. (2)
we conclude that

f0 cos(ωη) = −2a2MR

3t
cos(MRt+ θ). (65)

Let us show that we can take f0 = 2a2MR/(3t).
Since Eq. (65) holds only for MRt � 1, oscillation
period Δt = 2π/MR is much less than absolute value
of time, Δt � t. Then since the product pμdxμ is a
scalar with respect to the general coordinate trans-
formation and in our case pμ has only one nonzero
component, namely, pμ = (MR,0), we can conclude
that ωdη = MRdt and ωΔη ≈ MRΔt during oscil-
lation period. Finally, choosing the initial value of
conformal time η = 0 corresponding to the time t at
which cos(MRt+ θ) = −1 we obtain that

f0 =
2a2MR

3t
. (66)

The r.h.s. of Eq. (64) is proportional to a4. The
same is true for its l.h.s. because d/dη = ad/dt and
nχ ∼ χχ′ ∼ a3nφ. So returning to dnφ/dt we find
that it does not depend upon a. Since the energy of
a φ-particle in the physical frame is equal to MR/2,
the time derivative of the energy density ρ̇φ lost to
creation of φ-particle is obtained from ṅφ by multi-
plication by MR/2 and we find

ρ̇φ =
MR

2
ṅφ =

MR

2

f2
0

32πa4
=

M3
R

144πt2
. (67)

The energy density of the scalaron field (54) is
M2

Pl/(6πt
2) and hence the width of the scalaron decay

into a pair of “charged” (complex) minimally coupled
massless φ-particles is

Γc(ξ = 0,m = 0) =
ρ̇
(tot)
φ

ρR
=

2ρ̇φ
ρΦ

=
M3

R

12M2
Pl

. (68)

It agrees with result (51) of the previous section.
As for the width of scalaron decay into a pair

of neutral (real) minimally coupled massless φ-
particles, it is twice smaller than Γc:

Γr(ξ = 0,m = 0) =
Γc

2
=

M3
R

24M2
Pl

. (69)

2.3. Decay Into Conformally Coupled Massive
Scalars

Let us consider now the case of conformally cou-
pled decay products, i.e. Eq. (13) with ξ = 1/6 and
m �= 0, but still m � MR, so the phase space sup-
pression is not essential.

In terms of the conformally rescaled field χ = aφ
and the conformal time η Eq. (13) transforms into

χ′′ −Δχ+

(
1

6
− ξ

)
a2Rχ+m2a2χ = 0. (70)

Here prime means differentiation over η and R =
−6a′′/a3. The temporal evolution of R(t) is given by
Eq. (2).

Therefore, the interaction leading to the particle
production in the case of ξ = 1/6 has the form:

V = m2a2. (71)

Using the solution (3),

H =
ȧ

a
=

2

3t
[1 + sin(MRt+ θ)], (72)

we find for MRt � 1 that

a(t) = a0t
2/3 exp

{
−2 cos(MRt+ θ)

3MRt

}

≈ a0t
2/3, (73)

PHYSICS OF ATOMIC NUCLEI Vol. 86 No. 3 2023



CALCULATIONS OF SCALARON DECAY PROBABILITIES 273

and consequently,

V (t) = m2a2(t)

≈ m2a20t
4/3

{
1− 4 cos(MRt+ θ)

3MRt

}

→ −4m2a2

3MRt
cos(MRt+ θ), (74)

since the term m2a20t
4/3 has nothing to do with parti-

cle production and can be omitted.

Comparing it with the expression for R(t)(2) and
Eq. (64) we can conclude that the energy release
from φ decay into the primeval plasma, if the decay
is induced by m2a2(t) term, is equal to

ρ̇φ =
MR

2
ṅφ =

MR

2

V 2
0

32πa4

=
MR

64πa4

(
4m2a2

3MRt

)2

=
m4

36πMRt2
, (75)

and the width of scalaron decay into a pair of “charged”
(complex) conformally coupled massive scalars is

Γc(ξ = 1/6,m �= 0) =
ρ̇
(tot)
φ

ρR
=

2ρ̇φ
ρΦ

=
m4

18πMRt2
6πt2

M2
Pl

=
m4

3MRM2
Pl

. (76)

The width of scalaron decay into a pair of neutral
(real) conformally coupled massive scalars is twice
smaller:

Γr(ξ = 1/6,m �= 0) =
m4

6MRM2
Pl

. (77)

This result coincides with that of [11].

3. DECAYS INTO FERMIONS

Let us first consider the production of fermions
in the Minkowski space–time by scalar field, φ,
which interacts with fermions, ψ, according to the
Lagrangian

Lφψψ = gφψ̄ψ, (78)

where g is a dimensionless coupling constant. The
field φ is supposed to be harmonically oscillating:

φ(t) = φ0 cos(Ωt). (79)

The production amplitude is equal to the matrix
element of Lφψψ between vacuum and fermion–
antifermion state with momenta p1 and p2:

A(p1, p2) = g

∫
d4xφ(t)〈p1, p2|ψ̄(x)ψ(x)|0〉. (80)

The fermion operator wave functions are decomposed
in terms of creation–annihilation operators as

ψ(x) =

∫
d3p

(2π)3(2Ep)

×
∑
s

(
âspu

s(p)e−ipx + b̂s†p vs(p)eipx
)
, (81)

where âsp and âs†p (b̂sp and b̂s†p ) are annihilation and
creation operators of (anti)fermions with momentum
p and spin s, which obey the anticommutation rela-
tions:

{ârp, âs†q } = {b̂rp, b̂s†q }
= 2Ep(2π)

3δ(3)(p− q)δrs, (82)

where Ep =
√

p2 +m2 ≈ |p| if the mass is small in
comparison with |p|. The summation over spins is
done with the usual relations:∑

us(p)ūs(p) = /p+m

and
∑

vs(p)v̄s(p) = /p−m.

The vacuum state is defined as zero-particle state, i.e.
such that the annihilaiton operator kills it, âsp|0〉 = 0.
The vacuum state is normalized as 〈0|0〉 = 1. The
two-fermion state in Eq. (80) is defined as

〈p1, p2| = 〈0|âsp1
b̂rp2

. (83)

Using the operator expansions (81) and making
proper commutations according to (82) to reduce the
amplitude to vacuum-to-vacuum transition we arrive
at

A(p1, p2) = (2π)3δ(3)(p1 + p2)

× gφ̃(E1 + E2)ū(p1)v(p2), (84)

where

φ̃(ω) =

∫
dtφ(t)eiωt (85)

is the Fourier transform of φ(t).
Next we calculate the amplitude squared taking

into account that the trace |ū(p1)v(p2)|2, which ap-
pears after summation over the spin states of the
produced fermions is

Tr[(/p1 +mψ)(/p2 −mψ)] = 4[(p1p2)−m2
ψ] (86)

and

[(2π)3δ(3)(p1 + p2)]
2 = (2π)3δ(3)(p1 + p2)V, (87)

where V is the total space volume. Hence we obtain
the following expression: the amplitude of the cre-
ation of fermion–antifermion pair summed over the
spin states of the created fermions:

|A(p1, p2)|2 = 4(2π)3δ(3)(p1 + p2)
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× V |gφ̃(E1 +E2)|2
[
(p1p2)−m2

ψ

]
. (88)

The number density of the produced fermions
equals to

nψ =
1

V

∫
d3p1

2E1(2π)3
d3p2

2E2(2π)3
|A(p1, p2)|2

=
|g|2
π2

∫
dEE2

∣∣φ̃(2E)
∣∣2
(
1−

m2
ψ

E2

)3/2

. (89)

Making the Fourier transformation of φ(t), Eq. (79),
we find

φ̃(2E) = πφ0 [δ(2E +Ω) + δ(2E − Ω)]

= πφ0δ(2E − Ω), (90)

since E > 0 and Ω > 0.
The square of this function is equal to∣∣φ̃(2E)

∣∣2 = π2|φ0|2δ(2E − Ω)δ(0)

=
π

2
|φ0|2δ(2E − Ω)Δt, (91)

where δ(0) = Δt/(2π) and Δt is the process dura-
tion. Hence

ṅψ

=
nψ

Δt
=

|gφ0|2
2π

∫
dEE2

(
1−

m2
ψ

E2

)3/2

δ(2E − Ω)

=
|gφ0|2Ω2

16π

(
1−

4m2
ψ

Ω2

)3/2

. (92)

To calculate fermion production by oscillating cur-
vature we need to go to conformal time and con-
formal variables, and to make the substitution (see
Appendix):

gφ = gφ0 cos(Ωt) → mψaosc(η)

=
2mψabg

3MRt
cos

(
MRabgη

)
. (93)

Using Eq. (92) we find the fermion density production
per unit conformal time as:

ñ′
ψ ≈ 1

16π

(
2mψabg

3MRt
MRabg

)2

≈
m2

ψa
4

36πt2
, (94)

where we take into account that Ω = MRabg � mψ,
and in the denominator the usual time t is kept, be-
cause it cancels out in the final expression for Γ.

Now we go to the physical time dt = a dη and to
physical number density nψ = a3ñψ, as it is formally
clear from the definition of conformally transformed
spinors, Eq. (A.2). Correspondingly,

ṅψ =
ñ′
ψ

a4
=

m2
ψ

36πt2
. (95)

The energy density of the produced fermions (or an-
tifermions) per unit time is

ρ̇ψ =
MRṅψ

2
=

m2
ψMR

72πt2
. (96)

So the width of the scalaron decay into a pair of
massive fermions is equal to

Γψ =
ρ̇
(tot)
ψ

ρR
=

2ρ̇ψ
ρΦ

=
m2

ψMR

36πt2

× 6πt2

M2
Pl

=
m2

ψMR

6M2
Pl

. (97)

This result coincides with that of [10] obtained in the
Einstein frame, while ours is derived in the Jordan
frame.

Note, that not only the production of e+e−-pairs
by the scalaron oscillations is of interest. There
might be much more efficient production of heavier
fermions, including, say, t-quarks, as well as the
production of possible heavy sterile neutrinos, νs,
which are, in particular, popular candidates of warm
dark matter particles. The creation of energetic νs
with E ∼ MR/2 ≈ 1013 GeV could make an essential
contribution of ultra-high-energy cosmic ray neu-
trino background.

4. DECAYS INTO GAUGE BOSONS

Under conformal transformation vector gauge
bosons are not transformed, Aμ → Aμ, and their
equations of motion in terms of conformal time are
the same as those in flat Minkowski metric. So in
this approximation gauge bosons cannot be created
by conformally flat gravitational field. This is truth
but not all the truth. Conformal anomaly destroys
this conclusion and allows for gauge boson to be
created [17].

Equation of motion of massless gauge field with
an account of the anomaly, as derived in [17], has the
form:

A′′ −ΔA− ακ

π
ξ′A′ = 0, (98)

where α is the gauge coupling constant squared (for
electromagnetic U(1)-gauge group α ≈ 1/137 at low
energies), ξ = ln a, and

κ =
11

3
N − 2

3
NF , (99)

here N is the rank of the proper gauge group, and NF

is the number of fermion families (κ is usually denoted
as β but here we follow the original paper).
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According to the calculations of [17] the number
density of the produced gauge bosons per unit of
physical time is

ṅg =
α2κ2

32π

(
ä

a
− ȧ2

a2

)2

≈ α2κ2

32π

(
ä

a

)2

, (100)

where we used that |ä/a| � |ȧ2/a2|. Therefore

R = −6

(
ä

a
+

ȧ2

a2

)
≈ −6ä

a
. (101)

The last approximate equality is valid for quickly os-
cillating R given by Eq. (2).

In [17] this equation was applied to particle pro-
duction near singularity in Friedmann cosmology.
Here we shall use it for R2-cosmology. To this end
one needs to substitute the average value of R2(t)
taking 〈cos2(MRt)〉 = 1/2. So

ṅg =
α2κ2

32π

(
R

6

)2

=
α2κ2

32π
× 1

2

(
4MR

6t

)2

=
α2κ2M2

R

144πt2
, (102)

and finally the width of the scalaron decay into two
gauge bosons is equal to

Γg =
ρ̇
(tot)
g

ρR
=

2ρ̇g
ρΦ

=
MRṅg

ρΦ

=
α2κ2M3

R

144πt2
× 6πt2

M2
Pl

=
α2κ2M3

R

24M2
Pl

. (103)

5. CONCLUSION

As it has been shown, see e.g. [5], R2-modified
gravity created strong modifications of the universe
expansion and cooling laws in comparison with the
conventional cosmology governed by the Einstein’s
General Relativity. In particular, continuous en-
ergy influx into the primeval plasma produced by the
scalaron decays into great multitude of the different
final states resulted in huge dilution of the density
of massive stable relics. This phenomenon allows
for revival of dark matter (DM) in the form of very
massive particles with the typical for supersymmetry
interaction strength.

The concrete particle types as bearers of DM
are determined by the dominant decay modes of the
scalaron. The presented above calculations of the
decay widths could help to identify possible types of
DM particles for any particular decay channel of the
scalaron, if the properties of the final states are fixed
by the particle physics model at very high energies.

An interesting feature of the model is a strong
production of massive neutrinos, especially of the

heaviest unstable ones. They can produce the fluxes
of very energetic neutrinos with energies close to the
scalaron mass, which migh be observed at IceCube.
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Appendix

DESCRIPTION OF FERMIONS
IN FLRW SPACE–TIME

Fermions in curved space–time are usually de-
scribed in the tetrad formalism which is particularly
simple for FLRW space–time. It is the conformally
flat metric, which means that after introduction of
conformal time (19) it is transformed into the form
proportional to the flat Minkowski metric (20). Un-
der this transformation Dirac equation for massless
fermions becomes identical to the equation in flat
space–time. So one can conclude that massless
fermions cannot be produced by conformally flat grav-
itational field [15, 16].

In this section we calculate the probability of
massive fermion production in FLRW metric follow-
ing [14, 18]. The action for fermionic field ψ can be
written as

S[ψ] =

∫
d4x

√
−gψ̄ (iΓμ∇μ −mψ)ψ, (A.1)

where
√−g = a3 is the metric determinant, Γμ is a

generalization of the Dirac γμ matrices for curved
space–time. In the FLRW metric they have the form
Γ0 = γ0 and Γi = γi/a (i = 1, 2, 3). They satisfy the
anticommutation relations {Γμ,Γν} = 2gμν , while γμ

are the usual Dirac matrices, obeying the anticom-
mutation relation {γμ, γν} = 2ημν . ∇μ is the covari-
ant derivative for the spin-1/2 field. In the FLRW
metric it is equal to ∇μ = ∂μ + (3/2)(∂μa)/a.

The conformally transformed fermion field is de-
fined as

ψconf = a3/2ψ. (A.2)

In terms of conformal time η and field ψconf the action
takes the form:

S[ψconf] =

∫
d3xdηψ̄conf (iγ

μ∂μ −mψa)ψconf.

(A.3)
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It is the action of a free fermion field in conformal
coordinates with mass meff = mψa(η).

The time dependence of the scale factor can be
found from Eq. (3), see also Eq. (73):

a = a0

(
t

t0

)2/3

exp

⎡
⎣2

3

t∫

t0

dt′

t′
sin

(
MRt

′)
⎤
⎦

≈ a0

(
t

t0

)2/3 [
1− 2

3MRt
cos (MRt)

]
, (A.4)

where we have omitted unessential phase θ and kept
the main oscillating term, which is responsible for
fermion production.

If we neglect the small and decreasing oscillating
term, the scale factor as a function of t evolves as:

abg = a0

(
t

t0

)2/3

. (A.5)

Here the subindex “bg” means background to distin-
guish it from total scale factor (A.4). Therefore,

V = mψa →
2mψabg

3MRt
cos (MRt) . (A.6)
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