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ELEMENTARY PARTICLES AND FIELDS
Experiment

Measurement of the e+e− → nn̄e+e− → nn̄e+e− → nn̄ Cross Section near the Threshold
with a High Energy Resolution
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Abstract—A method for measuring cross sections at e+e− colliders for the case where the center-of-mass
frame of colliding particles moves in the laboratory frame is proposed. Within this method, the energy
dependence of the cross section is extracted from the angular distribution of interaction products. The
method applied to the e+e− → nn̄ process is found to be sensitive. This method provides the possibility of
studying the fine structure of the cross section near the threshold at scales much less than the energy spread
of the beams used. Similar measurements may be implemented in experiments at the Super Charm-Tau
Factory.
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1. INTRODUCTION

The direct-counting method is the main tool
for measuring cross sections at electron–positron
colliders. The integrated luminosity reached in an
experiment is measured by employing processes
characterized by large cross sections and described
by quantum electrodynamics, such as e+e− → e+e−

and e+e− → γγ. The cross section for the process
being studied is determined using the number of
detected events minus the background and the in-
tegrated luminosity at each point in energy. In this
traditional approach, the resolution with respect to
structures that are narrow or change rapidly with
energy is determined by the beam-energy spread.
The existing e+e− colliders have a high degree of

monochromaticity—
δEb

Eb
∼ 10−3, where Eb is the

beam energy. If the cross section σ as a function
of the invariant mass W of product particles (W �
2Eb) changes rapidly with respect to the invariant-

mass spread δW
(
δW �

√
2δEb

)
—that is,

dσ

σdW
�

1

δW
—then it is difficult or is impossible to study

the energy dependence of the cross section. The
proposed method makes it possible to overcome these
difficulties.
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If the center-of-mass (c.m.) frame moves in the
laboratory frame, the emission angle of a heavy prod-
uct particle with respect to the direction of motion
of the c.m. frame is related to the momentum and,
hence, to the kinetic energy of this particle in the
c.m. frame. Measurement of the angular distribution
of heavy product particles in the laboratory frame
permits substantially improving the energy resolution
in measuring the energy dependence of the cross
section for the production of a pair of heavy particles.
Within the method considered in the present study,
it is assumed that, for some reasons, the momentum
of a heavy product particle cannot be measured—for
example, in the case of the production of a nn̄ pair or
a pp̄ pair in which the energy of protons is insufficient
for traversing the accelerator vacuum chamber, so
that one can measure only the emission direction by
the antiparticle-annihilation point in the detector.

The motion of the c.m. frame is provided by the
application of the Crab Waist scheme [1]. Within this
approach, the arrangement of the collision point is
changed in such a way that the beams intersect at
a relatively large angle in the horizontal plane. For
example, this angle is equal to 82 mrad in the case
of the Super KEKB factory. If the energies of col-
liding beams are equal to each other, the c.m. frame
moves in the laboratory frame along the bisector of the
collision angle almost orthogonally to the direction
of primary-beam motion.3) The velocity of the c.m.

3)At the present time, two similar Super Charm-Tau Factory
projects are considered in China [2, 3] and Novosibirsk [4].
Either makes it possible to implement the proposed scheme
of measurement of the e+e− → NN̄ cross section at the
threshold.
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frame is equal to the sine of half the collision angle in
units of the speed of light. The inaccuracy in measur-
ing the average energies of the beams and their energy
spread is an important parameter. In order to measure
the cross section at scales much less than δW , the
absolute inaccuracy in measuring these quantities
should be much less than δW . The inverse Compton
scattering method applied at the existing colliders has
an inaccuracy of about 100 keV (at the nn̄ production
threshold) and satisfies this criterion [5].

The experimental data existing at the present time
are indicative of an interesting behavior of the cross
section for the production of a baryon–antibaryon pair
(NN̄ ) near the threshold in e+e− annihilation. It is
likely that, owing to final-state baryon interaction, the
cross section grows fast in the immediate vicinity of
the threshold [6–9]. Possibly, the characteristic scale
at which the cross section changes is substantially
smaller than δW . In order to test theoretical predic-
tions made in [10–13], it is necessary to reduce the
inaccuracy of experimental measurements of the en-
ergy dependence of the cross sections—in particular,
at energy scales substantially smaller than the beam-
energy spread.

The present study is devoted to exploring the res-
olution of the method and the possible limitations on
its accuracy by means of a numerical simulation.

2. DESCRIPTION OF THE METHOD
Let us consider the proposed method by applying

it to the process e+e− → nn̄ at colliding-beam ener-
gies near the threshold for neutron–antineutron pair
production. Near the threshold (even with allowance
for the fact that the c.m. frame moves in the laboratory
frame at a speed much lower than the speed of light),
the probability for neutron detection is much lower
than the probability for the detection of the antineu-
tron, which can be detected with a high efficiency by
its annihilation in the calorimeter. On the basis of
the coordinates of the cluster center in the calorimeter
and the beam-collision point, the antineutron emis-
sion angle can be measured to a rather high degree of
precision. The position of the beam-collision point is
known to a high precision since the beams collide at
a large angle, so that the size of the luminosity region
is substantially reduced.

In the case of a fixed invariant mass W of the
product pair (less than the critical value of W � =
mn

(
2 + v2

)
), the maximum antineutron-emission

angle αmax with respect to the direction of the velocity
of the c.m. frame is bounded and is related to W by
the simple equation (obtained in the nonrelativistic
approximation)

αmax =

√
W − 2mn

mnv2
, (1)

where mn is the neutron mass and v is the velocity
of the c.m. frame. As was indicated above v = sin γ,
where γ is half of the beam-collision angle. Assuming
that the distribution of the antineutron emission angle
in the c.m. frame is known, one can obtain the
distribution of events with respect to the emission
angle in the laboratory frame for angles between 0 and
αmax. The total angular distribution can be obtained
by summing the angular distributions for all energy
intervals with a weight that is equal to the integrated
luminosity multiplied by the cross section for a given
energy interval. The exact expressions for the critical
angle of the distributions at a fixed invariant mass
are presented in the Appendix. Within the proposed
method, the energy dependence of the cross section
is extracted statistically over the whole ensemble of
events, in just the same way as in the direct-counting
method, but, in each individual event, the invariant
mass of the product pair is not determined.

A fast-simulation code was used to study the
process of reconstruction of the e+e− → nn̄ cross
section on the basis of the angular distribution. The
energies and angles of initial particles in beams were
generated with allowance for the following assump-
tions. The energy of beam particles obeys a normal
distribution with a relative spread of δEb/Eb = 10−3.
The angular spread in the beam is 10−3 rad. The
angular distribution of antineutrons in the c.m. frame
corresponds to the S-wave production.4) Half of the
beam-collision angle was chosen to be γ = 0.05. The
production of neutron–antineutron pairs was simu-
lated at ten points in beam energy over the interval of
[939.75; 942.0] MeV with a step of 0.25 MeV. The en-
ergy of 940.74 MeV corresponds to the threshold for
nn̄ pair production. The energy dependence of cross
section for the production of a neutron–antineutron
pair was described either by a Heaviside Θ function
having a step at the production threshold (the cross
section value is 1 nb) or by a monotonically growing
cross section with an additional contribution or one
or two hypothetical resonances at the threshold. The
resonance widths were assumed to be 100 keV.

In order to obtain the cross section, simulated
events are broken down into statistically independent
sets. One group of the data is used to determine the
shape of the angular distributions as a function of the
invariant mass W . After that, the resulting angular
distributions are used to describe the distributions of
the other part of the data, which plays the role of “ex-
perimental” data. The cross sections are measured

4)This seems quite justified since the method is applicable in
a narrow energy range above the production threshold. A
substantial contribution of the D wave will manifest itself in
the φ asymmetry with respect to the direction of motion of
the c.m. frame in the laboratory frame.
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several times for independent sets of “experimental”
data. The accuracy of these measurements is deter-
mined from the root-mean-square deviation of their
results.

The invariant-mass distribution of events,
dN

dW
, is

determined by minimizing the distributions
d2N

dnydnz

and
d2N

d cosαdEb
. Here, ni are the projections of the

direction of antineutron motion (vector
p

|p| , where

p is the antineutron 3-momentum vector) onto the
respective axes (the c.m. frame moves along the x
axis) and α is the angle between the velocities of
the neutron and c.m. frame. The approximating
function depends linearly on the sought parameters of
dN

dW
. The cross section is determined by the formula

σ (W ) =
dN

dW
/
dL
dW

(here, L is the integrated lumi-

nosity). The luminosity distribution as a function of

the invariant mass
dL
dW

is assumed to be known. In

experiments, it is calculated on the basis of the beam
energies and energy spread.

3. INVARIANT-MASS RESOLUTION

As has already been indicated, there is no direct
functional relation between the antineutron emission
angle and the invariant mass of the nn̄ pair. If we
express the difference W − 2mn in terms of the max-
imum scattering angle α, there arises the relation

W − 2mn = mnv
2 sinα.

This relation was obtained in the approximation
where the deviations of the 4-momentum of the pair
of product nucleons, δPi, from the Pi value calculated
on the basis of the average values of the 4-momenta of
primary particles have only a parallel component δPi||
(see Appendix). The presence of a nonzero orthog-
onal component δPi⊥ leads to errors in measuring
the angle α. At the threshold, α = 0; therefore, an
expansion in the small parameter δα to second-order
terms inclusive should be used in the error-transfer
formula

δW

mn
= υ2

√
4α2 (δα)2 + (δα)4. (2)

It is noteworthy that the term containing the first
derivative leads to a relatively fast deterioration of the
resolution. Indeed, the first- and second-order contri-
butions become commensurate as soon as the critical
angles reach values about the angular resolution.

We will now obtain a numerical estimate of the
invariant-mass resolution on the basis of this formula.
For this, we consider the following basic factors con-
tributing to the invariant-mass resolution:

• Inaccuracy in measuring the antineutron-emission
angle;

• Energy spread of particles in beams;

• Radiative corrections;

• Inaccuracy in measuring beam energies and en-
ergy spread in beams.

The characteristic transverse size of the electro-
magnetic-calorimeter crystal is about 5 cm. The
distance from the collision point (for particles emitted
in the direction of the velocity of the c.m. frame) is
about one meter. Under the assumption that the
antineutron-annihilation point in the electromagnetic
calorimeter can be determined with a precision of
one crystal, the angular resolution is about 1/20 rad.
After the substitution into (2), the relative invariant-
mass resolution turns out to be about 10−5. An-
tineutron scattering in the detector material before
the interaction in the calorimeter may additionally
impair the angular resolution with respect to the
antineutron-emission direction, but, according to es-
timates, this did not make a substantial contribution
in the invariant-mass resolution.

Because of the energy spread, the direction of the
velocity of motion of the c.m. frame and its magnitude
change from one event to another. The characteristic

angular spread is δα =
δEb√
2Ebv

. The substitution into

Eq. (2) accordingly leads to a quadratic dependence of
the invariant-mass resolution on the relative energy
spread at the production threshold:

δW

mn
=

(δEb)
2

2E2
b

∼ 10−6. (3)

In the case of measurement of the cross section for
the production of heavy particles near the threshold,
the effect of radiative corrections is suppressed for
two reasons. First, final-state radiation of slow heavy
particles is weak. Second, the energy of photons
emitted by primary electrons is bounded by the dif-
ference of the e+e− energy and the energy threshold
for the production of heavy particles and is about the
beam-energy spread. Therefore, the effect of radiative
corrections on the inaccuracy of cross section mea-
surements is on the same order of magnitude as the
effect of the energy spread.
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Fig. 1. Relative inaccuracy of cross section measurements as a function of the invariant mass at various values of the integrated
luminosity. The horizontal bars show the bin width. The binning used is specified in Table 1. The beam energy is 940.75 MeV.

4. SYSTEMATIC UNCERTAINTIES
IN CROSS SECTION MEASUREMENTS

The main problem restricting the accuracy in
measuring the production cross section for neutron–
antineutron pairs consists in determining the effi-
ciency of antineutron detection in the detector used.
The currently existing codes for calculating antineu-
tron interaction with matter at low energies give no
way to determine reliably either the antineutron-
annihilation probability or the detector response in
that case. A calibration of the detector by means of
tagged antineutrons in the process e+e− → Λ0Λ̄0 →
pπ− + n̄π0 remains the only reliable means for deter-
mining the detection efficiency.

Moreover, the presumed inaccuracy in measure-
ments of the beam energies and energy spread by the
inverse Compton scattering method is about 100 keV
or 10−4Eb [5], as was indicated above, and has but a
slight effect on the invariant-mass resolution. How-
ever, a simulation revealed that the errors in mea-
suring the energies and especially the energy spread
contribute to the inaccuracy of the cross section mea-
surement. At the inaccuracy of 10% (the respec-
tive absolute inaccuracy is 130 keV) in the energy-
spread measurement, the relative systematic shifts in
the cross section reaches 10%. This effect can be
partly reduced by optimizing the distribution of the
integrated luminosity with respect to the invariant
mass (here, we imply the mean invariant mass cal-
culated with equilibrium parameters of primary parti-
cles). In the case of accumulation at a fixed point in

energy, the distribution function
dL
dW

has a Gaussian

form
Lexp(− (W −W0)

2 /
(
2δ2W

)
)√

2πδW
, where W0 is the

mean value of the invariant mass. Here, we do not
discriminate between the invariant masses of initial,
e+e−, and, final, nn̄, particles, disregarding radia-

tive corrections. If the distribution function
dL
dW0

is

uniform, the resulting distribution
dL
dW

obtained after

the convolution with the Gaussian distribution will
also be uniform. Within this scenario of integrated-
luminosity accumulation, the contribution of the in-
accuracy in measurements of the energies and energy
spread to the error in the cross section is suppressed

since
dL
dW

is independent of the beam energies and

energy spread.

5. RESULTS

On the basis of the results of simulations, it was
found that the sensitivity is rather high, provided that
the invariant mass of the product pair is less than
the critical energy, W < mn(2 + v2) = W �. Other-
wise, the invariant-mass resolution becomes several-
fold lower in a jump-like way. For the implementation
of a high-resolution mode, the number of events in

Table 1. Size of bins in invariant mass for constant cross
section

Bin 1 2 3 4 5 6 7 8 9 10 11

W − 2mn, keV 10 40 90 160 250 360 490 640 810 1170 ∞
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Table 2. Partition of bins in invariant mass for hypothetical resonances

Bin 1 2 3 4 5 6 7 8 9 10

W − 2mn, keV 40 80 120 160 200 240 280 320 360 400

Bin 11 12 13 14 15 16 17 18 19 20

W−2mn, keV 440 480 520 560 600 640 3680 720 760 800

Bin 21 22 23 24 25 26 27 28 29 30

W − 2mn, MeV 0.96 1.12 1.28 1.44 1.60 1.76 1.92 2.08 2.24 2.4

Bin 31 32 33 34 35 36 37 38 39 40

W − 2mn, MeV 3.34 4.28 5.22 6.16 7.10 8.04 8.98 9.92 10.86 11.80

which W > W � should be relatively small. This im-

poses constraints on the parameter R =
W � − 2mn

δW
.

If it is small, the high-resolution mode is inaccessible.
In our simulation, this parameter is 1.7.

Figure 1 shows the relative inaccuracy in cross
section measurement as a function of the invariant
mass at various values of the integrated luminosity
for the case where, in the simulation, the cross sec-
tion was taken in the form of the Heaviside Θ step
function. In the region extending up to 10 keV, the
characteristic resolution is 0.5–0.25% at the inte-
grated luminosity of 31.2 fb−1. The partition into
invariant-mass bins is specified in Table 1. It is of
interest to compare the inaccuracy obtained here for
cross section measurements with the lowest possible
inaccuracy of measurements performed at an “ideal”
collider (that which has monochromatic beams) by
the direct-counting method. At the same integrated
luminosity (partitioned into 11 points in energy), the
inaccuracy of cross section measurements in an ideal
case is about 0.06% at each point. Figures 2 and
3 show the results of the reconstruction of the cross
section in the presence of hypothetical resonances.
Here, the total integrated luminosity is 70 fb−1. It
is distributed uniformly among seven points in en-
ergy from Eb = 940.25 to Eb = 941.75 MeV with a
step of 0.25 MeV. It should be noted that resonance
structures are not observed in the energy dependence
of the cross section obtained by the direct-counting
method.

6. CONCLUSIONS

The proposed approach makes it possible to obtain
a much higher resolution in the nn̄ invariant mass
(and, hence, a much higher accuracy of cross section
measurements) than that in the case of employing the
direct-counting method. This permits studying the
structure of cross sections at scales much less than
the energy spread. This approach can be generalized
to other processes by employing information about

the velocity of the reconstructed particle in the lab-
oratory frame.

The statistical inaccuracy of cross section mea-
surements varies in the range of 0.5–0.25% at in-
variant masses below the critical value W � at an
integrated luminosity of about 30 fb−1 and the cross
section of 1 nb for the process being studied. The
region where the cross section is measurable to a high
precision is determined primarily by the velocity of the
c.m. frame and, hence, by the angle of intersection of
colliding particles.

The contribution of the angular and energy spread
of primary particles in the beam to the inaccuracy
of determining the cross section is negligible against
the contributions of other factors. Among them, it is
necessary to single out the following:

• Inaccuracy in measuring antineutron emission
angle;

• Detection efficiency;
• Scattering of antineutrons before their annihila-

tion in the calorimeter;
• Available integrated luminosity and absolute

cross section value;
• Absolute inaccuracy in measuring average ener-

gies and energy spread in beams;
• Difference of the angular distribution in the c.m.

frame from an isotropic distribution;
• Effects of radiative corrections;
• Background conditions.
In order to take accurately into account these ef-

fects, it is necessary to perform a complete simula-
tion of the detector, processes induced by antineutron
interaction with matter, their reconstruction, and the
production of nn̄ pairs. However, a qualitative analy-
sis of these effects shows that allowance for them does
not change basic conclusions drawn from our present
study.

Both Super Charm-Tau Factory projects men-
tioned above [2–4] envisage the possibility of data
accumulation at the threshold for nn̄ production with
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Fig. 2. Reconstruction of the cross section for one hypothetical resonance near the threshold. A fine structure of the cross
section is reliably identifiable by the proposed method. The partition into bins in invariant mass is specified in Table 2.
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Fig. 3. Reconstruction of the cross section for two hypothetical resonances near the threshold. The apparent cross section
changes only slightly upon going over to two resonances, but measurements for the angular distribution show a substantial
distinction. The partition into bins in invariant mass is specified in Table 2.

the aim of studying this process. The need for reach-
ing a high luminosity at low energies requires com-
plicating the collider design. In the current state,
the luminosity at the threshold for nn̄ production is
about 1034 cm−2s−1. From the above estimates of the
inaccuracy in measuring the cross section, it follows
that, at an integrated luminosity of 3 fb−1 (under
the assumption that the cross section for the process
being studied is 1 nb), the attainable precision in
cross section measurements is 1 to 2%. For the sake
of comparison, we indicate that the precision reached
by the SND Collaboration in [8] is about 10 to 20% at
the resolution scale of about 1 MeV.

Appendix

Let us consider the case of nn̄ production under
the condition that the n̄ emission angle is measurable
in the experiment. The angular distribution of n̄ in the
laboratory frame can be determined from the angular
distribution and velocity in the c.m. frame.

We denote by Pi the initial-state 4-momentum
calculated without allowance for deviations of the
initial-particle 4-momenta from the average values.
If δPi stands for this deviation, it can be decom-
posed into the components parallel and orthogonal to
the initial 4-momentum Pi, δPi = δPi|| + δPi⊥. The
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perturbation δPi can be assumed to be small, while
PiδPi||
W

is the leading term in δW . Neglecting the

change in the velocity of the c.m. frame, we discard

the term
δP 2

i⊥
2W

. This is justified from the point of view

of perturbation theory.
Let us consider the Lorentz transformation from

the c.m. frame to the laboratory frame (we employ
the system of units where the speed of light is equal to
unity). Instead of two axes orthogonal to the direction
of motion of the c.m. frame, we can retain one axis.
We denote by T the nucleon kinetic energy in the
laboratory frame, by W the invariant mass of the
nucleon–antinucleon pair, by mn the nucleon mass,
by v the velocity of the c.m. frame in the laboratory
frame, by α the angle between the direction of nucleon
motion and the x axis in the laboratory frame (along
which the c.m. frame moves), and by ω the scattering
angle in the c.m. frame with respect to the velocity of
the c.m. frame in the laboratory frame. In the non-
relativistic limit, the transformations in question have
the form

⎡

⎢⎢
⎢
⎣

1 + υ2/2 −υ 0

−υ 1 + υ2/2 0

0 0 1

⎤

⎥⎥
⎥
⎦

⎡

⎢⎢
⎢
⎣

mn + T
√
2mnT cosα

√
2mnT sinα

⎤

⎥⎥
⎥
⎦

=

⎡

⎢
⎢⎢
⎣

W/2
√

W 2/4−m2
n cosω

√
W 2/4−m2

n sinω

⎤

⎥
⎥⎥
⎦
.

The upper equation is an equation for W :

W/2 =
(
1 + υ2/2

)
(mn + T ) (A.1)

− υ
√

2mnT cosα.

From Eq. (A.1), we can calculate the nucleon
kinetic energy T in the laboratory frame as a function

of the antineutron emission angle α and the two-
nucleon invariant mass W ; that is,

T − υ cosα
√
2mnT

1 + υ2/2
+mn − W

2 (1 + υ2/2)
= 0.

Solving this quadratic equation with respect to
√
T ,

we obtain
√
T =

υ cosα
√
2mn

2 (1 + υ2/2)
(A.2)

±
√

υ2 cos2 αmn

2 (1 + υ2/2)2
−mn +

W

2 (1 + υ2/2)
.

Requiring that the radicand on the right-hand side
of Eq. (A.2) be zero, we obtain Eq. (1), which relates
the maximum scattering angle to the invariant mass.

Upon employing reasonable input approxima-
tions, we can obtain an equation that makes it

possible to determine the dependence
dN

dW
from

the distribution
dN

d cosα
(we deliberately use

dN

dW
to emphasize the need for going over to the cross

section via
dL
dW

). The conditions underlying these

approximations are the following:
• The angular distribution is not taken into con-

sideration.
• The change in the velocity of the c.m. frame be-

cause of the deviations of features of primary particles
from the average values is disregarded.

• Events in which the invariant mass exceeds W �

are rejected.
• The angular distribution of product particles in

the c.m. frame is isotropic.
• Radiative corrections are neglected.
In this approximation, the angular distribution in

the laboratory frame with respect to the direction of
the velocity of the c.m. frame can be represented in
the form

dρ (cosα, β)

d cosα
(A.3)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ

(
cosα−

√
1− sinh2 β/ sinh2 ψ

)(
sinh2 β − sinh2 ψ sin2 α+ cos2 α cosh2 β tanh2 ψ

)

cosh2 ψ sinhβ
(
1− cos2 α tanh2 ψ

)2√
sinh2 β − sinh2 ψ sin2 α

,

if β � ψ,(√
sinh2 β − sinh2 ψ sin2 α+ cosα cosh β tanhψ

)2

2 cosh2 ψ sinhβ
(
1− cos2 α tanh2 ψ

)2√
sinh2 β − sinh2 ψ sin2 α

, if β > ψ.
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