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Abstract—This article discusses a measurement module of a dispersion interferometer based on a CO2 laser
for integral plasma density measurements with a resolution of 4 × 1011 cm–2 with a time discreteness of 4 μs.
Such characteristics of the device make it possible to use the results of its measurements in feedback loops for
plasma density control. The main elements of the measurement module are crystals of analog-to-digital con-
verters (ADCs) and a digital streaming data processing node based on a field-programmable gate array
(FPGA). The algorithm for calculating the plasma density implemented in the digital node is based on the
harmonic analysis of interferometer signals and is resistant to noise and changes in the modulation depth. The
measurement module under consideration is a prototype of the system of monitoring and automatic control
of plasma density at the Globus-M2 facility (St. Petersburg, Russia).
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INTRODUCTION

Interferometry is a classical method of plasma den-
sity diagnostics in modern thermonuclear facilities.
This method makes it possible to obtain an absolute
value of the electron density integral of plasma along
the observation line, because the phase difference
which it measures depends only on the density, the
characteristic size of the plasma, and the world con-
stants. This property of interferometry is widely used
to calibrate other diagnostics and to understand the
general aspects of plasma behavior, and, most impor-
tantly, it can be used to generate feedback signals in
modern systems for dynamic stabilization of density
and plasma filament position in magnetic traps. At the
same time, the very possibility of hardware implemen-
tation of such plasma density control has become
available largely through the development of micro-
electronics and the appearance on the market of digi-
tal streaming data processing tools, such as field-pro-
grammable gate arrays (FPGAs). The presence of a
FPGA-based digital core in the used monitoring
equipment makes it possible to fully transfer the pro-
cess of calculating the plasma density directly to the
monitoring modules themselves. In this case, the
results will be generated in real time. This fact makes it
possible to use the obtained results in feedback loops
and to create a system for automatic control of plasma
density.

The features of the dispersion interferometer (DI)
based on a CO2 laser with an artificial phase modula-
tion of the probing radiation [1] used in this work are
its compactness and weak sensitivity to vibrations of
optical elements. The DI scheme (Fig. 1) uses wave-
length separation of probing beams owing to partial
conversion of the initial radiation of the first harmonic
into the second one; the measurement principle is
based on the analysis of the phase shift between these
beams in plasma. Owing to the choice of the optimal
wavelength for modern plasma generators (5 and 10 μm),
the operation of this interferometer is almost unaf-
fected by the phenomena of refraction and rotation of
the plane of polarization in the magnetic field.

Similar interferometers are used at the GDL
(Novosibirsk, Russia) [1], W-7X (Greifswald, Ger-
many) [2], and LHD facilities (Toki, Japan) [3], and
one was also previously used at the TEXTOR facility
(Jülich, Germany) [4]. In order to detect signals and
calculate the plasma density, different methods were
used in these interferometers, and special measuring
instruments were created. In particular, a measuring
complex was created at the TEXTOR facility, which
made it possible not only to measure the integral
plasma density in real time but also to control the
plasma density and the vertical position of the plasma
toroid [5, 6]. Despite the successful implementation,
the method of calculating the plasma density
described in [6] was unstable to the noise superim-
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Fig. 1. Schematic diagram of the DI with an electro-optical cell included in it: (1) CO2 laser; (2 and 5) frequency doublers;
(3) electro-optical cell; (4) plasma; (6) filter; and (7) photodetector.
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posed on the signal and changes in the modulation
depth. All this forced one to carry out cumbersome
calibration procedures before calculating each new
value of the plasma density. In recent years, the main
approach to solving the problem of calculating the
plasma density was to work with the interferometer
signal in the frequency domain rather than in the time
domain [7]. This made it possible to significantly
reduce the susceptibility of the results to noise and get
rid of cumbersome calibration procedures.

This article describes the DI measurement module,
which is a prototype of the system for monitoring and
automatic control of plasma density at the Globus-M2
facility (St. Petersburg, Russia) [8]. It is based on the
DI measurement complex for the TEXTOR and GDL
facilities described in [6]. By using fundamentally new
algorithms for calculating the plasma density based on
the harmonic analysis, it became possible not only to
increase the measurement accuracy in the presence of
noise and get rid of the calibration procedures but also
to provide robustness against the changes in the mod-
ulation depth of the interferometer signal.

PHASE EXTRACTION ALGORITHM
In the classical DI scheme, the photodetector sig-

nal has the form [9]

(1)
where I1 and I2 are the intensities of probing and refer-
ence waves, and ∆ϕ is their phase difference propor-
tional to the integral plasma density  and related
to it by the expression

(2)

In this relation, the electron charge e, electron
mass m, speed of light c, and wavelength of probing
radiation λ play the role of scale factors. In order to
increase the sensitivity of the interferometer, an elec-
tro-optical (EO) cell was added to its circuit. Under
the influence of the applied sinusoidal voltage, it arti-
ficially changes the phase shift of the radiation passing
through it. As a result, an oscillating component
appears in the argument of the function describing the
DI output signal:
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(3)

With its amplitude M of π or more radians, the out-
put signal changes from maximum to minimum
regardless of the phase shift ∆ϕ caused by the plasma.

There are several methods for hardware extraction
of the phase shift ∆ϕ. In particular, study [6] used an
algorithm that works with the photodetector and mod-
ulator signals in the amplitude–time domain. Assum-
ing that the intensities of the probing and reference
waves I1 and I2 are fixed by the modulation period, the
constant component was excluded from the photode-
tector signal, and its variable component was normal-
ized to unity. In this case, the current phase shift at the
points where the sine function argument is zero, cor-
responding to the points of maximum interferometer
sensitivity, is directly proportional to the current value
of the modulating signal amplitude:

(4)

Despite the simplicity of implementation, this
method had a number of drawbacks. First of all, there
is a strong dependence of the measurement results on
the noise superimposed on the signal. The main
sources of noise affecting the amplitude of the photo-
detector signal include the following:

– Instability of the laser output power.
– Instability of temperature and orientation of the

nonlinear crystal.
– Instability of the total transmittance of the opti-

cal path taking into account dusting of the mirror sur-
faces facing the plasma and other effects.

– Large-scale transverse beam shifts comparable
with the apertures of the detector and other limiting
optical elements.

Such phenomena can occur owing to refraction at
sharp density gradients (e.g., in the case of plasma dis-
ruptions in a tokamak) or in the case of large ampli-
tude vibrations (also occurring during disruptions).

In addition, the following factors directly affect the
measurement results and lead to a change in the pho-
todetector signal shape:

– Insufficient or excessive modulation depth of the
probing radiation.

1 2 1 22 sin( sin (Ω ) φ).I I I I I M t= + + + Δ

φ sin (Ω ) .M tΔ =
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– Additional phase shift in the EO cell due to tem-
perature instability, acoustic resonances, or other rea-
sons.

– Parasitic feedback between the laser and the
interferometer optical system. Such an effect arises
owing to the reflected radiation from various optical
elements hitting the laser, its amplification in the laser,
and subsequent interference with the main radiation.

– Phase jump during laser realignment to an adja-
cent generation line in the group.

While the problems of signal amplitude f luctua-
tions could have been solved by adding auxiliary cali-
bration procedures to the processing algorithm, it was
impossible to take into account changes in the modu-
lating signal depth in the process of facility operation
in the same way. As a result, all this led to errors in
measurements of the phase shift and, accordingly, the
plasma density. Therefore, when developing a proto-
type of the system of monitoring and automatic con-
trol of plasma density at the Globus-M2 facility, it was
decided to switch from the amplitude–time domain to
the amplitude–frequency domain. The algorithm
described in [7] was taken as the basis.

After conversion to the voltage at the photodetec-
tor, intensity signal (3) has the form

(5)
Trigonometric expansion of the cosine gives

(6)

Let us use the identities

(7)

(8)

where Jn(x) is a Bessel function of the first kind of
order n. Substituting (7) and (8) into (6) results in a
harmonic expansion of the signal:

(9)

We turn our attention to the first and second har-
monics 
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These two frequency components contain suffi-
cient information to uniquely identify Δϕ. By taking
the ratio of their amplitudes, we can eliminate the
dependence on VAC:

(10)

Therefore, we find that the phase difference Δϕ
depends only on the amplitudes of the first and second
harmonics of the photodetector signal and the ampli-
tude of the modulating signal. Using the arctangent
function, we can reconstruct Δϕ in the interval

Modulation Depth Consideration

The expression to determine phase difference (10)

contains two unknown ratios  and  The

need to calculate the ratio  (rather than taking it

as a constant) is due to the fact that the modulation
depth M, as already mentioned, is not a constant value
and can vary because of temperature effects on the
modulation ratio of the GaAs crystal used in the EO
cell. In the used DI, the value of the modulation depth
is in the range from π/2 to π and is determined by the
voltage of the EO cell.

According to (9), we have the following expressions
for the first and third harmonics:

By taking the ratio of their amplitudes, we can
determine the current depth of modulation using the

pregenerated table of M values depending on 

(11)

And then we can calculate the ratio  needed

for (10).
Therefore, the calculation of the modulation depth

at every period of the modulating signal and consider-
ing it when calculating the current phase value Δϕ
make it possible to get rid of an additional source of
error and to improve significantly the measurement
accuracy.
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Table 1. Determining the quadrant for the phase shift by
harmonic signs

Harmonic V2Ω + V2Ω –

VΩ + I II
VΩ – IV III
Extension of the Phase Measurement Range
Expression (10) makes it possible to determine the

phase Δϕ only in the range from 0 to π/2. In order to
extend this range, additional information is needed,
which can be the signs of the first two harmonics of the
photodetector signal:

Owing to the fact that the Bessel functions J1 and J2
are positive in the π ± π/6 region, only the cosine and
sine phase functions affect the sign. The position of
the phase quadrant depending on the signs of the har-
monics is shown in Table 1.

At high plasma densities, the phase shift can exceed
360°. Because of the periodicity of the cosine (expres-
sion (6)), the phase shift occurs at this boundary,
resulting in a loss of information about the full phase
arrival. This feature imposes a limit on the phase shift
rate: no more than 90° per modulation period (4 μs).
This corresponds to a change in the average linear
density of ≈4 × 1015 cm–2, which in turn corresponds
to a change in plasma density of 4 × 1013 cm–3 in 4 μs
at a characteristic length of 1 m. This is several times
greater than the changes in density observed at mod-
ern plasma facilities under normal conditions [10]. If

AC 1 2 sin( φ) sin( ); ( ) ( )V t V J M tΩ = − Δ Ω

2 AC 22 cos( φ) cos(2( ) ( ). )V t V J M tΩ = Δ Ω
PH

Fig. 2. Measurement module as a

250 kHz

Plasma

EO cell

Frequency

doubler

Laser

Modulator

Photodetector
necessary, this limitation can be overcome by using a
shorter wavelength laser or a higher modulation fre-
quency.

DISPERSION INTERFEROMETER 
MEASUREMENT MODULE

In order to implement the described algorithm, a
special measurement module (phasemeter) was devel-
oped (Fig. 2). Signals from the photodetector and
modulator of the EO cell with a frequency of 250 kHz
are fed to the input of the phasemeter. These signals
are digitized by 14-bit ADCs (AD9255) with a sam-
pling rate of 64 MHz. From the ADC outputs, a
sequence of digital samples is transmitted to the digital
processing node based on an Intel Cyclone 3 FPGA.
This node is responsible for the implementation of the
phase shift extraction algorithm, the generation of the
reference frequency (250 kHz) for the modulator of
the EO cell, the recording into memory (RAM), and
further transfer of measurement results to a Colibri
iMX6 processor module, which is based on an ARM
processor and runs under the Linux operating system.
The processor module is responsible for data trans-
mission via an Ethernet channel to the diagnostic
server and for receiving control commands from the
server, such as selection of the operating mode and
selection of the program or external start.

The phasemeter supports two operating modes:
measuring and oscillographic. In the measuring
mode, the signals are processed, and the integral
plasma density is calculated in real time with subse-
quent recording of the measurement results in RAM
(the maximum duration of the registration cycle is 8 s).
In the oscillographic mode, the readings from both
YSICS OF ATOMIC NUCLEI  Vol. 86  No. 7  2023
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Fig. 3. (a) Ratios J1/J3 ( ) and J3/J1 ( ) depending on the modulation depth M; (b) ratios J1/J2 ( ) and J2/J1 ( )
depending on the modulation depth M. 
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ADCs are recorded in RAM, and the obtained density

values are stored in the FPGA internal memory (in

this mode, the maximum duration of the recording

cycle is 30 ms). The oscillographic mode is used

mainly for debugging the device and processing algo-

rithms.

Digital Processing Node

The FPGA was chosen as a basis for the digital

node because of a high parallel computing power of

matrices, which is necessary for receiving a data

stream from two ADCs at 256 Mb/s with their simul-

taneous real-time processing. The phase shift

extraction algorithm described in the previous section

was translated to the Verilog hardware description lan-

guage [11] and implemented in the digital phasemeter

node.

Let us consider some features of this implementa-

tion. According to (10), in order to reconstruct the

phase shift Δϕ, it is necessary to calculate the ratio

 multiply it by the value J2/J1, and calculate the

arctangent. However, dividing |VΩ(t)| by |V2Ω(t)|

reduces the accuracy of the final result approximately

by a factor of 2 (in the case where the number of bits of

the quotient coincides with the number of bits of the

dividend and the divisor). Therefore, we transform

expression (10) into
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The ratio  can be found through  as

was shown. Instead of running a separate memory

with values  in order to find the modulation

depth M, it is possible to use the values  as the

address of the memory containing the ratio 

The graphs of all four ratios as a function of the mod-
ulation depth M are shown in Fig. 3.

The preferred situation is when a linear function is
stored in memory. In this case, the minimum number
of significant bits in a memory cell is required, so that
different values of the address correspond to different
values of the function. Figure 4 shows four possible
memory indexing variants. The most linear depen-
dences are J1/J2 on J1/J3 and J2/J1 on J3/J1. For substi-

tution into expression (12), the dependence J1/J2 on

J1/J3 is preferable.

Upon calculating the left-hand side of expression
(12), we find |VΩcot(Δϕ)|. In order to find Δϕ, we men-

tally construct a vector with coordinates (|VΩcot(Δϕ)|,

|VΩ|) (Fig. 5, solid blue line). The obtained vector lies

at an angle Δϕ to the x axis. This angle can be found
using an iterative algorithm popular in digital elec-
tronics called CORDIC (COordinate Rotation DIgi-
tal Computer), which makes it possible to convert the
Cartesian coordinates of the vector to polar coordi-
nates, i.e., calculate the vector amplitude and the
angle between it and the coordinate axis. At the very
beginning, the vector is reflected so that it lies in quad-
rant I or IV, if necessary. Then the vector is succes-
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Fig. 4. (a) Ratios J1/J2 ( ) and J2/J1 ( ) as a function of J1/J3; (b) ratios J1/J2 ( ) and J2/J1 ( ) as a function of
J3/J1. 
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sively rotated either positively or negatively depending
on the sign of y. The rotation angle decreases by about
a factor of 2 at each iteration (see Fig. 5). When the
desired accuracy is achieved, the algorithm is stopped.
The resulting new coordinate x is the amplitude of the
vector, and Δϕ is its angle. Mathematically, this is
expressed in the following relations:

1 σ ;2
i

i i ix x y −
+ = − Δ

1 σ 2 ;
i

i i iy x y−
+ = +

1φ φ σγ ;i i i+Δ = Δ −
PH

Fig. 5. Use of the CORDIC algorithm to find the angle Δϕ:
(1, 2) iteration number of the vector rotation with initial
coordinates (|VΩcot(Δϕ)|, |VΩ|). Arrows show the vector
rotation direction.
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2

                   
The advantage of this algorithm is that it uses only
addition and shift operations, which makes it possible
to implement it on platforms that do not support f loat-
ing-point operations (which include most low-cost
FPGAs).

Figure 6 shows a block diagram of the FPGA-based
implementation of the described procedures:

– The amplitudes of the first three harmonics of
the photodetector signal (VΩ, V2Ω, V3Ω) are calculated

from the ADC samples for the modulation signal
period using the FT1, FT2, FT3 modules.

– The amplitude of the first harmonic is divided by
the third one (VΩ/V3Ω) in the DIV13 module.

– On the basis of the obtained ratio, the modula-
tion depth M is determined, which is used to select the
appropriate value of the J1/J2 ratio from a pregener-

ated table stored in the ROM memory matrix.

– The amplitude of the second harmonic and the
J1/J2 ratio selected from the ROM are fed to the input

of the multiplier, which calculates the phase cotangent
value Δϕ (with a multiplier VΩ).

– The phase shift Δϕ is calculated using the
CORDIC algorithm.

After performing all the above procedures, it is nec-
essary to determine the quadrant in which Δϕ is
located. Since expression (12) includes not the cotan-
gent function but its modulus, the corresponding arct-
angent looks like the one in Fig. 7. It can be seen that
the range from 0 to 2π contains four identical

γ arctan(2 );
i

i
−=

1, if 0, 
σ
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Fig. 6. Block diagram of the phase extraction algorithm in the FPGA.
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branches, which differ in vertical shift and sign. When
calculating the phase using the previously described
algorithm, the phase is determined by the lower
branch. If the phase obtained by the algorithm lies in
quadrant III (according to the definition from Table 1),
180° should be added to it. If the phase is in quad-
rant II or IV, it is necessary to change the sign to minus
and add 180° or 360°, respectively.

RESULTS AND TESTS

Algorithm Robustness to Noise

The algorithm described in [6] and operating in the
amplitude–time domain uses a single value of the sig-
nal amplitude per modulation period to calculate the
phase shift, while the algorithm operating in the fre-
quency domain uses all the obtained values of the pho-
todetector signal amplitudes per period. The number
of such values is determined by the sampling rate of
the ADC used to digitize the signals. As a result, the
PHYSICS OF ATOMIC NUCLEI  Vol. 86  No. 7  2023

Fig. 7. Arctangent modulus graphs. 

0
2 4 6 8 10

π/2

3π/2

2π

π

Phase, rad

Dimensionless units
higher the sampling rate, the higher the robustness of
the considered algorithm to noise.

This assertion is based on the following. In the
Fourier transform, each signal value has a noise com-
ponent, which is some random variable with distribu-
tion parameters μ = 0, σ = σn, where μ is the mathe-
matical expectation, and σ is the standard deviation.
Owing to the central limit theorem, the standard devi-
ation of the average noise value in a harmonic is
Fig. 8. Phase deviation from the expected value in the
range of the phase change from 0° to 90° for noise ampli-
tudes of (a) 1, (b) 2, and (c) 4% of the ADC scale. 
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Fig. 9. (a) Oscillogram of the output signal in absence of the signal at input; (b) amplitude distribution of the noise component
(along the horizontal axis, the ADC code; along the vertical axis, the number of ADC code displays; FWHM is the full width at
half maximum). 
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 where N is the number of values (in our case,

for the ADC sampling rate of 64 MHz N = 256). The
presence of the number 2 is explained by the fact that
each random variable enters the Fourier transform
with a different weight proportional to some sine
value.

In order to verify this proposition, a simulation was
performed using noisy signals. The superimposed
noise was modeled by a Gaussian distribution with
zero expectation and standard deviation of 1, 2, and
4% of the full ADC scale.

Plots of the deviation of the phase shift from the
expected value in the range from 0° to 90° are shown
in Fig. 8. The mean square deviations are 0.11°, 0.23°,
and 0.46° for noises with amplitudes of 1, 2, and 4%,
respectively. As can be seen, the algorithm is indeed
very stable, which is confirmed by the absence of
jumps in the change in phase shift values. The mean
square deviation of the result is linearly related to the

nσ / 2 ,N
PH

Fig. 10. External oscillator output signals (oscilloscope
image: one cell horizontally = 1 μs): ( ) simulated
photodetector signal and ( ) simulated modulator
signal. 
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amplitude of the superimposed noise. Moreover, by
averaging the noise over all points of the period, its
effective value decreases by an order of magnitude.
Therefore, for the relative amplitude of the original
signal noise of 1%, the relative error of the phase
determination is only 0.1%.

Measurement Module Test

In order to estimate the intrinsic noise level of the
phasemeter, measurements were performed in the
oscillographic mode of the device and in the absence
of a signal at the input. Figure 9a shows the noise
oscillogram and Fig. 9b shows the corresponding his-
togram of the noise component amplitude distribu-
tion. Its half-width is 2.2 low-level bits of the ADC,
which corresponds to 0.01% of the full scale of the 14-
bit ADC (the full scale of ADC corresponds to a signal
level of 2 V). According to the previous calculations, it
can be seen that such a level of intrinsic noise of the
phasemeter does not affect the results of measure-
ments of the Δϕ phase.

In order to test the measurement module, signal (5)
simulating the photodetector signal was fed to it using
an arbitrary waveform generator (the blue contour in
Fig. 10). This signal was modulated linearly with
increasing or decreasing phase at each period. The
Msin(Ωt) signal simulating the modulator signal (gold
contour in Fig. 10) was also applied to the input of the
measurement module.

Figure 11 shows the results of testing the perfor-
mance of the algorithm with a linear variation of the
phase shift ∆ϕ from 0° to 720° in steps of 5°. The hor-
izontal axis represents the phase shift and the vertical
axis represents the measurement results of the phase-
meter. In order to verify that the phasemeter is inde-
YSICS OF ATOMIC NUCLEI  Vol. 86  No. 7  2023
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Fig. 11. Results of the algorithm test under a linear phase shift from 0° to 720° and back with step of 5°: the horizontal axis is the
given phase shift; the vertical axis is the phase shift measured with a phasemeter. Input signal modulation depth is (a) π/2 and (b)
π radians. 
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Fig. 12. Estimation of the resolution of the phasemeter
with a linear phase shift in the range from 0° to 0.1° with
step of 0.01°: the given phase shift is plotted on the hori-
zontal axis; the phase shift measured by the phasemeter is
plotted on the vertical axis.
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Fig. 13. Photographs of the measurement module of the
dispersion interferometer.
pendent of changes in modulation depth in the range

from π/2 to π, signals with a modulation depth of (b)

π and (a) π/2 were fed to the input of the phasemeter.

It can be seen that the results were identical, which

proves the robustness of the algorithm to changes in

the modulation depth within a given range.

Figure 12 shows the output signal of the phaseme-

ter at a linear phase shift ∆ϕ with a step of 0.01°, cor-

responding to a linear plasma density 4 × 1011 cm–2 in

the range of 0.1°. The horizontal axis is the phase set-

points, and the vertical axis is the measured phase.

Photographs of the finished DI measurement

module are shown in Fig. 13.
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CONCLUSIONS

A measurement module of a dispersion interferom-
eter based on a CO2 laser was developed, which makes

it possible to reconstruct the linear plasma density
with a time discreteness of 4 μs/count and a resolution

of 4 × 1011 cm–2. The algorithm for calculation of the
plasma density implemented in the digital node is
based on the harmonic analysis of the interferometer
signals and is robust to noise and changes in the mod-
ulation depth. Such characteristics of the device make
it possible to use the results of its measurements in the
feedback loops for plasma density control, in particu-
lar, for the system of monitoring and automatic con-
trol of plasma density at the Globus-M2 installation
(St. Petersburg, Russia).
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