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Abstract—The quasistatic approximation (QSA) is an efficient method of simulating laser- and beam-driven
plasma wakefield acceleration, but it becomes imprecise if some plasma particles make long longitudinal
excursions in a strongly nonlinear wave, or if waves with non-zero group velocity are present in the plasma,
or the plasma density gradients are sharp, or the beam shape changes rapidly. We present an extension to QSA
that is free from many of its limitations and retains its main advantages of speed and reduced dimensionality.
The new approach takes into account the exchange of information between adjacent plasma layers. We intro-
duce the physical model, describe its numerical implementation, and compare the simulation results with

available analytical solutions and other codes.
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1. INTRODUCTION

Particle acceleration in plasma and in particular
plasma wakefield acceleration is a promising direction
of accelerator development [1]. In this method, a
driver (a bunch of charged particles or a short laser
pulse) propagates through the plasma and creates a
Langmuir wave in it, which accelerates the particle
bunch called a witness. Both driver and witness move
at almost the speed of light, so the plasma-mediated
energy exchange between them can be long-lasting
and efficient.

The complex phenomena occurring in plasma
wakefield accelerators can only be analyses analyti-
cally in simplest approximations, which is why numer-
ical simulations are the main method of theoretical
research [2]. Most of the interesting processes take
place in a small area of space that moves with the
beams. This makes simulations easier, as it allows the
use of a short moving window. However, there are
widely different temporal and spatial scales in this
problem [3, 4], which can vary by many orders of mag-
nitude, from the wavelength of the laser pulse (about a
micron) to the full acceleration length (hundreds of
meters) [5—7]. For this reason, it is not always possible
to simulate plasma wakefield acceleration with parti-
cle-in-cell (PIC) codes based on first-principle equa-
tions, and various reduced models have to be used [2,
8, 9].

One popular reduced model is the so-called quasi-
static approximation (QSA) [10, 11]. It has been
implemented in a number of codes [12—16], some-

times in combination with other simplifications such
as envelope equation for the laser pulse [11, 17—20] or
fluid approximation for the plasma [21—23]. The QSA
relies on the fact that the properties of investigated
objects change much more slowly in the co-moving
coordinates than in the laboratory frame (Fig. 1). This
applies to properties of the plasma wave (feature / in
Fig. 1), densities and velocities of particle beams
(feature 2), and intensity of the laser driver (feature 3).
If the beams propagate in the z-direction, the change
of variables from the longitudinal coordinate z and
time 7 to

E=z—ct, (1)

where c is the speed of light, results in functions that
depend on s (at constant ) much slower than on & (at
constant s) or on z and ct separately. While conven-
tional PIC codes require small grid steps in both time
and longitudinal coordinate to resolve rapid changes
in simulated quantities (feature 5 in Fig. 1), QSA
requires small steps only in § and allows large steps in
s (feature 6). This increased grid step makes QSA
codes several orders of magnitude faster than conven-
tional PIC codes. The gain in speed is determined by
the ratio of beam evolution length to the plasma or
laser wavelength, depending on the driver type. Note
also that in QSA, the dependence of simulated quan-
tities on § at some z can be understood as their depen-
dence on z at a fixed 7 (feature 9in Fig. 1), if the beam
and plasma properties change insignificantly at the
corresponding spatial and temporal intervals.

s =2
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Fig. 1. Illustration of objects simulated in the context of plasma wakefield acceleration: plasma wave ( /), witness beam (2), laser
driver (3), and gradient of the plasma density (4). The simulation grids used in conventional PIC codes (5, 7) and in quasistatic
codes (6, 8§) for modelling beam dynamics (5, 6) and temporal evolution of the plasma wave (7, &). Pairs of points with almost

identical plasma response (9).

The QSA is exact if the beams of unchanging shape
propagate in a longitudinally uniform plasma. In this
case, an additional symmetry appears in the problem:
identical plasma particles originally located at the same

transverse position r, , but different z, copy the motion
of each other with some time delay. The symmetry
leads to another advantage of QSA: the dimensionality
of the problem reduces by one when computing the
plasma response. Namely, one spatial coordinate (z)
disappears merging with time ¢ into the time-like coor-
dinate &. The reduced dimensionality allows a much
smaller number of “macroparticles” to be used for cal-
culating the plasma response. These plasma “macro-
particles” are not bunches of real particles as in PIC
codes, but “particle jets” grouping real particles that
start their motion from a given transverse position with
a given initial momentum, but different z.

The third advantage of QSA is its effectiveness in
simulating long-term dynamics of the plasma wave. In
PIC codes, to calculate the plasma state at the next
point in time, we need information about the current
state of the neighbouring plasma layers. Therefore, it is
only possible to simulate the temporal evolution in

long regions covering several wakefield periods A » 1O

minimize the influence of longitudinal boundaries
(feature 7in Fig. 1). In QSA, the state of the neighbor-

ing layers is not needed for advancing the plasma in &

(feature &). The model assumes that these layers copy
the considered plasma layer with some time delay or
advance. The resulting gain in speed is several times

the ratio A, /Az. Thanks to this advantage, QSA codes

hold the record for simulating long-term evolution of
the plasma wave [24, 25].

If the beams change shape slowly, or the unper-
turbed plasma density is weakly dependent on z, then
QSA becomes imprecise, but still applicable. The
inaccuracy arises because of incorrect information
exchange between neighbouring z-layers. The plasma
solver assumes that plasma and beam are the same at
all z, but they are not. The beam evolves as it propa-
gates in the plasma, and the initial plasma state may be
different at different z. Typically, the region of space
the state of which affects the plasma behavior at some
z is about the plasma wavelength in the longitudinal
direction and does not expand with time, since the
group velocity of the Langmuir wave in a cold plasma
is zero. The relative accuracy of QSA in this case can
be estimated as the ratio of the plasma wavelength to
the typical distance of beam change or the scale of
plasma non-uniformity. However, if some plasma par-
ticles make longer longitudinal excursions in a strongly
nonlinear wave, or there are waves with non-zero
group velocity in the plasma, or the plasma density
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gradients are sharp, the QSA becomes less accurate
and the error accumulates over time.

In this paper, we present an advanced quasistatic
approximation (AQSA), which is free from the limita-
tions of conventional QSA and retains its main advan-
tages of speed and reduced dimensionality. The new
approach takes into account the exchange of informa-
tion between adjacent plasma layers and therefore
allows correct simulation of longitudinal plasma non-
uniformities, fast particles appearing in the plasma,
and waves with a non-zero group velocity, if these fea-
tures are resolved by the simulation grid. In Section 2,
we introduce the physical model and discuss its
numerical implementation using a two-dimensional
geometry as an example. In Section 3, we compare the
simulation results with available analytical solutions
and with QSA and PIC codes and show that the new
model reproduces effects missing in QSA. In Sec-
tion 4, we discuss directions of development and the
applicability area of the new model.

2. EXTENSION OF THE QUASI-STATIC
APPROXIMATION

2.1. Physical Model

We start from the Maxwell equations

VxE=-19B v g=anp, )
c ot
VxB=4%j 1E g p_g 3)
c c ot

where E and B are electric and magnetic fields, and j
and p are current and charge densities. The equations
can be combined to yield

1 82 4n8]
=4nVp + = 4
e 9% : ot @

When passing to the variables (s, ﬁ), the derivatives
change as

AE -

9_0,0 9d__.0 (5)

dz ds 08 ot 0§
We assume that all quantities depend slowly on s, so
the corresponding derivative is a small parameter:

d, < 0d¢. In QSA, all small terms containing 9, are
omitted. Here we retain the first-order terms:

o’ s 4ndj
A +2 E = 4nV 6
( L asaéj p- ¢ 9E (6)
where V = (V,, 9, + dz), and the subscript L denotes

two-dimensional (transverse) vectors and operators.

The omitted second derivative ai accounts for back-
ward-propagating radiation [26] and is only important
for low-frequency perturbations that propagate much
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slower than the speed of light [17, 27]. Similarly, for
the magnetic field we obtain

A+ 2— B= V x 7
( 1 959 ) [ .l:' (7)
The mixed derivatives in equations (6) and (7) are
responsible for propagation of free radiation.

In addition to the equations for the electromagnetic
field, we must also modify the laws of motion of the
plasma macroparticles, that is, the laws of changing
their parameters. The parameters include transverse
position r;, three momentum components p and
charge ¢, and they must be calculated as functions of §
for a given s (Fig. 2). The longitudinal position of a
macroparticle is not a parameter, as it is combined
with time 7 and moved from parameters to arguments.
The mass m is proportional to the charge g and does
not need a separate consideration. In usual variables,
parameters of plasma particles change according to
the equations

dr, _ dq

aT a" ®
dp _
b q(E Ay x B]) )

where v = pc/+/ p2 +m’c® is the particle velocity.
Denote an arbitrary parameter by y(s,&) and the right-
hand side of the corresponding equations (8) or (9) by
F. In the quasistatic variables (1), we obtain

dt sle dt , dt (10)
— 9 Vz-l-a—x (v,—¢c)=F
dsle ~ dg;
whence
% — 1 F—vza—xj (11)
v.—c¢ ds

Equation (11) always applies to the particle in the
“particle jet” which at the moment has the longitudi-
nal coordinate s. This particle may initially (before the
driver comes) be at some distance from this cross-sec-
tion. Thus, equation (11) describes parameters of
different physical particles at different &. If we neglect
the derivative d,, equation (11) reduces to the usual
QSA [28].

To complete the system, equations (6), (7) and (11)
must be supplemented by the equations for charge and
current, which are the same as in QSA:

. qav;, .
j AZ p— + b
-

2,0

(12)

+ pba (13)
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Fig. 2. Calculation of plasma response in the quasistatic
approximation.

where j, and p, are current and charge densities of the
driver, A is a normalization factor, and summation is
over “particle jets” crossing the cell in which we calcu-
late j and p. The denominators in equations (12) and
(13) appear because the contribution of a “particle jet”
to the density and current depends on the macroparti-
cle velocity in the co-moving simulation window.

The equations for the particle driver are as usual
(see, e.g., [28]):

dn, _ vy 48y _ Vs 1 (14)
ds ¢’ ds c ’
W _dig 1 Dy, x B, (15)
ds c ¢’
pbc (16)

Vo = 2 2 2’
\myc” + p,

where (r,,,&,) are coordinates of the beam macro-

particle in the simulation window, and m,, g, and p,
are its mass, charge and momentum. The model can
be augmented with the envelope equation for the laser
driver and the ponderomotive force acting on the
plasma particles [11], but we will not use this option in
the paper.

2.2. Numerical Implementation

We have added the new features to the existing qua-
sistatic 2D3V code LCODE [29]. The presented
numerical scheme is not optimized for best perfor-
mance and aims to demonstrate that the new model
can in principal be incorporated into a quasistatic
code. The code can work in Cartesian or axisymmetric
geometry. We use both geometries for testing the new
model, but here we present the equations for the Car-
tesian geometry only. Modifications to the cylindrical
geometry are straightforward [30]. In the test cases
considered, three field components are identically
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zero (E, = B, = B, = 0 in cylindrical geometry and
E, = B, = B, = 0 in Cartesian geometry), so we omit
the equations for these components.

We calculate the plasma response in LCODE
layer-by-layer in the decreasing & direction (from right
to left in Fig. 2). As we need the derivatives of the cur-
rent with respect to & in equation (6) to calculate the
field E., we use the following predictor-corrector
scheme:

* move the plasma macroparticles from layer a to
layer b under the action of the fields of layer a;

» calculate the current and charge density in
layer b;
* calculate all fields in layer b;

* move plasma particles from layer a to layer b
under the action of the average fields of layers a and b;

* again calculate the current and charge density in
layer b;
* again calculate all fields in layer b;

+ for the third time, move plasma particles from
layer a to layer b under the action of the average fields.

To ensure stability of the algorithm, we solve in
finite differences, instead of equation (6), the follow-
ing equation for the transverse electric field:

( 0’ 0 op  4mdj,
ox>

+2 =4pE T2 _ E., (17)

asang - E,

where £ is some prediction for E,. We present this
equation in finite differences as

m m—1
l Exnl+l 2Exnl +Ex,n,1—l +Exnl+l 2E‘xnl +Exn/ 1
2 Ax? Ax?
m
x,n=1, Ex,n—Z,l

As 2AE,
(18)

m—1 m m—1
_3Ex nl + 4Exn 1,/ Ex,n72,l _ Ex,n,l + Ex,n,l
2NE 2
m—— mfl 71 m—x
2 _ ;o2 _m—
= 47 Pt ~ Pua 41 Jxnd = Jnlrd _E 2
2Ax c A& ”

where the indexes /, m, n denote grid layers in x, s, &,

respectively (Fig. 3), Ax, As, A& are grid steps, and

half-integer indices denote the half-sum of values at

nearby grid points, for example,

Ezn,/ + EJT;I/
2

When we calculate the fields in the layer with index

1
L m—=
2 —
/

(19)

n for the first time (predictor), £7,, = Ey,_, ,, other-
wise (corrector) Exn, E” 1 with E,, found at
e 2
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Fig. 3. Simulation grid.

the predictor step. In choosing a finite-difference
approximation of the field derivatives with respect to
€, we rely on the causality principle. No perturbation
can propagate in the forward direction in the simula-
tion window moving at the speed of light. All pertur-
bations in the system are driven by the beams and
propagate with them or lag behind them. This means
that subsequent layers in & cannot affect the previous
ones, so only the right-hand derivatives with respect to
€ should be used. Thanks to the asymmetric deriva-
tives, pipeline parallelization of simulations is possible
[13]. The second order upwind scheme for the field
derivative with respect to & provides the stability of the
numerical scheme when calculating the mixed deriva-
tives [19, 26]. For the transverse Laplacian, we use a
stable Crank—Nicolson scheme [31], which has
proven itself in solving the laser envelope equation in
plasma wakefield simulations. This results in an
implicit numerical scheme which, if necessary, can be
generalized to the three-dimensional case using the
alternating-direction implicit method [32, 33].

To avoid calculating the derivative dj,/d¢ in the
longitudinal component of equation (6), we use the
continuity equation

ap

+V-j=0 (20)
ot
and obtain
2 2 . .
9429 |p = 4—“31—X+4n§(p +£j, Q1)
ox 050§, c ox s c
which in finite differences yields
E i —2E], + EL,
sz
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+2 =3B, +4E, 1 — Efua
As 2AE
- (22)
_3E n,l +4Ezn 1,/ Ez,n—Z,l
2AE
- lj::n,lﬂ — Jmi- + Pt — an,/_l p 1 anmt = Jame |
c 2Ax As c As

Systems of equations (18) and (22) are solved using the
tridiagonal matrix algorithm.

The equation for the magnetic field can be simpli-
fied in two-dimensional geometry. Subtracting the z-
components of the first of equations (3) and the sec-
ond of equations (2) yields

E
—(B E)=—jz—47tp+a < (23)
c s
and
By = By _ Eni = Einia _4r m
Ax Ax ¢ “ani-t
Em _ Em—l (24)
m z,n,l—l z,n,l—%
_ 4npz,”,,,l + As

This equation allows the magnetic field to be calcu-
lated to a constant. In cylindrical geometry,
B, = E, = 0 on the axis, which defines the constant.
In Cartesian geometry, we need the x-component of
the first of equations (3):

41 . aBy
B,—E)=- —.
g( )= . —Ji— %

It is sufficient to find the constant for only one value
of the transverse index /. We can choose this value (/')
at the periphery of the simulation window, where the
currents and fields are low and d, can be neglected. In
finite differences

(25)

m
- Ex,n—l g 47T .m
+ J 1,0
x,n—=,1"
¢ 2

m m m
B nl' - B n-1,1" _ E

y,n, Y, x,n,l"
Ag AL

whence we find B}

Ll

(26)

knowing the other terms.

To calculate the particle parameters, we use an
implicit scheme, which for equation (11) is

Xnm _Xnm—l — 1 le _ m—— Xn Xn . (27)
AE) C — vm 1 As
.,n—z

The boundary conditions have not changed from
the documented version of LCODE [30]. The trans-
verse boundaries are perfectly conducting walls that
reflect particles but absorb their energy (change the
particle momentum to some small value). There are
no fields and no plasma particle motion at the right
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Ei 0k where Xx, is the pulse width at the waist, & is the pulse
. wave number, k, = \/41moe2 / (mecz) is the plasma wave
number, e is the elementary charge, and m, is the elec-
—40 - ! . tron mass. The transverse size of the laser pulse x;
—40 c —20 grows according to the paraxial theory [34]:
, um

Fig. 4. The simulated laser pulse at (a) s =0 and (b)

s = 2sg . For better visibility, only part of the simulation
window is shown with different vertical and horizontal
scales.

(front) boundary. Boundary conditions at the left
(rear) boundary are not needed in quasistatic codes.

The beam solver is also unchanged. The equations
of motion are solved with the modified Euler method
(midpoint method). The fields acting on the macro-
particle are linearly interpolated to the predicted mac-
roparticle location at half the time step.

3. BENCHMARKING THE NEW MODEL
3.1. Laser Pulse Propagation in Plasma

Let us consider the propagation of a short two-
dimensional laser pulse through an underdense
plasma of density #, in the linear regime. This test
shows how perturbations with a nonzero group veloc-
ity are described by the new model.

The group velocity v, of the pulse differs from the
speed of light ¢ not only because of the plasma, but
also because of a finite transverse size of the pulse.
Adapting the theory [34] to the flat two-dimensional
case, we obtain for the group velocity measured on the
axis near the focus point

k2

v 1k
2k

(28)

2,2
¢ Xoky

2
X, = X, |1+ s_2’ (29)
SR
where sz = kyx; /2 is the Rayleigh length, and the dis-
tance s is measured from the waist.

Assume the laser pulse is linearly polarized, and its
transverse electric field at s = 0 is

5 (30)
X0

2 2
E,. = E, sin(k,&)exp (_x_ - %},

with A, = 2n/k, = 810 nm, x, =13 um, L =9 um,
E, =1.26 MV/m (Fig. 4). The transverse magnetic
field B, = E,. The longitudinal electric field £, satis-
fiesV - E = 0. The maximum field intensity is initially
at &, = —30 um, which is the center of the simulation
window (x,&) of the size 180 X 60 um. The grid steps
are AE = A,/40, Ax = A, /4, As = 25),.

Unlike other QSA codes [11, 18, 19], the propaga-
tion of this pulse is provided by the plasma solver. The
simulation results quantitatively reproduce the theo-
retically predicted velocity of the wave packet (Fig. 5)
and its transverse dispersion (Fig. 6). To find the
group velocity from the simulation output, we approx-
imate the pulse envelope on the propagation axis by a
Gaussian function and measure the average velocity of
the maximum over the time period of 0.13sk /c, start-
ing from the focus point. The pulse width is measured
according to the formula

2 2
xFE
x, =2 { 2">, (31)
(E)
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Fig. 6. Growth of the pulse radius in vacuum.

where angle brackets denote averaging over the simu-
lation window. Note that the longitudinal grid step
As > ),, so AQSA retains the main advantage of
QSA, speed.

3.2. Plasma with a Longitudinal Density Gradient

This test shows how the new model describes a
strongly nonlinear plasma wave in the presence of
density gradients. The wave is driven up to the bubble
regime by a short axisymmetric electron beam
(Fig. 7). Plasma electrons at the rear part of the bubble
acquire a high longitudinal velocity (close to c), travel
far forward from their original location and can trans-
fer information from one plasma layer to another. In a
longitudinally uniform plasma, this effect does not
affect accuracy of the QSA model, because of the
same plasma properties in different cross sections, but
in the presence of a density gradient it can be signi-
ficant.

The electron beam parameters are: root mean
square (rms) transverse and longitudinal dimensions
3 and 10 um, respectively, relativistic factor 4 x 104,
and the peak beam current 11 kA. This beam creates a
bubble in the plasma, which is well suited to demon-
strate the capabilities of the new model and at the
same time has no features with too small spatial scale
that are difficult to resolve. The longitudinal profile of
the plasma density contains a region of linear growth
from 1.75 X 107 cm~ at s = 50 um to 2.5 x 10" cm—3
at s = 220 um, which corresponds to variation of the

plasma skin depth &, " from 12.7 to 10.6 pm. The den-
sity is constant before and after this region (Fig. 7, top
row). The simulations are carried out in the cylindrical
coordinates (r,&) or (r, 7).

We compare simulations performed with QSA
code LCODE, the axisymmetric PIC code FBPIC
[35], and the AQSA solver implemented on the basis
of LCODE. The size of the simulation window is
250 um in #and 170 um in &. In QSA and AQSA sim-
ulations, the grid steps are Ar = A = 0.1 um, As =

PLASMA PHYSICS REPORTS  Vol. 49
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Fig. 7. The total electron density # of the beam and plasma
for the case when the electron beam propagates in the uni-
form plasma (at s = 20 wum) upstream of the density gradi-
ent region. The green rectangle shows the area detailed in
Fig. 8. Simulations were performed by FBPIC (upper half)
and AQSA models based on LCODE (lower half).

10 um. In FBPIC simulations, Ar = Az = A(ct) =
0.1 um. In all simulations there are 12 plasma macro-
particles per cell and 2 x 10° macroparticles in the
beam. To compare quasistatic and PIC simulations,
we must present the results in the same coordinates.
Let these be the quasistatic coordinates (r,&). The
dependencies on & have the meaning of time depen-
dencies at certain z. In a uniform plasma, they can also
be interpreted as beam portraits at some time, but not
in plasmas with longitudinal density gradients. The
standard diagnostics in FBPIC do not allow us to out-
put the time dependencies at a fixed z, so we save the
plasma state and fields every fifth time step (to sim-
plify work with large amounts of data), if the coordi-
nate of interest s, is in the simulation window. Then,
for each saved state, we take the values at the five

cross-sections nearest to s, and consider them as five
consecutive points of the sought time dependence at

Z=S0.

All three approaches are consistent in the regions of
uniform plasma density (Figs. 7 and 8, left and right
columns). In the region of density gradient, the classi-
cal QSA produces a different plasma response pattern
than AQSA and PIC (middle column in Fig. 8).
Unlike QSA, AQSA reproduces the bubble elongation
(feature /in Fig. 8) and the appearance of an extended
high-density area near the axis (feature 2) observed in
PIC simulations. Both effects are caused by longitudi-
nally moving plasma electrons that come from
upstream regions where the plasma density is lower
and the bubble is longer. The reason for the different
shape of the field peak in AQSA and FBPIC (feature 3)
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Fig. 8. Comparison of QSA, FBPIC, and AQSA simulations of the plasma bubble in uniform plasmas (left and right columns)
and in the plasma with the density gradient (middle column). The first (top) row shows the location of the considered cross-sec-
tions (orange points) on the plasma density profile. The second row shows the longitudinal electric field £, () calculated by the
discussed models, and the other rows are the electron density maps obtained by QSA, FBPIC, and AQSA models, respectively.

The final plasma density ny = 2.5 X 10'7 ¢m™3 defines the electric field unit Ey = \,41tn0mecz . The blue vertical lines on the den-
sity maps show the longitudinal position of the field minimum in AQSA simulations to facilitate comparison. The numbers in

circles indicate the features discussed in the text.

is not yet completely clear. The peak amplitude
depends on the spread of electrons in transverse veloc-
ity [28], so this difference may appear because of the
different numerical heating in the two codes. The
shape of the tail wave [36] observed after the density
gradient region (feature 4) is also different in QSA and
AQSA or FBPIC. This wave (seen as a density ridge)
contains high energy plasma electrons accelerated in
upstream regions. Since the plasma density is lower
there, these electrons appear at larger ||, and the tail
wave front bends, as seen in AQSA and FBPIC simu-
lations, but not in QSA.

To conclude, the AQSA model reproduces the fea-
tures arising from the longitudinal plasma nonunifor-
mity similarly to the PIC code FBPIC, but 80 times
faster (about 560 CPUh for FBPIC and 7 CPUh for
LCODE), which is close to the theoretical estimate
As/AE =100.

4. DISCUSSION

The proposed modification of the quasi-static
approximation allows us to extend its applicability
area. It opens up the possibility of time-efficient inves-
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tigation of the laser-plasma interaction, taking into
account the physics omitted in the envelope model.
The effect of plasma gradients on accelerated particles
can be studied more accurately than in the standard
QSA. The results obtained are in agreement with both
analytical theory and first-principle simulations.

The described model is only the first step towards a
more complete and time-efficient simulations of laser
and plasma wakefield acceleration based on the quasi-
static approximation. The equations and the numeri-
cal scheme can be improved by including the deriva-

tive st. The full equations for the fields are similar in
form to those for the laser envelope, so the experience
gained in modelling the latter [26, 27, 37, 38] will help
to construct an efficient numerical scheme. Obyvi-
ously, the next major logical step in development of
the model should be to include plasma particle trap-
ping. Trapping plasma particles by the wave followed
by their acceleration is a widely used method of inject-
ing particles into the wave [39—41]. The present model
does not yet include this process. Technically, this is
because particle trapping is accompanied by a reduc-
tion in the spatial scale of particle parameter change to
a level that cannot be resolved. It is for this reason that
we have tested the new model with positive density
gradients. Negative gradients can lead to particle trap-
ping. However, the particles to be trapped can be
treated in a special way, similarly to beam particles.
This approach yields qualitatively correct results with
the conventional QSA [42, 43], and should work even
better with AQSA.

The chosen method of numerically solving the
equations, although quite reliable, is unlikely the best.
Therefore, another direction for improving the model
is to optimise the numerical algorithm.

While QSA is very efficient in simulating long-term
evolution of the plasma wave, it is not certain that
AQSA will perform as well on large timescales. The
difference in trajectories and parameters of individual
plasma particles at different s increases with the simu-
lation window length that determines the duration of
the wave evolution. In order to resolve this difference
correctly, the grid step As must be reduced, which
depreciates the main advantage of quasistatics.
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