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Abstract—It is shown by numerical simulations that, if a laser pulse from the eXawatt Center for
Extreme Light Studies (Sarov) is used as a driver for a laser wakefield accelerator, an electron bunch
with a charge of 50 pC can be accelerated to energy of 100 GeV with an energy spread of less than
1%. To this end, it is necessary to form a plasma channel 70 m long with a characteristic radius of 200
μm and a plasma density of 3 × 1015 cm–3 on the axis. In a denser plasma, the acceleration rate is
higher, but the acceleration length and the resulting energy are smaller. The accelerator parameters can
be numerically optimized using a quasistatic model describing the laser pulse in terms of its envelope,
which reduces the computation time by several orders of magnitude as compared to complete models.
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1. INTRODUCTION
Since the particle acceleration rate in plasma is several orders of magnitude higher than the maximum

acceleration rate in conventional radio-frequency resonators, plasma acceleration methods are now being
actively investigated in dozens of laboratories around the world [1–3]. To date, the maximum energy
acquired by electrons in plasma (42 GeV [4]) is below the record value obtained in conventional acceler-
ators (104.5 GeV [5]); however, the development of higher power drivers [6] will make it possible to sur-
pass it in the nearest future and thus open ways to study new physical phenomena. In this work we estimate
(and verify by numerical simulations) the energy to which an electron bunch (witness) in plasma can be
accelerated, if a laser pulse obtained at the Exawatt Center for Extreme Light Studies (XCELS) [7, 8] is
used as a driver forming a plasma wakefield.

2. ESTIMATION OF THE ATTAINABLE ELECTRON ENERGY
First we will estimate the plasma density at which one would expect the maximum energy acquired by

electrons. We proceed from the following parameters of the designed facility [8]: laser pulse energy Q0 =
400 J, laser wavelength λ = 910 nm, and maximum interaction length L = 70 m, which corresponds to one
XCELS channel. The plasma density n, as well as the laser pulse duration τ (> 25 fs) and laser-beam radius
r0 will not be fixed yet; they will be chosen during optimization. When carrying out estimation, we assume
that the dimensionless amplitude of the laser pulse is neither large nor small parameter:

(1)

where A is the pulse vector potential, e > 0 is the elementary charge, me is the electron mass, and c is the

speed of light. We also assume that r0 ~ c/ωp and the accelerating field Ez ~ E0, where ωp =  is
the plasma frequency and E0 = mecωp/e is the wavebreaking field. Subsequent simulations should refine
the assumptions made.
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If we ignore the corrections related to the geometric factors, the maximum energy Wmax of accelerated
particles is determined by the ratio of the laser frequency ω0 = 2πc/λ to the plasma frequency ωp. Provided
that the acceleration length is limited by the laser pulse diffraction, this energy is relatively low: Wmax ~
mec2ω0/ωp; if this length is limited by the pulse depletion or dephasing [1], we have

(2)

The acceleration length is

(3)

The limit (2) is applicable if the pulse diffraction is suppressed in some way, for example, by a plasma
channel with a density minimum on the axis. In what follows we assume that such channel exists.

The energy content per unit length of a moderately nonlinear plasma wave is independent of the
plasma density, because the energy density in this wave increases as  ∝ n, and the volume occupied by
the wave decreases as (c/ωp)2 ∝ n–1. The characteristic value of the linear energy density is [9, 10]

(4)

where re is the classical electron radius. The high laser pulse energy makes it possible to reduce the plasma
density, increasing the acceleration length (3) and maximum energy (2). In this case, the ratio of the laser
and plasma frequencies increases, the acceleration rate decreases (staying reasonably high), the acceler-
ated charge increases [11], and the requirements to the accuracy of positioning the accelerated bunch in
the plasma accelerating structure become less stringent (due to the increase in the c/ωp scale). If the facil-
ity length L is simultaneously the dephasing length Lmax, the required plasma frequency is

(5)

which corresponds to the plasma density n ~ 2 × 1015 cm–3, plasma skin depth c/ωp ~ 100 μm, acceleration
rate eE0 ~ 5 GeV/m, and maximum energy Wmax ~ 300 GeV.

3. NUMERICAL SIMULATION TECHNIQUE

At a large frequency ratio (ω0/ωp ~ 103) it is especially favorable to perform numerical simulations using
the quasistatic code, with laser pulse described in terms of its envelope. The envelope equation [12]
increases the characteristic scales that must be resolved in time and longitudinal coordinate by a factor of
ω0/ωp [13]; the simulation grid step can be increased and the calculation time can be decreased by the
same factor. The quasistatic approximation makes it possible to increase additionally the grid step over the
longitudinal coordinate in the ratio of the Rayleigh length (scale of change in the laser pulse) to the plasma
wavelength, i.e., increase additionally by a factor of ω0/ωp. However, for correct calculation of strongly
depleted laser pulses, as will be shown below, the time step must be additionally decreased by a factor of
ω0/ωp. Thus, the quasistatic model with a laser-pulse envelope gives an acceleration six orders of magni-

tude higher (by a factor of / ) in comparison with the simulations without simplifying assumptions,
using the particle-in-cell method.

The simulations will be performed using the two-dimensional axisymmetric quasistatic code LCODE
[14–16] with a laser solver [17]. Let the laser pulse be linearly polarized along the x direction and move
along the z direction and the x component of its vector potential be characterized by a dimensionless com-
plex amplitude a:

(6)

where k0 = 2π/λ and ξ = z – ct is the comoving coordinate. At the beginning of the interaction

(7)
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Fig. 1. Geometry of the problem: (a) the total electron density ne in the plasma and witness and the laser pulse amplitude
a at the beginning of interaction and (b) the transverse profiles of the initial plasma density n (blue curve) and laser pulse
amplitude a (orange curve).
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(8)

(σz is the pulse length). To keep the laser-beam radius constant in time, the pulse propagates in a matched
plasma channel with a radial density profile

(9)

where nc is the density on the channel axis.
Simulations show that, at r1 ~ 2r0, the beam radius pulsations in the studied range of parameters do not

exceed 5%, although the channel at r > r1 differs from an ideal parabolic one [1]. The density n0 = n(r1)

will be referred to as basic in the sense that it determines the value  = c/ωp(n0), which specifies the grid
steps and the computational domain radius rmax.

In this section we will use as an illustration the basic variant with the following set of parameters (Fig. 1):
nc = 3 × 1015 cm–3, σz = 34 μm, r0 = 194 μm, r1 = 2r0, and a0 ≈ 1.4. As will be seen further from the para-
metric dependencies, this variant is optimal for achieving the maximum witness energy.

While propagating through the plasma, the laser pulse loses energy, and its central frequency decreases
in comparison with the initial frequency ω0 [18, 19]. As a consequence, the function a(ξ) starts oscillating
with some period, which decreases as the pulse depletes (Fig. 2). To resolve these oscillations in simula-
tions, the grid step Δξ must be chosen sufficiently small. In the calculations presented below, unless oth-
erwise specified, the grid steps are Δξ = 0.0005 , Δr = 0.002 , and Δz = 250 ; rmax = 15 . At the
chosen step Δξ, there are about 50 grid nodes per laser wavelength, so that the envelope model makes it
possible to increase the grid step (in comparison with the complete model) only over the z coordinate
rather than over ξ. The plasma is presented as an array of macroparticles, whose weight depends on radius.
There are ten macroparticles of each type (electrons and ions) per radial step Δr. Ions have a mass of
1836me (hydrogen) and can move; however, their displacement in the wave is small and does not lead to
any significant physical effects. The simulation of one variant requires about 1000 CPU hours.

The correctness of simulations is verified by comparing the laser pulse energy and the energy remaining
in the plasma behind the pulse. The linear energy content of plasma wave, Ψ, is calculated from the total
energy f lux in the moving simulation window [9, 20]:

(10)

where E and B are, respectively, the electric and magnetic fields; mj and γj are, respectively, the linear mass
and relativistic factor of macroparticles; integration is over the left boundary of the simulation window,
and summation is over all plasma macroparticles leaving the simulation window. In the quasistatic
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Fig. 2. Real part of the laser pulse complex amplitude Re a(ξ) (orange curves) and the longitudinal electric field Ez (green
curves) on the axis at different instants.
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description, plasma macroparticles are considered to be not groups of real particles but “jets” of particles
entering the moving simulation window on a given radius; therefore, formula (10) contains the linear mac-
roparticle mass (mass per unit length of the “jet”). Integrating over the path passed, we find the energy left
in the plasma:

(11)

The laser pulse energy is obtained by integrating over the entire simulation window,

(12)

where the radial derivatives of the vector potential were neglected [21] in view of their smallness. It follows
from the energy conservation law that

(13)

The accuracy with which equality (13) is fulfilled characterizes the correctness of both the laser and
plasma solvers. The smaller the step Δξ, the larger pulse propagation path can be simulated with accept-
able accuracy (Fig. 3). A comparison of the plots of the energy balance and electric field, similar to those
in Figs. 2 and 3 but calculated to a larger length z at different pulse parameters, also demonstrate that a
laser pulse can transfer no more than 30–40% of its energy to the plasma, after which it is elongated so
that ceases to excite efficiently a wakefield.

During propagation, a laser pulse, as well as the wave excited by it, shift backwards in the simulation
window, which moves with a speed of light (Fig. 2). The accelerating field profile also changes. Therefore,
the point of the wave at which electrons must be injected to obtain maximum energy is not obvious before-
hand. To determine the coordinate ξ of the optimal injection point, we will estimate the electron
energy West from the field integral on the axis [6]:

(14)
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Fig. 3. Change in the laser pulse energy ΔQ1 (dotted curves) and the total energy Qp transferred by a laser pulse to
the plasma (solid line), depending on the distance z passed in the plasma in simulations with different longitudinal
grid steps Δξ.

0 20 40
�Q

1/
Q

0, 
Q

p/
Q

0
60 80

0.1

0.2

0.3

z, m

0.00025
0.0005
0.002
0.005

kp��

Fig. 4. (a) Estimated energy West acquired by an electron on different acceleration lengths z, depending on the electron
injection coordinate ξ and (b) the electric field on the axis, Ez, at the beginning of interaction for the variant with r0 =
146 µm. Thin lines show the electron energy disregarded in estimation of the maximum energy because of their proximity
to the bubble edge or residence in the laser pulse region.
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excluding electrons from consideration when they find themselves in the defocusing phase of the wave or
when their energy decreases to zero. The initial energy W0 = 300 MeV is sufficiently high to consider that
electrons do not change the coordinate xi during acceleration. Indeed, at a constant acceleration rate eEz,
the longitudinal electron displacement δξ can be related to the electron relativistic factor γ(z):

(15)

The set of the dependences West(ξ) at different z values has a characteristic “triangular” shape (Fig. 4)
with a maximum at the end. Electrons “survive” only in those regions where they were accelerated and
focused from the very start. The electron acceleration in the second period of the wave does not lead to
a much higher energy than in the first period, even if the longitudinal dependence of plasma density nc(z)
is specially chosen so as to provide conditions under which the maximum accelerating field in the second
period is always achieved at the same value of ξ.

Under certain conditions, when the beam radius and pulse length are smaller than in the basic variant
or when the plasma density is higher, a bubble, i.e., a region free of electrons, is formed in the plasma. This
is exactly the case (at r0 = 146 µm) shown in Fig. 4. The field in the end of the bubble has a narrow singu-
larity, which formally leads to acceleration of electrons to high energies. In reality, when the problem is
not ideally axisymmetric, the singularity does not arise. Therefore, not to hinder the optimization as a
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Fig. 5. Maximum energy of accelerated electrons Wmax (estimate (14)) as a function of the acceleration length at different
plasma densities on the axis (nc). The other parameters are basic: σz = 34 μm, r0 = 194 μm, and r1 = 2r0. Thin lines show
the maximum energy with allowance for the electrons to fall in the laser pulse region.
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result of its presence in the simulations, we will exclude from consideration the electrons located at a dis-
tance from the bubble end smaller than 0.5 . The bubble end is determined from the condition Ez = 0
on the axis. These electrons are shown by thin lines in Fig. 4.

If the trailing edge of the laser pulse starts overlapping the witness, the quality of the latter is deterio-
rated, because the accelerated electrons obtain an additional transverse momentum from the laser field.
Therefore, the electrons that turn out to be in the laser pulse region will be disregarded during optimiza-
tion. In Fig. 4 they are also shown by thin lines.

4. PARAMETRIC DEPENDENCIES

As the target function for optimization we will use the maximum energy acquired by an electron at
a length L  70 m, according to estimate (14), provided that this electron is not at the end of the bubble
and does not overlap with the laser pulse. To begin with, we consider the factors determining the optimal
plasma density on the axis. Figure 5 presents a typical density dependence. At a low plasma density the
acceleration rate is low, and the electron energy does not have enough time to reach the maximum at
the length of 70 m. At a high density the laser pulse becomes rapidly depleted and elongated, due to which
almost simultaneously the wave structure changes (electrons find themselves in the retarding field, and
their energy ceases to rise) and the trailing edge reaches the highest energy electrons. The maximum
energy decreases with an increase in the plasma density. The optimum is at nc ~ 3 × 1015 cm–3.

With a change in the laser pulse length one can observe the same extreme situations (Fig. 6). A long
pulse provides a too low acceleration rate, whereas a short pulse becomes too rapidly depleted. In the basic
variant the pulse length σz = 34 μm corresponds to its duration τ = 200 fs, which is eight times longer than
the designed minimum XCELS pulse duration. Thus, the plasma wakefield acceleration does not require
any extreme compression of laser pulse in the longitudinal direction.

The dependence of the maximum energy on the beam radius does not have a clear optimum (Fig. 6):
the narrower the beam, the higher the electron energy is. However, according to formula (9), a deep
plasma channel is required to hold a narrow beam, in which the density plasma should change several
times on the beam radius. It is fairly difficult to create such a channel. As can be seen in Fig. 6, a decrease
in the beam radius to less than 200 μm does not lead to a proportionally large increase in the electron
energy; therefore, the radius r0 ≈ 200 μm was chosen as optimal. We should also note that, if the condition
kpr0  1 begins to be fulfilled with an increase in the radius r0 or plasma density nc, pulse filamentation is
observed.

It is noteworthy that, at a small beam radius (r0 = 146 μm), the electron energy barely decreases with
a decrease in the plasma density nc to zero (Fig. 6). The reason is as follows: because of the narrowness of
the channel and steepness of its walls, the wakefield wavelength and the electric field in it are determined
by the channel wall density rather than the plasma density on the axis. Thus, an analog of the wakefield
acceleration in a hollow channel is obtained [22–24].
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Fig. 6. Maximum energy of accelerated electrons, Wmax (estimate (14)) as a function of the plasma density on the axis,
nc, at different values of the radius r0 and length σz. The basic variant is indicated by an asterisk.
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Fig. 7. Energy spectrum (top) and phase portrait (bottom) of an optimally accelerated witness with a charge of 50 pC at
different distances z passed in the plasma.
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5. ELECTRON ACCELERATION

The plasma wave excited in the optimal mode has an energetics sufficient to accelerate a witness with
a charge of 50 pC to 100 GeV. To obtain this acceleration in simulations, one should choose the witness
length σw and initial position ξ0 so as to make the influence of the witness on the wave to decrease its
energy spread. The optimization problem is not rigorously defined in this case, because one must choose
between the increase in the average energy and the decrease in the energy spread. Nevertheless, one can
reach simultaneously an average energy of 91 GeV and a relative rms spread in energy of 0.7% (Fig. 7). The
position of this witness in the wave at the beginning of interaction is shown in Fig. 1. The initial witness
parameters are as follows: energy 300 MeV, rms length σw = 10 μm, normalized emittance 2 mm mrad,
and radius 2.25 μm. Since the witness has a high density and its significant part is located in the its own
bubble (see Fig. 1), the initial witness radius is matched to the focusing force of the ion background. The
leading edge of the witness is mismatched in this case, due to which the normalized emittance of the wit-
ness increases on the whole by a factor of 1.5 at the beginning of acceleration and does not change further-
more.
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6. DISCUSSION OF THE RESULTS AND CONCLUSION
According to the numerical simulation results, the witness energy turned out to be three times lower

than that expected from the estimates given in Section 2. There are two reasons for this. First, the
estimate (2) [1, 25, 26] was obtained from the group velocity and rate of pulse energy loss at the beginning
of interaction. In reality, the maximum energy is lower because of the synergy of depletion and dephasing.
On the one hand, when the pulse central frequency decreases because of the energy loss, the group veloc-
ity decreases as well, the pulse more rapidly shifts backward in the simulation window (Fig. 2), and the
dephasing length decreases. On the other hand, because of the difference in the frequencies in different
parts of the pulse, the latter is elongated (Fig. 2) and ceases to excite efficiently a wave long before trans-
ferring its energy to the plasma (Fig. 3).

Second, the suggestion that a wave with a characteristic radial scale c/ωp(nc), where the plasma fre-
quency ωp(nc) is determined by the plasma density nc on the axis, can be excited in a matched channel
turned out to be invalid. As follows from condition (9), the plasma density at r = r0 = c/ωp(nc) is 5nc.
This means that the wakefield wavelength length is determined by some density neff > nc averaged over the
beam radius. The same density value determines the scale and other characteristics of the wave: fre-
quency ωp(neff) and wavebreaking field E0. The beam radius always turns out to be larger than c/ωp(neff),
the wave energy is distributed over a region wider than c/ωp(neff), and the acceleration rate in the wave
is below eE0. This is exactly what we see in the basic variant, for which r0 = 2c/ωp(nc) and |Ez| ≈ E0/3.

The modern techniques of injecting plasma electrons into a wakefield make it possible to obtain high-
quality witnesses with an energy of 100 MeV or higher, but require precise controlling of plasma density
profile [27–31] and good reproducibility of laser pulse parameters [32, 33]. The tuning of a plasma injec-
tor may require a large number of “shots” and will be impossible if pulses follow with a period of several
hours and the price of one “shot” is high. Therefore, to implement a plasma injector preaccelerator, it is
necessary to have a separate laser system with a high repetition frequency, as well as a f lexible system for
controlling the plasma profile in the injector.

The key element of the proposed acceleration scheme will be a plasma channel having no analogs in
the world. In the basic variant, the channel with a twofold change in density on a scale of 200 μm should
provide a laser pulse transport by 500 Rayleigh lengths. Apparently, to design such a channel, one should
combine several existing techniques: capillary discharge [34–38], staging [39, 40], additional heating by
an auxiliary laser pulse [41–43], and ablation of material from renewable channel walls [44]. Since the
required plasma density in the channel (3 × 1015 cm–3) is unusually low for the laser wakefield acceleration,
one can affect the channel formation with a longitudinal magnetic field by magnetizing the transverse
motion of electrons and thus suppressing the transverse thermal conductivity of the plasma [45]. At elec-
tron energy of 10 eV or less, which is characteristic of plasma heating by an auxiliary laser [43], the required
channel radius (200 μm) is comparable with the Larmor radius of electrons in a magnetic field of 500 G,
which can easily be implemented. Due to the large (by the standards of the laser wakefield acceleration)
channel width and expected high accuracy of laser pulse control [7], the problem of inaccurate pulse
focusing [46] appears to be less hazardous than in other experiments with pulse channeling.
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