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Abstract—In this paper current distribution model in the tungsten sample and vapor at surface
under electron beam heat was considered. The model is based on the solutions of electrodynamic
equations and the two-phase Stefan problem in cylindrical coordinates. The two-phase Stefan
problem defines the temperature inside a sample area taking into account the evaporation at its
surface. A model temperature distribution in a thin layer of evaporated tungsten is used, which
repeats the surface temperature. The electrodynamic equation include received temperature values
and solved over the whole region. The case of constant values of electrical resistance and thermoemf
in gases and metals is considered. The temperature calculations were made considering constant
coefficients and temperature dependencies of specific heat capacity, density and thermal conductivity.
It is shown that the detail of the coefficients of the Stefan problem has a great influence on the results
of solving the electrodynamics equation. The model parameters are taken from the experiments on
the Beam of Electrons for materials Test Applications (BETA) stand, created at the BINP SB RAS.
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1. INTRODUCTION

The experimental stand Beam of Electrons for Materials Test Applications (BETA) created at the
Budker Institute of Nuclear Physics SB RAS [1], has yielded new experimental data on the erosion of
the surface of a tungsten sample under impulse action of an electron beam. The full-scale experiment is
constantly accompanied by a numerical simulation [2]. The tungsten heating model is based on solving
the equations of electrodynamics and the two-phase Stefan problem for temperature in the region of the
sample [3]. The condition on a free boundary molten—solid body consists of the temperature continuity
and discontinuity of the heat flow due to the absorption or release of a heat. The position and velocity of
the free boundary depends on the coefficients: specific heat capacity, density and thermal conductivity
of tungsten. In the case of constant coefficients, the temperature on the surface is a smooth function.
If coefficients in the form of dependencies on temperature are used in the calculation, then the solution
for the Stefan problem has small peculiarities. The work let’s into the calculation of the current in the
sample for these two cases. The influence of temperature inhomogeneity on the current strength is being
investigated in the presence of significant influences on the current generation, such as the difference in
electrical resistance and thermoelectric effects in the metal and its vapors. An electromotive force arises
in regions with variations in material parameters. It is important to note that the electromotive force
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differs in gases and melts. Therefore, a non-zero accelerating voltage arises across the closed circuit
through the gas and the melt, which generates a current along this circuit. The current, interacting
with the magnetic field, causes the overall movement of the substance. This work considers the case
where equations for fields and currents are formulated for a tungsten sample in a cylindrical coordinate
system, considering the electromotive forces arising in the gas above the sample [4]. It is assumed
that the characteristic time of change is large compared to the time required for the equilibrium of the
electromagnetic equations to be established on the scale of the problem. Further development of the
model involves refining the calculation of the gas’s specific electrical conductivity and thermoelectric
effects, considering the dependence of these parameters on gas density. The calculation results by
means of the final models are used for comparison with the experimental data obtained at the BETA
experimental stand. The article consists of the problem definition (temperature recovery and themlal
current determination), the solution method for the Stefan problem and for the current distribution, the
analysis of the Computation results.

2. PROBLEM DEFINITION

In the experiments on the BETA stand, samples of rolled tungsten were exposed to an axisymmetric
electron beam [5]. Electrons with an energy of 80−90 keV heat the material in a layer thin as compared
with the characteristic depth of heating of the material. The heat absorbed by the surface propagates
into the material. A sample has dimensions of 25 mm × 25 mm and a thickness of 4 mm. Since in such
a short time the sample is heated to a depth of several hundred microns, the simulation region was a
transverse section of the sample (sample thickness 3 mm) and a thin vapor layer (layer thickness 3 mm),
a region of 12 mm × 6 mm. The numerical model for the distribution of beam current in the heated
sample and tungsten vapors is simplified to solving a combined system of Maxwell’s equations and the
Stefan problem.

2.1. Temperature Recovery

Consider the following heat equation with surface heating
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

lc(T )ρ(T )∂T∂t = 1
r

∂
∂rrλ(T )

∂T
∂r + ρ(T )

ρ0
∂
∂z

ρ(T )
ρ0

λ(T )∂T∂z ,

(n,∇T )|γ = W (t,r)−N(t,r)
λ(T ) ,

(n,∇T ) = 0 at other boundaries,

T |t=0 = T0,
[
λ(T )∂T∂t

]∣
∣
Γ
= Lmvn, [T ]|Γ = 0,

(1)

where T (r, z, t) is the temperature, c(T ) is the specific heat, ρ(T ) is the density, ρ0 = ρ(T0) is the density
at the initial moment, λ(T ) is the thermal conductivity, W (t, r) = 2× 104 W/mm2 is the distribution of
power over the surface of the heat flux γ, N(t, r) is the evaporation power on the surface, n is the normal
to the surface, T0 = 300 K is the initial temperature, Γ is the free boundary, Lm is the enthalpy of the
phase transition, vn is the velocity of the free boundary. Tm = 3695 K is a melting temperature. Phase
transitions inherent in the considered problem are included in the coefficients of equation (1). Density
(see Fig. 2a), thermal conductivity (see Fig. 2b), specific heat capacity (see Fig. 2c), and evaporation
power (see Fig. 2d) are shown as dependencies on material temperature up to 8000 K. These functions
have discontinuities or lose smoothness at the melting point Tm;

ρ(T ) =

{
1.94 × 10−4 − 2.67 × 10−10T + 4.74 × 10−15T 2 − 9.52 × 10−18T 3, T0 ≤ T ≤ Tm,

16.27 × 10−6 − 7.68 × 10−10(T − Tm)− 8.09 × 10−14(T − Tm)2, Tm < T ≤ 8000,

c(T ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1.2× 10−4 + 4.34 × 10−8T − 2.02 × 10−14T 2 + 5.8× 10−15T 3+

7.53× 10−8T 4, T0 ≤ T < 3080,

1.1× 10−5 + 6.45 × 10−8T, 3080 ≤ T < Tm,

2.76× 10−4, Tm ≤ T ≤ 8000;
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Fig. 1. Scheme of the experiment. An axially symmetric electron beam in a leading coaxial magnetic field is incident
on the sample along the normal (beem at the figure falls from above, doesn’t plotted). The temperature distribution is
schematically indicated by color. The insert shows the distribution of induced currents.
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Fig. 2. Graphs of temperature dependencies of (a) density, (b) thermal conductivity, (c) specific heat, and (d) power loss
for evaporation.

λ(T ) =

⎧
⎪⎨

⎪⎩

149.44 × 10−3 − 45.47 × 10−6T + 13.2 × 10−9T 2 − 1.48 × 10−12T 3+

3.87 × 103T−2, T0 ≤ T < Tm,

−12.76 × 10−3 + 27.74 × 10−6T − 1.65 × 10−9T 2, Tm ≤ T ≤ 8000.

Measuring the thermophysical characteristics of refractory metals is a difficult task. Many reference
books and articles give an approximate or theoretically predicted dependence with an accuracy estimate
of 10 % and worse. The thermal conductivity and heat capacity of solid tungsten are taken from [6]. The
estimates for the thermal conductivity of liquid tungsten are taken from [7, 8]. It is necessary to choose
the function λ(T ) at large temperature values such that there is no division by zero.

It is more convenient to proceed in non-dimensional variables, for example, as follows (Table 1)

r∗ =
r

r0
, λ∗ =

λ

λ0
, ρ∗ =

ρ

ρ0
, c∗ =

c

c0
, t∗ =

λ0t

ρ0c0r02
, T ∗ =

T

T0
, W ∗ =

λ0T0W

r0
.
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Table 1. The characteristic values of the parameters

Parameter Typical value Units

r0 1 mm

t0 102 μ s

λ0 10−1 W/(mm K)

ρ0 10−5 kg/mm3

c0 108 W μ s/(kg K)

T0 103 K

W0 103 W/mm2

I0 103 A

j0 103 A/mm2

S0 10−2 V/K

ρe0 10−2 V mm/A

The calculations are based on available data on the temperature gradient of evaporating tungsten
above the surface [9, 10]. The calculations were carried out under the assumption that the gas tempera-
ture remains constant when considering a 3 mm gas layer above the surface. The obtained relationship
between temperature and radius, resulting from solving Stefan’s problem, remains consistent with
existing data. Thus, the temperature of the gas Tgas is equal to the temperature of the surface T |γ of
the plate: Tgas(r, z) = T (r)|γ . Existing developments allow for the calculation of gas temperature and
density from a system of gas dynamics equations, which will be utilized in further expanding the model.
The objective of this study is to investigate the influence of the coefficients of the system (1) on the
calculation of heat fluxes in the sample and in the thin vapor layer above it.

2.2. Themlal Current Determination

The process of current propagation in the sample can be considered stationary since the characteristic
time of change is large as compared to the time of establishing equilibrium of the equations of
electrodynamics on the scale of the problem [11]. The current distribution is calculated at the time when
the sample is heated up to the maximum temperature. Taking the evaporation process into account
ensures that the temperature increase is limited in the sample, which corresponds to the experimental
data [2]. The system of Maxwell equations for calculating the current in the sample is modified for the
stationary case in the cylindrical coordinate system

⎧
⎪⎨

⎪⎩

∇× �B = 4π
c
�j,

∇× �E = 0, ∇ · �B = 0,

∇ ·�j = 0, �E = ρe�j,

(2)

where ρe is the specific conductivity, �B is the magnetic field, �E = E(Er, Eϕ, Ez) is the electric field and
�j = (Jr, jϕ, jz) is the current. We introduce the vector potential of the current F = (Fr, Fϕ, Fz):

�j = ∇× �F (3)

and write (2) in the cylindrical coordinate system (r, ϕ, z). Note that the derivatives with respect to the
angle ϕ will be zero due to the symmetry of the problem with respect to rotation [12, 13]. We express the
current in terms of the vector potential of the current taking into consideration the zero derivative with
respect to the angle. Since a vortex electric field is absent, the current flows only in the axial and radial
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directions, and Eϕ = 0. It follows that jϕ = 0:

�j =

⎛

⎜
⎜
⎜
⎝

jr

jϕ

jz

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1
r
∂Fz
∂ϕ − ∂Fϕ

∂z

∂Fr
∂z − ∂Fz

∂r

1
r
∂rFϕ

∂r − 1
r
∂Fr
∂ϕ

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

−∂Fϕ

∂z

0

1
r
∂rFϕ

∂r

⎞

⎟
⎟
⎟
⎠

.

Thus, to describe the current, it suffices to use only one function Fϕ describing the “vorticity” of the
current. Taking into account the zero derivative with respect to the angle ϕ and the absence of a vortex
electric field jϕ = 0, the generalized Ohm’s law can be expressed as follows

�j =
(
�E − S∇T −∇μ/e

)
/ρe.

The equation for “vorticity” for a single nontrivial component is obtained. Here, μ represents the
chemical potential of electrons, and e represents the charge of an electron. To achieve this, the vector
operator “curl” (rot) is applied to both sides of equation (3)

∇×
(
ρe�j

)
= ∇×

(
�E − S∇T −∇μ/e

)
= ∇× (S∇T ) = ∇S ×∇T.

The expression is greatly simplified due to the potential nature of the electric field and the chemical
potential. Similarly to the previously discussed case for heat fluxes in the sample [3], for equation (2),
the following expression is obtained

∂2Fϕ

∂r2
+

∂2Fϕ

∂z2
+

∂Fϕ

∂r

(
1

ρe

∂ρe
∂r

+
1

r

)

+
∂Fϕ

∂z

1

ρe

∂ρe
∂z

+Fϕ

(
1

rρe

∂ρe
∂r

+
1

r2

)

=
1

ρe

(
∂S

∂r

∂T

∂z
− ∂S

∂z

∂T

∂r

)

.

After introducing the total current I(r, z) = 2πrFϕ, the equation takes the following form

∂2I

∂r2
+

∂2I

∂z2
+

∂I

∂r

∂ ln (ρe/r)

∂r
+

∂I

∂z

∂ ln (ρe/r)

∂z
=

2πr

ρe

(
∂S

∂r

∂T

∂z
− ∂S

∂z

∂T

∂r

)

. (4)

Denoting Φ = ln(ρe/r) and using ∇ as the differential operator in the orthogonal coordinate system
(r, z), the problem can be written as follows

⎧
⎪⎨

⎪⎩

ρe∇2I + ρe∇I∇Φ = 2πr∇S∇T, 0 < r < rmax, 0 < z < zmax, 0 < t,

Φ = ln(ρe/r), I|t=0 = 0,

I|(0,z) = 0, ∂I
∂n

∣
∣
(rmax,z)

= 0, ∂I
∂n

∣
∣
(r,zmax)

= 0, I|(r,0) = 0.

(5)

In the calculation of currents without considering the evaporating gas [3], the boundary conditions
played a crucial role in determining the currents. In the initial-boundary problem (5), the solution
is determined by the right-hand side of the equation, as the considered domain contains current
sources due to thermionic emission. Homogeneous Dirichlet boundary conditions for the current in
the sample and the gas above the sample simplify numerical calculations. Undoubtedly, such a choice of
boundary conditions is not exact, but the accuracy of this approximation can be improved by increasing
the computational domain. This does not contradict the problem formulation since in the modeled
experiment, the sample is fixed in a setup with a large internal diameter (10 cm) filled with a high
vacuum. The formulation of problem (5) allows us to avoid determining the current at the boundary of
the evaporating gas. The calculation of thermionic emission comes to the forefront. The characteristic
parameter values are provided in Table 1.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 44 No. 10 2023



4462 LAZAREVA, POPOV

3. SOLUTION METHOD

3.1. Solution Method for the Stefan Problem

To incorporate the conditions at the boundary between the melt and the solid phase, the differential
equation itself has been modified in the context of continuum schemes [14, 15]. In Equation (1), a
term appears in the multiplier of the time derivative, which contains the latent heat of fusion Lm =

51.1 × 105 Wμs
mm3 acting within the smoothing interval

(c(T )ρ(T ) + Lmδ (T,Δ))
∂T

∂t
=

1

r

∂

∂r
rλ(T )

∂T

∂r
+

ρ∗(T )

ρ0

∂

∂z

ρ∗(T )

ρ0
λ(T )

∂T

∂z
.

The multiplier δ(T, ε) acts on a narrow smoothing interval [−ε, ε], ε = 5 K around the melting
temperature Tm = 3695 K and is calculated as follows

δ (T, ε) =

{
1
2ε , |T − Tm| ≤ ε,

0, |T − Tm| > ε.

A uniform rectangular grid with nodes (i, k) : i = 1 . . . Nr, k = 1 . . . Nz is introduced in the two-
dimensional domain (r, z) : r ∈ [r0, rmax], z ∈ [z0, zmax], r0 = z0 = 0, rmax = 12 mm, z0 = 3 mm. The
plates used are squares approximately 25 mm × 25 mm and 3 mm thick. The size of the computational
domain corresponds to the dimensions of the samples, but the problem formulation in cylindrical
geometry assumes the consideration of a plate in the form of a puck. Such an assumption does not
have a significant impact on the results since the power distribution over the surface of the heat flux
has maximum values at the center of the sample and decreases proportionally with the radius. The
heating of the sample occurs in the center of the plate and does not reach its edges. The sample
is heated to a depth not exceeding 1 mm. Thus, the main focus during the calculation should be
given to the boundary conditions on the heated surface and along the axis of symmetry. Boundary
conditions at heated surface ∂T

∂z

∣
∣
z=0

= W (t,r)−N(t,r)
λ(T ) depends on three non-linear coefficients. The power

distribution over the heat flow surface is given by the following equation W (t, r) = Wmax(t) exp(−Ar2).
Here A = 1/a2 = 0.03088523 1/mm2 is a constant characterizing the beam radius a, which has the
same value for each series of experiments and is used to calculate the boundary condition for problem
(2), Wmax(t) = 2× 104 W/mm2. The heating power density distribution over the surface was measured
using X-ray imaging [6]. Power loss for the evaporation process N(T |γ) = Le · 1

S
dm
dt , where 1

S
dm
dt is

mass evaporation rate, Le is evaporation enthalpy. Power loss is calculated using the following equations

Le = 4.482 × 1012
Wμs

kg
,

1

S

dm

dt
= P (T |γ)

√
M

2πRT |γ

= exp

(

26.19104 − 83971.3 K
T |γ

)√
0.184 K

2π8.314T |γ
10−12 kg

mm2 μs
.

Here T |γ is temperature at surface, P (T |γ) is saturated steam pressure. The derivation of the power loss
equation and the justification for neglecting temperature radiation by the surface in the energy balance
are presented in more detail in the study [16]. Let’s define on a grid with nodes tn = nτ , n = 1, . . . , T ,
ri = ih, i = 1, . . . , Nr, zk = kh, k = 1, . . . , Nz grid functions

T n
ik = T (tn, ri, zk), Cn

ik = c(T n
ik)ρ(T

n
ik) + Lmδ (T n

ik,Δ) , Rn
ik =

ρ∗(T n
ik)

ρ0
, Ln

ik = λ(T n
ik).

On the heated surface the boundary conditions is set with the use of node functions

W n
i = Wmax(t

n) exp(−Ari
2), Nn

i = N(tn, ri).

Initial conditions: T o
ik = T0. Difference operators are introduced

(Λrr)
n
ik =

1

rih2Cn
ik

[
ri+1/2L

n
ik

(
T n
i+1k − T n

ik

)
− ri−1/2L

n
ik

(
T n
ik − T n

i−1k

)]
,
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(Λzz)
n
ik =

Rn
ik

h2Cn
ik

[
Rn

ik+1/2L
n
ik+1/2

(
T n1
ik+1 − T n

ik

)]
,

fi+1/2j =
fij + fi+1j

2
, fij+1/2 =

fij + fij+1

2
. (6)

The calculation of temperature at internal points of the computational domain is implemented using
the Douglas–Rachford method and tridiagonal matrix algorithm [17]. The coefficients are computed
based on the temperature values from the previous layer. The finite difference scheme for the equation
(1) has the following form

⎧
⎨

⎩

T
n+1/2
ik −Tn

ik
τ = (Λrr)

n+1/2
ik + (Λzz)

n
ik ,

Tn+1
ik −T

n+1/2
ik

τ = (Λzz)
n+1
ik − (Λzz)

n
ik .

The boundary conditions at each stage have the form

T
n+1/2
Nr−2,k − 4T

n+1/2
Nr ,k

+ 3T
n+1/2
Nr−1,k

2h
= 0,

T
n+1/2
2k − T

n+1/2
1k

h
− h

4Ln
1k

{

Cn
1k

T
n+1/2
2k − T n

2k

τ
+ (Λzz)

n+1/2
1k

}

= 0,

T n+1
i,3 − 4T n+1

i,2 + 3T n+1
i,1

2h
=

W n+1
i −Nn+1

i

Ln+1
i1

,
T n+1
i,Nz−2 − 4T n+1

i,Nz
+ 3T n+1

i,Nz−1

2h
= 0.

The proposed solution scheme has a second-order spatial approximation and eliminates the need
to specify the phase transformation boundary. Equation (1) has a divergent form, which allows for the
use of conservative schemes. The solution of the system (6) with constant coefficients has been tested
against known analytical solutions, while the solution with variable coefficients has been tested against
experimental data. It is known that heating a tungsten sample with a power density of 103 W/mm2 for
1000 μs results in the sample reaching a temperature of 20000 K. Interesting results from the calculations
in [2] demonstrated a complete match between the dynamics of the computed and experimental melt
radius when considering evaporation at the boundary of the tungsten plate. The proposed algorithm is
cost-effective and straightforward to implement, and it can be used for simulating the melting of other
refractory metals. It is possible that using iterative methods [18] to implement such an approach would
be more efficient.

3.2. Solution Method for the Current Distribution

The problem was previously solved only in the sample region [3]. Currently, it is impossible to solve
the problem solely in the vapor region because the boundary condition formulation for heat flows in the
gas above the metal surface poses significant challenges. In the considered formulation, the issue of
boundary condition formulation is resolved, but a number of difficulties arise. The current amplitude
cannot be accurately determined for a continuous problem with any degree of simplification because the
derivatives at the discontinuity point take on an infinite value. Without regularization, it is not possible
to proceed with the numerical solution of the problem, as it may lead to a solution dependent on the step
size h of the computational grid.

To use continuous approximation schemes and account for the conditions at the boundary between
the plate material and the vapor, it is necessary to transform Eq. (4). In the term ∂I

∂z
∂ ln(ρe/r)

∂z , both
factors experience a discontinuity at the sample surface. The derivative of the current with respect to
the surface normal changes sign because the currents reach a maximum at the metal-gas boundary.
However, the solution of Eq. (4) has positive second derivatives everywhere outside the sample surface.
The derivative with respect to the surface normal of the specific conductivity is a derivative of the
discontinuous function, as the specific conductivity of the metal is two orders of magnitude higher
than that of the gas, regardless of the method used to determine it. Similarly, the term ∂S

∂z
∂T
∂r in the

right-hand side of Eq. (4) contains a derivative of the discontinuous thermoelectric power function.
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Derivatives with respect to z of the discontinuous functions are calculated using the Dirac delta function.
The proposed replacement [19] of the derivative at the discontinuity point with a continuous function
δ(z − z0), multiplied by the jump in thermoelectric power over the interval [z0 − 2h, z0 + 2h], is adapted
to the problem under consideration. After regularization, the right-hand side of Equation (4) takes the
following form

∂2I

∂r2
+

∂2I

∂z2
+

∂I

∂r

∂ ln (ρe/r)

∂r
+

∂I

∂z

∂ ln (ρe/r)

∂z

=
2πr

ρe

(
∂S

∂r

∂T

∂z
− ∂T

∂r

{(
∂S

∂z

)

z �=z0

+ δ(z − z0)[S]z=z0

})

.

Since the derivative ∂I
∂z suffers a discontinuity at the maximum point of the function I at the interface,

the term ∂I
∂z

∂ ln(ρe/r)
∂z requires smoothing. As the result, we obtain an equation that gives an adequate

solution at the interface between the media

∂2I

∂r2
+

∂2I

∂z2
+

∂I

∂r

∂ ln (ρe/r)

∂r
+

∂I

∂z

{
∂

∂z
(ln (ρe/r))

}

z≤z0−ε,z�z0+ε

+
∂I

∂z

{
∂P (ρe/r)

∂z

}

z0−ε<z<z0+ε

=
2πr

ρe

(
∂S

∂r

∂T

∂z
− ∂T

∂r

{
∂S

∂z

}

z �=z0

− ∂T

∂r
δ(z − z0)[S]z=z0

)

.

Here P (ρe/r) is a cubic polynomial such that

(
∂2P (ρe/r)

∂z2

)

z=z0±ε

=

(
∂2 ln (ρe/r)

∂z2

)

z=z0±ε

.

In the case of constant medium parameters considered, it is sufficient to use a sigmoid function for
smoothing, which has the form

P (ρe/r) = ln
(
ρmet
e /r

) 1

1− ez−z0
+ ln (ρgase /r) , ε = 0.05 mm.

This regularization should serve as a starting point for further methodological investigations. For solving
the complete system of Maxwell’s equations (4) in the multidimensional case, numerical methods
for solving electrodynamics problems with nonlinear effects that lead to significant changes in the
characteristics of the electromagnetic field are known [20, 21]. For solving the simplified version of the
system (4) in the form (5), both well-established iterative methods [22], finite element and finite volume
methods [23, 24], as well as ready-made libraries [25] can be used. In the future, other economical
methods [26, 27] is planned to be used for solving the problem. Solution of equation (4) by the method
of successive over-relaxation (SOR) [28] at each time step allows us to build an efficient algorithm for
the relaxation parameter ω = 2−O(h) [29].

Let’s increase the computational domain in the axial direction by a factor of two. We define
grid function Tik = T (ri, zk), Inik = (I(ri, zk))

n on the grid nodes ri = ih, i = 1, ..., Nr , zk = kh, k =

1, ..., 2Nz . At this stage, a stationary problem is solved using the value at a given time step where
sufficiently high temperature values are reached. In the computational domain corresponding to the
sample, the temperature obtained from the solution of the system (1) is set. In the region corresponding
to the pair, a radial temperature distribution is specified on the surface Tik = T (ri, Nz), i = 1, ..., Nr ,
i = Nz + 1, ..., 2Nz . Let the grid functions lying on the line z = z0 have indices (i,Nz + 1/2). Then, the
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finite difference scheme for the system of equations (5) has the following form
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φi,k = log(ρe(Ti,k)/ri), i = 1, ..., Nr , k = 1, ..., 2Nz ,

ari,k = 1
4

(
ln (ρe/r)

n
i+1,k − ln (ρe/r)

n
i−1,k

)
,

azi,k = 1
4

{
ln (ρe/r)

n
i,k+1 − ln (ρe/r)

n+1
i,k−1

}

k<k0−l,k>k0+l

+1
4

{
P3 (ρe/r)

n
i,k+1 − P3 (ρe/r)

n+1
i,k−1

}

k0−l≤k≤k0+l
,

Fn
i,k = 1

4
2πri

ρe(Ti,k)
((S(Ti+1,k)− S(Ti−1,k)) (Ti,k+1 − Ti,k−1)

− (Ti+1,k − Ti−1,k) (S(Ti,k+1)− S(Ti,k−1))k<k0−2,k>k0+2

−h (Ti+1,k − Ti−1,k)
(
1 + cos

(
π k−k0

2

))
(S(Ti,k0+1)− S(Ti,k0))k0−2≤k≤k0+2

)
,

In+1
i,k = (1− ω)Ini,k +

ω
4

[
In+1
i−1,k (1− ari,k) + In+1

i,k−1 (1− azi,k)

+Ini+1,k (1 + ari,k) + Ini,k+1 (1 + azi,k)− Fn
i,k

]
, i = 2, ..., Nr − 1, k = 2, ..., 2Nz − 1,

Ii,1 = I1,k = 0, Ii,2Nz = Ii,2Nz−1, INr,k = INr−1,k.

(7)

Along with other advantages, the SOR method is interesting from the viewpoint of the ease of
implementation in cylindrical coordinates. The principle of expressing the desired element through the
adjacent points of the “cross” type is universal and does not depend on the choice of the coordinate
system. We can note that Eq. (5) and the solution algorithm contain division by radius only in the
argument of the logarithm function in calculating Φi,k. Since the logarithm function increases rather
slowly as the argument grows, the division by quantities of order of h/2 does not lead to the appearance
of the solution singularities while calculating in the vicinity of the symmetry axis.

4. COMPUTATION RESULTS

Let’s solve problem (1) for constant and variable coefficients. As values, we will choose values close
to the ones for temperatures above the melting temperature: c(T ) = 2.7 × 108, ρ(T ) = 1.6× 10−5,
λ(T ) = 0.8× 10−1 for 6000 K. We will assume the melting heat Lm to be zero, excluding a phase
transition. Lets consider problem (5) for the case when ρe, S are constant in the metal and in the gas.
As values, we will choose values close to the ones for a temperature of 6000 K: ρmet

e = 1.5× 10−4,
ρgase = 0.7× 10−3, Smet = 1.5× 10−5, Sgas = 10−3.

Distribution for temperature and currents are received (see Fig. 3). Temperature distribution over the
border z = z0 repeats surface temperature, which is allowable assumption for a small vapor layer above
the sample. The heating depth is very small, corresponding to the theory and is confirmed by comparison
of calculated and experimental data [2]. Current distributions reach maximum values at z = z0 sample
border and propagate into gas and metal.

Let’s compare the temperature profiles on the surface (Fig. 4a) obtained using constant coefficients
without considering the phase transition and using coefficients that depend on temperature. Unlike the
smooth solution obtained with constant coefficients, the full formulation of the Stefan problem solution
produces a graph with singularities. The main contribution to the solution’s shape comes from the
thermal conductivity coefficient λ(T ), which enters the boundary condition in problem (1) and appears
under the derivative terms with respect to space. The dependence λ(T ) experiences a discontinuity
at the melting point and has different characteristics in the metal and the melt (Fig. 2b). Depending
on the temperature profile on the surface, different solutions can be obtained at the interface between
the media (see Fig. 4b). Despite the close values of the current amplitude, the current profile at the
interface has a different nature. In the case of solving the complete Stefan problem, the current is
non-uniformly distributed in the region, with high values concentrated outside the melt region. This
is because the source of the current is not the temperature itself but the temperature difference, similar
to a thermocouple that does not generate energy when the entire system is uniformly heated. At the same
time, the current locally closes since the principle of superposition applies in this problem: current arises
from each surface segment independently and decays in a power-law manner. Therefore, the details of
heating strongly influence the current distribution pattern.
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Fig. 3. The temperature distribution (a, c) and corresponding current distribution (b, d) at sample cross section.
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Fig. 4. Plots of radial temperature distribution (a) and the corresponding current (b) on the plate’s surface. The results
of the Stefan problem calculation with variable coefficients (solid line) and constant coefficients (dashed line).
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Fig. 5. Distribution of the radial component of the current on the transverse section of the plate and the region above it
for constant coefficients (a) and variable coefficients (b) of the Stefan problem.

The closed contour lines of thermal currents (see Fig. 5) change their nature. A smooth temperature
profile on the surface produces nearly symmetric contour lines with respect to the sample’s surface at
z = z0. In the absence of smoothness in the derivative of temperature with respect to the radius, shifted
current lines are obtained because at the center of the heated surface, the temperature distribution is
sufficiently smooth and there is no local source of closed currents. The change in the bending nature
near the boundary is due to the radius of smoothing used for the discontinuous functions. After replacing
the sigmoid function with a cubic polynomial with carefully selected coefficients, these non-physical
features of the solution will disappear. The calculation results will serve as a basis for introducing variable
coefficients into the solution of problem (5), which will undoubtedly change the position of the current
amplitude maximum and complicate the contour lines’ pattern.
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5. CONCLUSIONS

Modeling of thermal currents arising from pulsed heating of a tungsten plate and a thin layer of
vapor has been conducted based on solving the equations of electrodynamics in the sample region and
above it. The temperature in the sample region is obtained by solving a two-phase Stefan problem
in a cylindrical coordinate system. A model temperature distribution of evaporating tungsten is used,
which replicates the surface temperature, corresponding to the physics of the process in the considered
thin vapor layer. The case of constant values of electrical resistance and thermoelectric power in the
gas and metal is considered. The results of the modeling demonstrate that the detailed consideration
of the Stefan problem coefficients has a significant influence on the results of the electrodynamics
equation solution. Further development of the model involves refining the calculation of the gas’s specific
electrical conductivity, the metal’s thermoelectric power, and incorporating numerical calculations of
temperature and gas density.
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