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Abstract: Machine learning and artificial intelligence technologies are known to be a convenient
tool for analyzing multi-domain data in precision psychiatry. In the case of schizophrenia, the most
commonly used data sources for such purposes are neuroimaging, voice and language patterns, and
mobile phone data. Data on peripheral markers can also be useful for building predictive models.
Here, we have developed five predictive models for the binary classification of schizophrenia patients
and healthy individuals. Data on serum concentrations of cytokines, chemokines, growth factors, and
age were among 38 parameters used to build these models. The sample consisted of 217 schizophrenia
patients and 90 healthy individuals. The models architecture was involved logistic regression, deep
neural networks, decision trees, support vector machine, and k-nearest neighbors algorithms. It
was shown that the algorithm based on a deep neural network (consisting of five layers) showed a
slightly higher sensitivity (0.87 ± 0.04) and specificity (0.52 ± 0.06) than other algorithms. Combining
all variables into a single classifier showed a cumulative effect that exceeded the effectiveness of
individual variables, indicating the need to use multiple biomarkers to diagnose schizophrenia. Thus,
the data obtained showed the promise of using data on peripheral biomarkers and machine learning
methods for diagnosing schizophrenia.

Keywords: schizophrenia; biomarkers; artificial intelligence; machine learning; predictive model;
deep neural network; logistic regression; decision trees; support vector machine; k-nearest neighbors

1. Introduction

Schizophrenia is a debilitating mental disorder that affects 0.3–0.7% of people world-
wide [1]. Currently, the diagnosis of schizophrenia is based solely on the clinical picture
of the disease according to the Diagnostic and Statistical Manual of Mental Disorders 5
(DSM-5) [1] or International Classification of Diseases, Tenth Revision (ICD-10) [2]. This
leads to difficulties in making a diagnosis, including due to the similarity of the symptoms
of schizophrenia with other mental disorders, such as bipolar disorder, depression and
autism [3]. Relying solely on clinical symptoms to diagnose schizophrenia can be chal-
lenging due to the subjective nature of symptom assessment. In the absence of objective
diagnostic tools such as biological or neuroimaging markers, clinical characteristics alone
have limited predictive value, as evidenced by lack of response to therapy and disease
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progression [4–6]. The development of artificial intelligence technologies has opened up
new possibilities for building predictive models for diagnosing mental disorders. Clinical
neuroimaging, language patterns, and mobile phone data are often used to build predictive
models of schizophrenia [7,8]. However, clinical data have a high probability of subjectivity.
Neuroimaging data is quite difficult to obtain in some cases. Predictive models based
on language pattern data require adaptation depending on the country and region and,
thus, cannot be universal. Therefore, predictive models based on blood-based biomarkers
associated with the pathogenesis of schizophrenia may prove promising.

For many years it was believed that the main biological substrate of schizophrenia is
an alteration of the neurotransmission of the neurotransmitters dopamine, glutamate, and
serotonin in the CNS [9]. Abnormalities in neural circuits and pathways can disrupt the
normal functioning of the brain and contribute to the development of symptoms observed in
schizophrenia patients [10–12]. However, over the past decade, a large amount of evidence
has accumulated that suggests abnormalities of the immune system have an important role in
the pathogenesis of schizophrenia, as indicated by peripheral immune alterations [13,14] and
neuroinflammation with uncontrolled microglia activation [15–19]. One of the most common
molecules that reflect changes in the immune system are cytokines, signaling proteins that
regulate the proliferation and activation of immune cells [20]. The primary function of
chemokines is to attract immune cells to the inflammation site [21]. Additionally, both
chemokines and cytokines may be involved in neurogenesis, neuromodulation, neuro-
transmission, and can influence behavior [21,22]. In addition to immunoinflammatory
mediators, various peripheral growth factors play an important role in the growth, develop-
ment, differentiation, survival, and migration of cells, including neurons and astrocytes [23].
Cytokines, chemokines, and growth factors may be promising biomarkers of schizophrenia.

While the literature presents a large number of studies of the level of peripheral
cytokines associated with schizophrenia, there are slightly fewer data on the peripheral
concentration of chemokines. Furthermore, it should be noted that, despite the general
trend reflecting an increase in the level of pro-inflammatory cytokines and chemokines
associated with this disease, when considering individual indicators, the data are often con-
tradictory [21,24–26]. Data on the concentration of growth factors in the peripheral blood in
schizophrenic patients, with the exception of a number of neurospecific factors, are limited.
Various studies have shown that levels of granulocyte-macrophage colony-stimulating
factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), platelet-derived growth
factor with two subunits B (PDGF-BB), and vascular endothelial growth factor A (VEGF-A)
were significantly elevated, while the levels of fibroblast growth factor (FGF), epidermal
growth factor (EGF), and nerve growth factor (NGF) were significantly reduced in patients
with schizophrenia [23,27–29].

Given the heterogeneity of the results obtained in previous studies, as well as the mul-
tifactorial nature of schizophrenia, we assume that it is not possible to identify one specific
disease biomarker using traditional statistical analysis methods. The «biological» diagnosis
of schizophrenia should be based on a set of specific markers that may underlie the etiology
of the disease. As stated above, to solve this problem, machine learning algorithms can be
used to identify subtle patterns in data and build predictive models. In recent years, machine
learning methods have been widely used to analyze data from patients with schizophrenia.
Approaches to predicting clinical improvement [30], classification of schizophrenia patients
and healthy people [31,32], or patients with autism spectrum disorder [33] using machine
learning algorithms based on neuroimaging data have been described. A method for diag-
nosing schizophrenia based on electroencephalography data using a random forest or a deep
convolutional neural network has been proposed [34–36]. A number of papers based on data
from peripheral blood biomarkers using machine learning algorithms have been published.
Fernandes et al. (2020) have developed a multi-domain model consisting of peripheral
blood immune and inflammatory biomarkers and cognitive biomarkers capable of clas-
sifying schizophrenia and healthy individuals with a sensitivity of 84% and a specificity
of 81% [37]. An integrated machine learning framework for a discriminative analysis of



Biomedicines 2023, 11, 1990 3 of 13

schizophrenia including gut microbiota data, blood data (inflammation, immunity and ox-
idative stress), and electroencephalographic data achieved the best results, with an accuracy
of 91.7% and an area under curve (AUC) of 96.5% [38]. A machine learning algorithm for
diagnosing schizophrenia based on the expression of six genes in peripheral blood showed
valuable results with an AUC = 0.993 [39]. Using the machine learning method, complex
associations between neuroimmune biomarkers and quality of life in schizophrenia have
been shown [40]. An approach to diagnose treatment-resistant schizophrenia based on
DNA methylation signature aberration using a machine learning method has also been
described [41].

Thus, machine learning and artificial intelligence have become increasingly popular
for developing new methods of precision psychiatry [42]. Machine learning algorithms can
serve as a valuable tool for clinicians in the prediction, differential diagnosis, and treatment
of schizophrenia. However, there are still few studies using peripheral biomarkers to build
predictive models for diagnosing schizophrenia. Immune biomarkers including cytokines,
chemokines, and growth factors may be particularly useful for constructing predictive
models of schizophrenia. Numerous studies have confirmed the association of changes
in the concentrations of immune biomarkers with schizophrenia [13,14,26,29]. Data on
the concentration of such biomarkers can be obtained using common laboratory methods.
Potentially, then, inflammatory biomarkers can provide more objective and reliable indica-
tors for predicting and classifying patients with schizophrenia, and predictive models of
schizophrenia based on immune markers could be implemented in clinical practice.

The aim of this work was to develop predictive models based on laboratory data
on inflammatory biomarkers for the classification of patients with schizophrenia and
healthy individuals. Various clinical scales, such as the Positive and Negative Syndrome
Scale (PANSS) [43], have some degree of subjectivity and depend on the experience of
the clinician. In contrast, predictive models based on laboratory data on inflammatory
biomarkers would have little influence of subjectivity. In the present study, the age of the
participants, as a non-subjective variable, was also included in the analysis. Predictive
models based on five different architectures were built and tested. To build models,
common binary classification algorithms based on logistic regression and deep neural
networks were used. Additionally, the efficiency of the algorithms was tested, based on
decision trees, support vector machine, and k-nearest neighbors classifier.

2. Materials and Methods
2.1. Characteristics of Patients and Healthy Individuals Included in the Study

Two hundred seventeen patients with schizophrenia (F20 according to the ICD-10)
were examined and recruited from the Mental Health Research Institute of the Tomsk
National Research Medical Center of the Russian Academy of Sciences and from the Tomsk
Regional Psychiatric Hospital. Inclusion criteria for disease-positive study participants
included those with diagnosis of schizophrenia according to ICD-10, age from 18 to 70 years,
and absence of signs of acute and chronic infectious-inflammatory and autoimmune dis-
eases. A healthy control group consisted of 90 mentally and somatically healthy individuals,
aged from 18 to 70 years, and without signs of acute and chronic infectious-inflammatory
and autoimmune diseases. Exclusion criteria for all participants included comorbid neuro-
logical and somatic diseases, and dependence on psychoactive substances and alcohol. Any
subject could withdraw consent to participate in the study at any time, and the correpond-
ing data would be excluded from processing. The severity of schizophrenia symptoms was
determined using the Positive and Negative Syndrome Scale (PANSS) [43]. Serum was
obtained from peripheral blood samples of all study subjects by centrifugation for 30 min
at 2000× g at +4 ◦C. Serum was stored at −80 ◦C until analysis. Patients were examined in
the first days after admission to the hospital.
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2.2. Multiplex Analysis of the Concentration of Cytokines, Chemokines and Growth Factors in
Blood Serum

Determination of cytokine concentration in blood serum was carried out using xMAP
technology on analyzers Magpix and Luminex 200 (Luminex, Austin, TX, USA) (Core Facil-
ity “Medical Genomics”, Tomsk NMRC). The panel HCYTMAG-60K-PX41 by MILLIPLEX
MAP (Merck, Darmstadt, Germany) was used to measure analytes.

The MILLIPLEX MAP system includes antibodies that specifically bind to analytes
and are conjugated to xMAP beads. The technology is based on the use of MagPlex-C
microspheres—magnetic beads (5.6 to 6.45 µm in diameter) stained with two fluorescent
dyes, on the surface of which specific antibodies to the analyzed analytes are localized. Each
individual microsphere is identified in the multiplex analyzer and its biological analysis
result is quantified based on fluorescent signals.

The detected information is processed by the xPONENT software (Luminex, Austin,
TX, USA) with data export to the MILLIPLEX Analyst 5.1 (Merck, Darmstadt, Germany).
The concentration results were presented in pg/mL.

2.3. Data Preprocessing and Preliminary Statistical Analysis

The data was filtered by removing any rows containing empty cells. To standardize
all properties within a [−1, 1] range, a preprocessing step was applied where any value
x underwent the transformation 1 − 2/(1 + exp(−(x − mean)/std)), where mean, std are
the mean and standard deviation of each variable under analysis in the whole dataset.
Preliminary statistical analysis was conducted using the scipy package (1.9.1) in Python
language. The Statistica 10 desktop program (StatSoft, Tulsa, OK, USA) was used for
preliminary statistical analysis. The significance of differences in the age of patients and
healthy individuals was calculated using the Student’s t-test. Pearson’s chi-squared test
was used to analyze the categorical variable sex.

2.4. Building Predictive Models

Predictive models were constructed using open source packages PyTorch (2.0.0), Scikit-
learn (1.1.2) and pandas (2.0.1) of Python 3.10.6 programming language. Predictive models
were built using algorithms based on logistic regression, deep neural networks, decision
trees, support vector machine, and k-nearest neighbors algorithms classifier. Details of
building predictive models are presented in Section 3. To check the quality and stability
of the constructed models, the cross-validation method was applied using the Scikit-learn
package (1.1.2). Sensitivity and specificity parameters for each of the constructed models
are presented as the mean and standard deviation calculated for five test samples. The
developed code is hosted in the github repository (https://github.com/eakozyrev/schizo2
023 (accessed on 18 June 2023)).

3. Results
3.1. Characterization of the Sample of Patients and Healthy Individuals Used for Classification

The study sample used to build predictive models consisted of 217 patients with
schizophrenia and 90 healthy individuals. The study cohorts were comparable in sex
and age (Table 1). The male to female ratio was similar in the two groups (52.1/47.9%
vs. 50/50%). The mean PANSS total score assessing the severity of clinical symptoms of
schizophrenia was 98.7 ± 15.0 points. Other clinical data are presented in Table 1.

The concentration of 37 biomarkers was studied in each participant using multiplex
assay. Among the analyzed biomarkers were 22 cytokines: interleukin-(IL)-1α, IL-1β, IL-1
receptor antagonist (IL-1RA), IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12P40, IL-
12P70, IL-13, IL-15, IL-17A, tumor necrosis factor α (TNFα), TNFβ, FMS-like tyrosine kinase
3 ligand (Flt-3L), interferon-(IFN)-α2, and IFNγ. In addition, the concentrations of eight
chemokines (MCP-1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4, MCP-3/CCL7, GRO/CXCL1,
IP-10/CXCL10, eotaxin/CCL11, MDC/CCL22) were studied. Among the seven growth
factors analyzed were the following: epidermal growth factor (EGF), transforming growth
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factor alpha (TGFα), platelet-derived growth factor-(PDGF)-AA, PDGF-AB/BB, fibrob-
last growth factor 2 (FGF-2), granulocyte colony-stimulating factor (G-CSF), granulocyte-
macrophage colony-stimulating factor (GM-CSF). The obtained data on the concentration
of 37 biomarkers were used to build predictive models. Additionally, the variable “age”
was included in the analysis. All variables used had minimal risk of subjectivity.

Table 1. Demographic and clinical data of the sample of patients and healthy individuals used to
build predictive models.

Parameter Schizophrenia Group Healthy Group Significance of Differences

n 217 90 N.A.
Sex (F/M), n 113/104 45/45 N.S.

Age (Mean ± SD), years 38.3 ± 11.1 37.7 ± 13.2 N.S.
Age at disease manifestation (Mean ± SD), years 25.6 ± 8.1 N.A. N.A.

Disease duration (Mean ± SD), years 12.8 ± 9.8 N.A. N.A.
PANSS, positive score (Mean ± SD) 21.0 ± 6.1 N.A. N.A.
PANSS, negative score (Mean ± SD) 25.5 ± 6.4 N.A. N.A.
PANSS, general score (Mean ± SD) 52.2 ± 11.7 N.A. N.A.

PANSS, total score (Mean ± SD) 98.7 ± 15.0 N.A. N.A.

Note: The significance of the differences was calculated using Student’s t-test or Pearson’s chi-squared test (for
sex). A p-value > 0.05 was considered not significant (N.S.). Abbreviations: N.A.—not applicable, SD—standard
deviation.

The distributions of the variables used were initially analyzed. Figure 1 shows exam-
ples of distributions for two variables that showed signs of some differences. However,
variables that differed significantly between patients and healthy individuals were not
identified. Therefore, all variables were used to build predictive models.

Biomedicines 2023, 11, x FOR PEER REVIEW 6 of 14 
 

 
Figure 1. Examples of distributions of GRO (A) and MDC (B) concentration data in samples of schiz-
ophrenic patients and healthy individuals. 

In some cases, the relationship between variables may be linear. In these cases, linear 
predictive models can be used. Therefore, linear dependencies between variables were 
analyzed. A histogram of the linear correlations between the markers used and the main 
sign that distinguishes healthy and sick subjects is shown in Figure 2. It has been shown 
that no features have a high correlation value, making it difficult to use linear classification 
models to differentiate between patients and healthy control groups. The maximal corre-
lation for chemokine MDC/CCL22 is about 0.2. Therefore, more complex models have 
been applied to classify patients and healthy individuals. 

 
Figure 2. Histogram of linear correlation of markers with healthy/patient sign. 

In Figure 3 we show ROC curves for each variable and its opposite, which can be 
interpreted as reflecting the sensitivity of each variable in classifying the subject. These 
curves are obtained without any training of any additional parameters, thus, this reflects 
the degree to which each variable correlates or does not correlate with healthy/patient 
sign. From Figure 3, it appears that the MDC variable reaches a sensitivity (rate of correct 
recognition of patients) of approximately 0.79. 

Figure 1. Examples of distributions of GRO (A) and MDC (B) concentration data in samples of
schizophrenic patients and healthy individuals.

In some cases, the relationship between variables may be linear. In these cases,
linear predictive models can be used. Therefore, linear dependencies between variables
were analyzed. A histogram of the linear correlations between the markers used and the
main sign that distinguishes healthy and sick subjects is shown in Figure 2. It has been
shown that no features have a high correlation value, making it difficult to use linear
classification models to differentiate between patients and healthy control groups. The
maximal correlation for chemokine MDC/CCL22 is about 0.2. Therefore, more complex
models have been applied to classify patients and healthy individuals.
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In Figure 3 we show ROC curves for each variable and its opposite, which can be
interpreted as reflecting the sensitivity of each variable in classifying the subject. These
curves are obtained without any training of any additional parameters, thus, this reflects
the degree to which each variable correlates or does not correlate with healthy/patient
sign. From Figure 3, it appears that the MDC variable reaches a sensitivity (rate of correct
recognition of patients) of approximately 0.79.
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As the distribution density of each marker is unknown to us a priori, an empirical
sample of the data was used to test the statistical stability of the desired models. Any
instability can be due to a small number of events or non-statistical outliers caused by
umeasured process factors. Cross-validation tests were performed for each architecture.
For cross-validation, the available dataset was divided into five parts to create independent
test samples. The five parts were used as follows: the first part was used as the test set,
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while the other four parts were used as the training set in the following sample sizes: 69
and 176 (healthy individuals and patients, respectively) for training and 21 and 41 (healthy
individuals and patients, respectively) for testing. This process was repeated five times,
with each part being used as the test set once. This ensured that each sample was used as
both training and test data, thus providing a reliable estimate of model performance.

3.2. Building a Predictive Model Based on Neural Networks

The following, generally accepted architectures, based on neural networks, were used
to build predictive models:

1. Architecture based on logistic regression. It is a linear model that can be represented
as f(x) = 1/[1 + exp(−z)], where z = θ0 + θ1x1 + . . . + θnxn, n = 38, x are markers-values,
and θ are unknown parameters that are determined during model training. As a loss
function, which is minimized in the process of training the model, the squared error
function MSE is used. For minimization, the gradient descent method was applied
with optimization by the Adam method and a penalty function as a regularization.
The learning rate hyperparameter was chosen as 0.0003, and the number of epochs
is 1500.

2. Architecture based on a deep neural network. The deep neural network used in this
study includes four fully connected layers, with 38, 38, 19, 12, and 1 neurons on each
layer. The activation function used throughout the network was Relu, except for the
last layer, which used the sigmoid function. A total of 2476 parameters were trained.
The model was designed to achieve high efficiency with the training samples, as the
parameters were selected to maximize the separability of data by class. Although deep
neural networks can be prone to overfitting due to a large number of parameters and
very small number of samples, we addressed this concern by stopping the parameter
optimization process once the mean squared error (MSE) reached 0.05. We also
attempted to use dropout regularization to prevent overfitting, but it did not provide
significant improvement.

During each epoch of training, we randomly selected the patients, and their sample
size was equal to the number of healthy individuals available for training. This ensured
that the network was trained using a balanced dataset, with an equal number of events
from both classes. The process was repeated for 1500 epochs.

The histograms on the left and right of Figure 4 represent the output distributions for
logistic regression and deep neural network, respectively. They provide a summary of the
values calculated for all five test samples.

Sensitivity and specificity are two important measures used to evaluate the accuracy
of diagnostic tests. High sensitivity is crucial for identifying all patients with a particular
condition, while high specificity is crucial for excluding patients who do not have the
condition. ROC analysis is used to evaluate the quality of a binary classification. The ROC
curves of five models tested on the five independent test sets used in the linear regression
(Figure 5A) and deep neural network (Figure 5B) are depicted below. The asterisks indicate
the optimal values—the highest value of the ratio of sensitivity and specificity. The profiles
of the ROC curves display some scatter due to the limited statistics available. However, the
ROC curves for the five independent samples have similar binary classification qualities.
Additionally, we generated the ROC curve for the MDC variable. In this scenario, there
is no need to train any variables, allowing us to plot the curve for MDC using the entire
available dataset. Despite the limited datasets for network training and validation, both
linear regression and deep neural network models showcase a slightly higher sensitivity,
indicating that the network integrates the cumulative performance of all utilized variables.
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Performance metrics were calculated separately for five independent test samples and
are presented in Table 2. The deep neural network model has been shown to be slightly
more sensitive, but less specific than the logic regression model.

Table 2. Comparison of specificity and sensitivity for test samples depending on the predictive model.

Training Samples/Method Logistic Regression
Specificity/Sensitivity

Deep Neural Network
Specificity/Sensitivity

Sample No. 1 0.57/0.71 0.57/0.88
Sample No. 2 0.52/0.76 0.43/0.88
Sample No. 3 0.57/0.93 0.52/0.80
Sample No. 4 0.58/0.84 0.50/0.90
Sample No. 5 0.60/0.75 0.60/0.91

Averages 0.57 ± 0.03/
0.80 ± 0.08

0.52 ± 0.06/
0.87 ± 0.04
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3.3. Building a Predictive Model Based on Other Methods of Machine Learning

We also tested other methods, namely, decision tree, support vector classification and
the k-nearest neighbors vote, which are all based on different machine learning algorithms
and used for classification tasks. A brief description of these architectures is given below.

1. A decision tree is a tree-like model where each internal node represents a test on an
attribute, each branch represents the outcome of the test, and each leaf node represents
a class label. Decision trees are easy to interpret. In the present study, instead of the
single decision tree, we choose a decision forest with three trees.

2. Support Vector Machine (SVM) is a supervised learning classification algorithm that
tries to find a hyperplane that separates two classes with maximum margin. SVC
works well for both linearly and nonlinearly separable data. It is suitable for high-
dimensional datasets and can handle non-linear decision boundaries. The SVC was
used with L2 penalty regularization. For both the decision tree and SVM we weighted
events to balance the datasets.

3. k-nearest neighbors classifier (KNN) is a simple and efficient algorithm that is used
for multi-class classification. It predicts the class of an unknown data point by looking
at the k-nearest data points in the training set. By simple optimization we choose
k = 2.

In terms of performance, SVM and KNN are both computationally intensive and can
take longer to train on large datasets. Decision trees are relatively faster to train, but they
may overfit the data if the tree is too complex. Overall, the choice of algorithm depends on
the specific problem requirements and the characteristics of the dataset. However, all three
algorithms have been tested.

The performance of these approaches is summarized in Table 3, with standard devi-
ations for each value. Decision trees have been shown to be slightly more sensitive. The
KNN algorithm was the least sensitive. However, the specificity was higher for the KNN
algorithm (Table 3). Nevertheless, the sensitivity and specificity of these three algorithms
were lower than those of the algorithm based on a deep neural network (Table 2).

Table 3. Specificity and sensitivity of predictive models using decision trees, support vector machine,
and k-nearest neighbors classifier.

Metric/Method Decision Tree SVM KNN

Specificity 0.465 ± 0.116 0.468 ± 0.153 0.502 ± 0.148
Sensitivity 0.834 ± 0.045 0.803 ± 0.079 0.655 ± 0.045

4. Discussion

In this work, five supervised machine learning algorithms were tested to develop
predictive models for classifying patients with schizophrenia and healthy individuals. All
tested algorithms demonstrated a similar level of sensitivity and specificity. However, the
algorithm based on a deep neural network showed slightly higher performance. In the
task of classifying patients and healthy people, the algorithm using deep neural networks
had a sensitivity of 0.87 ± 0.04 and specificity of 0.52 ± 0.06 (Table 2). The obtained results
indicate that neural networks have the ability to generalize input data and exhibit reliable
performance.

In addition, we attempted to identify the most impactful internal features to create
an optimized model. This involved systematically removing each feature individually
or adding features incrementally with subsequent retraining. Through this analysis, we
discovered that the MDC/CCL22 marker played a pivotal role in determining the model’s
performance. Introducing additional features to the model may not necessarily enhance its
performance, as the new input markers would require training new parameters, and if the
size of the available data set is insufficient to optimize the expanded model, the resulting
performance may be suboptimal. Ultimately, we decided to include all 38 input markers in
the model to leverage all available information.
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Many attempts have been made to develop predictive and prognostic models for pre-
cision psychiatry using machine and deep learning algorithms [7,8]. Neuroimaging, voice
and language patterns, mobile phone data, and others are most commonly used for model
building [42,44,45]. There are few predictive models based on peripheral biomarker data for
diagnosing schizophrenia and other psychiatric disorders [37,39,41]. In one of these models,
using data on the expression of six genes in peripheral blood cells, it was possible to achieve
specificity = 1.000 and sensitivity = 0.895 [39]; however, the sample (48 schizophrenia pa-
tients and 50 healthy subjects) on which this model was built was very small. Other studies
have developed models with lower sensitivity and specificity [37,38,41]. Our developed
models showed comparable sensitivity (Tables 2 and 3). However, our models were less
specific. This is explained by the relatively small sample size (217 schizophrenia patients
and 90 healthy individuals) and rather similar distributions of variables in patients and
healthy individuals. It is possible that a larger sample size will allow the development of
predictive models with greater specificity.

Taken together, the data obtained showed the promise of using peripheral biomarker
data and machine learning methods to build predictive models for classifying patients
and healthy individuals. Peripheral biomarkers are readily available for analysis and have
become firmly established in routine clinical practice. The processing of biomedical data
using artificial intelligence algorithms has the potential to provide new solutions in clinical
practice. Predictions obtained using machine learning could become an additional source
of information for the diagnosis of schizophrenia and other mental disorders.

Limitations and Future Directions

This work is preliminary in nature, since the developed predictive models require
verification in further studies. The main limitation of this work is related to the small
sample size. Due to the limited size of available data (307 events and 38 features), it is not
clear whether the higher performance of the neural network compared to other algorithms
is associated with statistical limitations or the innate classification potential of features.
Additionally, an unbalanced dataset (217 schizophrenia patients and 90 healthy individuals)
was used in this work. However, balanced samples were selected from the dataset for
training neural networks, thus, this factor did not affect the quality of the built models.

Further research should test the performance of neural networks and other algorithms
for diagnosing schizophrenia on large samples. It is also necessary to select the most
influential immune biomarkers for classification.

5. Conclusions

In this work, five predictive models based on peripheral biomarker concentration data
were developed to classify patients with schizophrenia and healthy individuals. Algo-
rithms based on logistic regression, deep neural networks, decision trees, support vector
machine, and k-nearest neighbors algorithms showed similar sensitivity and specificity.
However, the algorithm based on a deep neural network showed slightly better perfor-
mance. Using the technique of cross-validation, it was shown that the neural network
(consisting of five layers) allows identifying schizophrenia with a sensitivity of 0.87 ± 0.04
and a specificity of 0.52 ± 0.06. Additionally, we have demonstrated that when all variables
are combined into a single classifier, the cumulative effect is superior to the performance
of individual variables analyzed individually in detecting schizophrenia. Thus, using a
single biomarker to diagnose schizophrenia would not be effective. To develop predictive
models, it is necessary to use combinations of biomarkers. Data on peripheral biomarkers
such as cytokines, chemokines, and growth factors can help build predictive models for
diagnosing schizophrenia.
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