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The paper describes a subclass of stable laser cavities, peri-
odic stable laser cavities, in which perturbations consisting
of deviations of the mode axis from the ideal direction
are of a strictly periodic oscillatory nature. In such res-
onators, in addition to unperturbed longitudinal–transverse
spatial modes with an ideal direction of the optical axis,
additional modes can appear at sideband frequencies, asso-
ciated with the resonant buildup of perturbation oscillations.
These modes have approximately the same spatial structure
as those of the unperturbed fundamental modes, and their
frequency detuning from the frequencies of the fundamen-
tal modes is governed by the resonator geometry and the
periodicity parameter, i.e., the number of passes in the res-
onator in one period of perturbation oscillations. For many
repetitively pulsed laser systems emitting comb spectrum
structures, such as free electron lasers, modern frequency
standards using femtosecond lasers, and various comb spec-
trometers, it is desirable to avoid such periodic stable cavities
in order to preserve the purity of the comb spectrum used
in them. This may also be important for CW lasers with
extreme radiation monochromaticity. In some repetitively
pulsed lasers, on the contrary, it may be desirable to use
such periodic stable laser cavities for a more complete fre-
quency filling and higher quasi-continuity of their emission
spectra. © 2023 Optica Publishing Group

https://doi.org/10.1364/OL.501366

The well-known and widely used theory of open laser cavities,
developed by many authors and summarized in Kogelnik and
Li [1], considers separately the matrix theory of propagation
of paraxial optical rays in the geometrical optics approximation
and the diffraction theory of Gaussian beams, which determine
the real spatial structure of laser modes. Within the framework
of the matrix theory, the concept of stability of a laser resonator
is formulated for certain interrelations of its geometric param-
eters, when the laser ray oscillating between mirrors does not
go beyond a certain radial size. Further, it is assumed that it is
in such stable geometries that stable configurations of the intra-
cavity field (resonator modes) are formed, although the mode
shape itself can be found only by wave optics methods. Analy-
sis of the dynamics of the laser mode axis in a laser cavity in
the geometrical optics approximation is widely used in practice,

for example, in lasers based on dielectric microcavities [2] and
multipass lasers [3].

In this paper, the matrix theory of ray transfer is applied to
analysis of the behavior of the mode axis perturbation due to the
asymmetry of the amplifying medium—a tilted electron beam.
Thus, we consider here the mode axis as an analog of the ray in
the matrix theory.

For simplicity, we will consider open axially symmetric laser
cavities of length L with identical mirrors with radius of cur-
vature R, in which the optical mode axis is characterized by
position r and angular inclination r′. According to the matrix the-
ory of beam propagation in a stable laser resonator [1], the beam
parameters after n passes in the resonator will be determined as(︃
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)︃
=
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)︃n (︃ r0

r′0
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where A = 1, B = L, C = −2/R, D = 1 − 2L/R, An = [A sin nΘ−

sin(n − 1)Θ]/sin Θ, Bn = B sin nΘ/sin Θ, Cn = C sin nΘ/sin Θ,
Dn = [D sin nΘ − sin(n − 1)Θ]/sin Θ, Θ = arccos(A + D)/2, and
r0 and r′0 are the initial parameters of the mode axis. As in
Kogelnik and Li [1], the paraxial approximation rn ≪ L is used
here.

For simplicity of further consideration, we will choose the
initial parameters of the mode axis as shown in Fig. 1, which
correspond to the most frequent perturbation of the mode axis
in free electron lasers and optically pumped lasers when the
mode axis passes obliquely through the center of the resonator.
Obviously, such initial perturbation parameters of the axis are in
the relation r′0 = −2r0/L. In the absence of perturbation, when
the mode axis coincides with the geometric axis of the resonator
(the line passing through the centers of the mirrors), r0 = r′0 = 0.

The elements of the finite ray transfer matrix An, Bn, Cn, Dn,
written in Eq. (1) in the form of bounded trigonometric func-
tions, correspond to stable laser cavities, the geometry of which
must obey the inequality −1< cos Θ = 1 − L/R<1 [1].

Note that, in addition to the property of boundedness, the
matrix of a stable laser resonator with certain geometric param-
eters has another interesting feature, the property of periodicity.
By this, we understand the exact periodic repetition of the initial
parameters of the mode axis r0 and r′0 after some integer number
m of passes through the resonator. We will call m the periodic-
ity parameter. Let us consider stable resonators with parameters
at which Θ = arccos(1 − L/R) = (k/m)π, where k is a positive
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Fig. 1. Optical scheme of the periodic resonator (k = 7, m = 9):
the direction of the first light passage coincides with the direction
of the inclined amplifying electron beam; the dashed lines are the
spheres of radius L/2 from the center of the resonator.

integer, including zero (0, 1, 2, 3, . . . ), and m is a natural num-
ber (1, 2, 3, . . . ). It is assumed that the numbers k and m are
mutually prime numbers, i.e., do not contain the same integer
factors other than 1, which must cancel. Then, from Eq. (1),

rm = [sin(Θ − kπ)/sin Θ]r0 = (−1)kr0;
r′m = [sin(Θ − kπ)/sin Θ]r′0 = (−1)kr′0.

(2)

Thus, the initial parameters of the mode axis will occur after
m passes in the cavity for an even k and after 2m passes in the
cavity for an odd k. We call such stable cavities periodic stable
laser cavities.

In addition to the periodicity condition [Eq. (2)], it will be
essential for further analysis to consider the behavior of the per-
turbation in the intermediate passages in the resonator between
the periods, especially for m ≫ 1. For definiteness, we consider a
periodic stable resonator with parameters (k = 7, m = 9), which
happens to be very similar to the resonator of the Novosibirsk
free electron laser (NovoFEL), and the typical perturbation of
its optical axis, associated with the inclination of the emitting
electron beam relative to the optical axis of the laser resonator
(Fig. 1). In solid-state lasers with optical pumping, a similar
perturbation occurs when the axis of the pump laser is tilted
to the axis of the optical cavity of the pumped laser. The path
of rays in the resonator, in particular, their periodicity, depends
only on the ratio L/ R and does not depend on their absolute
values, as well as on the value of r0. For this reason, Fig. 1
shows, for clarity, a resonator similar to the NovoFEL resonator,
but with greatly enlarged transverse dimensions of the resonator
and much higher perturbations of the mode axis.

In a typical NovoFEL regime, electron pulses follow with
intervals equal to the time for the light pulse to make a round
trip in the resonator. Therefore, single-pass electron pulses are
accompanied by an intracavity light pulse in even passes of the
resonator (n = 0, 2, 4, 6, . . .). Further, we will be interested in
the time evolution of perturbations arising at each even pass.
Figure 2(a) shows the change in the parameters of the mode
axis after one zero perturbation (n = 0). It can be seen that the
pattern of both perturbation parameters is strictly periodic after
18 passes in the resonator (nine round trips in the resonator), as
follows from Eq. (2). However, NovoFEL electron pulses follow
continuously with a period of two passes. If we assume that
all electron pulses are identical, then the stationary regime will
feature average smoothing of all perturbations, and the mode
axis will probably only slightly tilt toward the electron beam.
There will be no oscillation of the mode axis. In this sense,
the situation is absolutely similar to appearance of lasing in a
free electron laser (FEL). When the electron beam is uniform in
density, its radiation power is zero. Laser radiation arises due to
random statistical fluctuations in the beam density.

Fig. 2. (a) Normalized perturbations of the mode axis as a func-
tion of pass number (solid line, position; dashed line, angular
inclination). (b) The same as (a), except for even passes only. (c)
Lengthening of the round trip in the resonator as a function of the
pass number for the periodic resonator (k = 7, m = 9).

Similarly, at growing perturbations, we must consider fluctu-
ations in the total charge (current) in individual electron pulses,
especially because they are quite real for both technical and sta-
tistical reasons. Then it makes sense to consider how effectively
the perturbation from the zero, most powerful, electronic pulse
(n = 0) will be maintained by subsequent electron pulses. Obvi-
ously, this efficiency will depend on how close the mode axis
parameters in subsequent even passes of the cavity are to these
parameters for the zero pass (all electron pulses of NovoFEL
have the same axis). The change in the parameters of the mode
axis in even passes is shown in Fig. 2(b). Despite the same rig-
orously mathematical repetition period of 18 passes, the picture
is substantially different from the original picture in Fig. 2(a).
Firstly, it has acquired a cosine form, which is optimal for the
excitation of oscillations. Secondly, it has a new approximate
physical period of nine passes. Thus, a random fluctuation of the
electron beam in the initial zero pass will be swung in amplitude
by almost all subsequent NovoFEL pulses, with maximum effi-
ciency in each (18 × p)th (p = 0, 1, 2, . . .) pass, almost the same
efficiency in half the period, and minimum efficiency in pas-
sages with opposite signs of disturbances [Fig. 2(b)]. Note that
this periodicity, like the classical periodicity in a laser cavity, is
fundamentally important. For resonators that are non-periodic in
terms of perturbation, after a certain number of passes in the res-
onator, the phase of the perturbation will change to the opposite,
owing to the drift, and excitation of perturbations will be impos-
sible in the stationary regime. Laser generation in NovoFEL
grows from spontaneous emission to a steady-state level in a
time of about several tens of round trips in the cavity by the
intracavity light pulse. The developed steady-state perturbation
of the mode will grow during several hundred round trips and
will consist in oscillation of the mode axis tilt relative to the
direction of the laser resonator axis with a period of nine passes.
Figure 2(b) also suggests a general remark for all periodic res-
onators: the greatest hazard in terms of oscillation buildup will
be constituted by resonators with the smallest number m, e.g., a
confocal resonator located on the stability boundary with param-
eters (k = 1, m = 4), often used in comb systems of frequency
standards [4].

Let us now consider how oscillation of the axis of the main
laser modes generates additional modes to the main modes at
sideband frequencies. The ideal NovoFEL super-mode is a comb
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structure, i.e., a set of equidistant, very narrow, modes with dif-
ferent longitudinal indices within a gain contour 6–10 GHz wide,
whose center frequencies differ by ∆ν = c/2L = 5.6 MHz, i.e.,
the frequency of the round trip of a light pulse inside the opti-
cal resonator [5]. It is assumed that, in the case of a well-tuned
electron beam, the mode axis of length L0 does not change
and coincides with the resonator axis of length L (Fig. 1).
In a regime with significant perturbation of the optical axis
of the mode, the optical axis undergoes periodic oscillations
in the coordinate and angle. In this case, the effective length
of the resonator, which is determined by the reflection points
on the mirrors, and the effective-length-specific frequencies of
the comb structure, will also change periodically. The length
of the mode axis between the reflection points on the mirrors
n and n+ 1 is L(n) = (rn − rn+1)/sin[arctg(r′n)] − (r2

n + r2
n+1)/2R.

Each mode of the comb structure must satisfy the main reso-
nance condition, i.e., the integer number of its wavelengths must
fit into the round trip in the resonator L(n) + L(n + 1). In this
case, when the change in the round-trip length of the resonator,
∆L(n) = L(n) + L(n + 1) − 2L0, grows, the distance between the
frequencies of the comb structure decreases, and when ∆L(n)
becomes as large as the wavelength, the frequency of the ith
comb mode is shifted to the place of the adjacent (i− 1)th comb
mode in the unperturbed comb structure. Figure 2(c) shows
the normalized change in the round-trip length of the resonator
∆L(n) for the parameters of the resonator (k = 7, m = 9), which
does not depend on the magnitude of the initial perturbation r0,
but depends only on the geometry of the resonator. It can be
seen that this function has an approximately cosine form and is
periodic with a mathematical (exact) period of nine passes, but
has a smaller physical (approximate) period of 4.5 passes. It can
also be seen that each positive disturbance-“feeding” half-wave
[Fig. 2(b)] with a period of nine passes coincides with one period
of 4.5 passes of the resonator length oscillations in Fig. 2(c).
This means that, without taking into account the feeding of the
perturbation by electron pulses, we shall observe a frequency
modulation of the modes of the comb structure with a period of
4.5 passes. However, given this fact, as well as a slightly larger
value of modulation with a mathematical period of nine passes
[Fig. 2 (c)], we should assume that, in many cases, we will have
a frequency modulation with a period of nine passes. It will be
subsequently shown that both of these cases have been observed
at NovoFEL. Thus, in the assumption of the cosine form of the
perturbation in Fig. 2(c), the temporal form of the field of each
individual ith mode in the comb structure can be written as

Ei(t) ∼ cos[(ω0i − βΩ × cos Ωt)t] =
∑︂

p

Jp(β) × cos[(ω0i + pΩ)t],

(3)
where β is the frequency modulation index, Ω is the frequency
modulation frequency, equal in our case to Ω = 2π(c/2L)/G,
G = 9/2 = 4.5 for a modulation of the round-trip length in the
resonator with a period of nine passes, and G = 4.5/2 = 2.25
for this modulation with a period of 4.5 passes. In addition,
Jp is the Bessel function of order p, and p is an integer
(. . . , −2, −1, 0, 1, 2, . . . ). Taking into account the fact that
J−p(β) = (−1)pJp(β), we obtain that the laser radiation intensity
spectrum will be a periodic structure in which each unit-power
line of the comb structure is surrounded from both sides by
symmetric sideband modes (more precisely, by the sideband
frequencies of the same comb laser line) with relative intensi-
ties Jp(β)

2/J0(β)
2. Thus, the positions of the sideband modes

are governed by the modulation frequencyΩ, and their intensity
by the frequency modulation index β. Considering the form
of the squares of the Bessel functions in dependence on the
value of β , we conclude that the magnitude of the sideband
modes can be either less or greater than that of the central
comb laser line. In particular J1(1.45)2 = J0(1.45)2. In this case,
J2(1.45)2/J0(1.45)2 = 0.16, and the angular frequency deviation
required at G = 4.5 is βΩ = 0.32 × 2π(c/2L) = 11.3 MHz. Such
frequency deviation corresponds to the maximum amplitude of
the resonator extension ∆Lmax = 0.32 λ, where λ is the radiation
wavelength.

The repetitively pulsed emission of the terahertz NovoFEL
in a typical regime is a continuous sequence of 100-ps pulses
with repetition rate of 5.6 MHz, emitted by a single intracavity
light pulse [6]. Its optical resonator for wavelengths shorter than
200 µm is of the open type [7,8] and consists of two spherical
mirrors of 190 mm in diameter and curvature radius of 15 m,
located at a distance L = 26.589 m. The mirrors have small round
holes in the center for radiation output and alignment. The length
of the resonator was chosen for the reason of synchronization
with the frequency of the RF resonators of the linear accelerator
and turned out to be very close to the length of the periodic
resonator (k = 7, m = 9) : Lper = R[1 − cos(kπ/m)] = 26.491
m. Therefore, high-power sideband modes can be excited in the
NovoFEL cavity if the electron beam is not perfectly aligned.

Note that, from a physical point of view, the generation of
sideband modes is universal in nature and occurs when some
lower-frequency perturbation oscillation is superimposed on the
main oscillatory motion of electrons or the radiation field. In the
FEL, this effect is much more pronounced than that in quantum
lasers, owing to the much larger number of degrees of free-
dom of the radiating system, i.e., the electron beam. Thus, in
the NovoFEL resonance regime, when the repetition frequen-
cies of the electron and light pulses inside the optical resonator
coincide exactly, one or both of the instabilities (trapped elec-
tron instability and modulation instability) are always observed.
In the regime with a pulse duration of ∼200 ps, NovoFEL light
pulses are split into 6–7 or 2 parts, which are incoherent with
each other, and sideband modes appear in the emission spec-
trum at frequencies of 30 and 6 GHz [9]. These instabilities and
associated sideband modes were completely suppressed by the
introduction of a stabilizing factor, i.e., a negative detuning of
the electron pulse repetition rate ∆f from the intracavity light
pulse repetition frequency f [9].

This paper describes another instability with frequencies
lower by three orders of magnitude, whose sideband modes
are visible only in the hyperfine mode structure of the NovoFEL
emission spectrum. Although the super-mode comb structure of
the spectrum has been known since the first works on the FEL
theory [10], its practical measurement became possible only
after the creation of a special device, the ultralong-resonance
Fabry–Pérot interferometer, described in detail elsewhere [5].
Measurement of the mode emission spectrum of NovoFEL
with this device sometimes gave completely unexpected results
(Fig. 3). For example, along with generation of one super-mode
in the case of the ideal axial injection of the electron beam
(Curve 1 in Fig. 3), in the case of its non-ideal inclined injec-
tion, four more modes (Curve 4 in Fig. 3) were observed with
approximately the same radiation power [9]. For lack of a better
explanation, in Kubarev et al. [9] these additional modes were
associated by the author of this paper with the transverse laser
cavity modes excited by an inclined electron beam. However,
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Fig. 3. Mode structure of NovoFEL radiation at a wavelength of
164 µm (normalized transmitted power as a function of change in
the length of the resonance Fabry–Pérot interferometer): 1, a single
super-mode without any sideband modes at an ideal axial electron
beam injection; 2–4, a single super-mode with sideband frequencies
at an inclined injection of the electron beam for different degrees of
radiation stabilization; 5, a fitting of experimental stabilized regime
(2) using modes (6, gray lines) of the instrumental width of the
interferometer.

despite formally suitable frequencies, these modes contradicted
the fundamentals of laser physics, according to which the pow-
ers of laser modes are inversely related to their losses, which
grow rapidly with increasing transverse indices. Moreover, gain
and loss measurements showed that the generation of these
higher transverse modes is simply impossible with their clas-
sical transverse spatial distribution. The experimental losses in
the multi-mode and single-mode regimes differed weakly and
were close to the calculated losses of the fundamental mode.
Higher laser modes have much higher losses and, if they were
generated, a large increase in the experimental losses would have
been observed when switching from a single-mode regime to a
multi-mode one. In addition, a large number of transverse laser
modes is not characteristic of a homogeneous FEL amplifying
medium, in which the main generating mode must suppress the
others, owing to mode competition.

All these contradictions are removed with the theory of exci-
tation of sideband modes in periodic laser cavities, presented
in this paper. Thus, the mode spectra with inclined injection
in Fig. 3 also correspond to the single TEMq00 super-mode,
which, oscillating inside the optical cavity, generates, in the sta-
bilized regime (Curve 2 in Fig. 3), additional sideband modes
at the reciprocal frequency of nine cavity passes (Ω9/2π =
1.24 MHz). In the resonance regime (Curve 4 in Fig. 3), when
the perturbation of the electron beam and mode is maximal, it is
possible to generate sideband modes at two characteristic recip-
rocal frequencies of 9 and 4.5 (Ω4.5/2π = 2.49 MHz) passes in
the cavity [Fig. 2(c)]. Moreover, the power of the sideband mode
Ω4.5 in the far right period of the interferogram almost equaled
the power of the main mode. The second harmonic 2Ω9 coin-
cides with this sideband mode, but its share does not exceed
16%. The violation of the strict periodicity of Interferograms
2–4 with inclined injection of the electron beam is associated
with the rather long measurement time (∼5–10 min [5]) and the
drift of the amplitude parameters of the sideband modes. Sim-
ilar smaller sideband modes (like Curve 2 in Fig. 3) have also

been observed at many other NovoFEL generation wavelengths.
Owing to the mode competition (visible in Fig. 3), the coherence
of the NovoFEL radiation decreased, which worsened the qual-
ity of the experiments carried out on it in the field of ultrafast
heterodyne time-domain spectroscopy.

With the given length of the NovoFEL resonator L =
26.589 m, the observed resonance (k = 7, m = 9) corresponds
to R= 15.056 m. The nearest strong resonances, (k = 4, m = 5)
and (k = 10, m = 13), will be at R= 14.698 m and R= 15.207 m,
respectively. Therefore, the excitation of sideband modes will
be minimal for R= 15.131 m, which is intermediate between the
two weakest resonances. In this case, dephasing of the perturba-
tion periodicity [a phase shift of π of the function ∆L(n)] occurs
in the 35th round trip in the resonator.

The real relative width of the lines of the NovoFEL comb
structure (Fig. 3) is very small. It was accurately measured in
the time-domain regime of the resonance interferometer and
found to be δν/ν = 2.2 × 10−8 [5]. Therefore, separating one
such line from the NovoFEL radiation by using three resonance
interferometers, one can obtain an ultramonochromatic tunable
CW source for THz spectroscopy with a power many orders
of magnitude higher than that of other alternative sources [11].
Another example of possible application of NovoFEL in the field
of ultrahigh-resolution spectroscopy is the use of the NovoFEL
comb structure in coherent comb spectroscopy, similar to that
successfully tested by Tammaro et al. [12]. In this case, sideband
modes will even be useful, because they increase the spectral
resolution but, of course, this must be under the condition of
good stability of these modes.
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