
ORIGINAL ARTICLE

Bio-inspired machine learning: programmed death and replication

Andrey Grabovsky1,2 • Vitaly Vanchurin3,4

Received: 29 November 2022 / Accepted: 28 June 2023 / Published online: 20 July 2023
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
We analyze algorithmic and computational aspects of biological phenomena, such as replication and programmed death, in

the context of machine learning. We use two different measures of neuron efficiency to develop machine learning

algorithms for adding neurons to the system (i.e., replication algorithm) and removing neurons from the system (i.e.,

programmed death algorithm). We argue that the programmed death algorithm can be used for compression of neural

networks and the replication algorithm can be used for improving performance of the already trained neural networks. We

also show that a combined algorithm of programmed death and replication can improve the learning efficiency of arbitrary

machine learning systems. The computational advantages of the bio-inspired algorithms are demonstrated by training

feedforward neural networks on the MNIST dataset of handwritten images.

Keywords Machine learning � Neural networks � Bio-inspired algorithms � Neuron correlations � Pruning algorithms �
Constructive algorithms � Classification

1 Introduction

Artificial neural networks [1–3] have been successfully

used for solving computational problems in natural lan-

guage processing, pattern recognition, data analysis, etc. In

addition to the empirical results, a number of statistical

approaches to learning were developed [4–6] (see also [7]

for a recent book on the subject) and some steps were taken

toward developing a fully thermodynamic theory of

learning [8]. The thermodynamic theory was recently

applied to model biological systems with evolutionary

phenomena viewed as (either fundamental or emergent)

learning algorithms [9, 10]. In particular, the so-called

programmed death and replication (of information pro-

cessing units, such as cells or individual organisms) were

shown to be of fundamental importance for biological

evolution modeled through learning dynamics. More gen-

erally, many statistical [8], quantum [11], critical [12] and

even gravitational [13] systems can be modeled using

learning dynamics, and perhaps the entire universe may be

viewed as a neural network that is undergoing learning

evolution [14]. However, for the quantum behavior to

emerge it is essential that the total number of neurons is not

fixed and could change over time [11]. This implies that in

the emergent quantum systems, individual neurons should

be constantly removed and added, similar to biological

organisms, where individual cells constantly die and

replicate. In this paper, we analyze the machine learning

algorithms that are inspired, first and foremost, by biology

[9] (i.e., the programmed death and replication), but at the

same time have direct connection to physics in general [14]

and to emergent quantum mechanics in particular [11] (i.e.,

removal and addition of neurons).

Consider an artificial neural network that is being

trained for some training dataset using some version of

stochastic gradient descent. In this very general setup all of

the neurons process information, but it is not clear which

ones are more efficient and which ones are less efficient.

For example, if we are to remove a single neuron what

& Andrey Grabovsky

a.v.grabovsky@inp.nsk.su

Vitaly Vanchurin

vvanchur@d.umn.edu

1 Budker Institute of Nuclear Physics, Novosibirsk, Russia

630090

2 Novosibirsk State University, Novosibirsk, Russia 630090

3 National Center for Biotechnology Information, NIH,

Bethesda, MD 20894, USA

4 Duluth Institute for Advanced Study, Duluth, MN 55804,

USA

123

Neural Computing and Applications (2023) 35:20273–20298
https://doi.org/10.1007/s00521-023-08806-4(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-1789-8131
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08806-4&domain=pdf
https://doi.org/10.1007/s00521-023-08806-4

should it be so that the overall increase of the average loss

function would be minimal? In other words, how do we

find the least efficient neuron that has the least impact on

the overall performance of the neural network? Can such a

neuron be identified locally (e.g., by analyzing its state,

bias and weights) or do we need to study global properties

of the network (e.g., by analyzing non-local statistical or

spectral properties)? If all neurons with low efficiency (or

least loaded) can be identified, then one may be able to

develop an algorithm (i.e., programmed death algorithm)

that would be useful, for example, for compression of

neural networks. Likewise, if one can identify the neurons

with high efficiency (or most loaded), then, perhaps, one

can use this information to develop replication algorithms

where additional neurons would be added to the system to

reduce the load on the most efficient neurons. Moreover,

the two algorithms may also be used in conjunction (with

programmed death followed by replication) in order to

improve the learning rate of the existing machine learning

algorithms. In this paper we will give answers to all of the

above questions by carrying out analytical calculations (a

more general, but only approximate method) and by con-

ducting numerical experiments (a more special, but exact

method).

Elimination of neurons is addressed by pruning algo-

rithms. Optimal Brain Surgeon algorithm [15] is applied to

the network in a local minimum in error or loss function.

One Taylor expands the error as a function of all the

weights to the second order and constructs the matrix

(Hessian matrix) of the second order derivatives of the

error w.r.t. the weights. Next, one solves the problem of

minimizing the error increase if one of the weights is set to

0. After that, one eliminates the weight which gives the

least error increase if this increase is not too big. The

corresponding weights’ adjustments are given via the

inverse Hessian matrix.

Pruning based on the principle of maximum correlation

of errors (MAXCORE) [16] is based on backpropagation of

errors. One calculates the errors on the output neurons for

the whole training set. From them, one calculates the errors

on the hidden layer connected to the output layer. The

product of these two error matrices gives the matrix of

cross correlation of errors of these two layers. Then, one

removes the weights corresponding to the smallest in

absolute value elements of this matrix checking that the

corresponding error increase is not too big. This procedure

is repeated going one layer back to the input layer.

The algorithms based on the variance nullity measure

(VNM) [17] calculate the sensitivities of the network’s

output, i.e., their partial derivatives w.r.t. the weights,

biases, and inputs for the input data. Then, they estimate

variances of these sensitivities and prune the corresponding

elements if these variances are not too big.

All these methods use the error on the output layer to

estimate the importance of the particular element, e.g.,

weight, bias, or input. For each element they calculate a

function of the final error and eliminate the element if the

value of this function is not too big. In this respect they are

global algorithms since they measure the work of the ele-

ment from the output of the whole net. For a net with very

many hidden layers such calculations may become

demanding.

Another approach is to estimate the importance of the

particular hidden neuron locally, i.e., from its values on the

data set and the values of the weights connecting it to the

next level in the feedforward net. The neural network

pruning by significance (N2PS) algorithm [18] works this

way. One assigns the total net value to a hidden neuron

estimating the total value of this neuron on the whole data

set and calculates the activation function of it. Then one

defines the significance measure of this neuron summing

the absolute values of the previous result and all the

weights connecting this neuron with the next layer. If the

significance of the neuron is smaller than the average for its

layer, the neuron is pruned.

Zeng and Yeung method [19] assigns relevance to each

hidden neuron as a product of neuron’s sensitivity and the

sum of absolute values of its outgoing weights. Here,

sensitivity is the expectation of the difference between the

value of the neuron and the value of the neuron calculated

for the shifted input. The shift in input is given by its

expected absolute value over the data set. Then, one finds

the neuron with the smallest relevance and prunes it

adjusting the bias in the next layer.

We also propose a local pruning algorithm. It is based

on the utilization of the linear dependence of the neurons.

Suppose the signals on all the neurons of one level are

exactly linear dependent. Then one can express one of the

neurons though the linear combination of the other neurons

on this level without changing the output of the net thus

reducing the number of the neurons by one. In this case it is

not important which neuron to express through the others.

In reality such linear dependence is approximate and the

choice of the neuron to expel introduces an error at the next

layer. We propose three algorithms how to construct this

approximate linear dependence and how to estimate the

neurons efficiency, i.e., its influence on the next layer.

Introduction of new neurons into the net is addressed by

the constructive algorithms [20, 21]. They add a hidden

neuron to the net when it is stuck in a local minimum so

that the error reduces less than a predefined amount during

a set number of epochs. One may add a neuron to the

existing hidden layer or form a new layer. A new con-

structive algorithm (NCA) [22], e.g., checks how well the

previously added neurons work and adds a new neuron to

the new layer instead of adding it to the existing hidden

20274 Neural Computing and Applications (2023) 35:20273–20298

123

layer if expected outputs of two previously added hidden

neurons differ less than a predefined value. This is the way

to avoid redundancy because a new neuron in a new layer

will have different input and therefore different

functionality.

Here appears a question how to initialize the new neu-

rons. NCA, for example, initializes the weights of a newly

added neuron with zeros. In this paper, we introduce a new

replication algorithm how to better set the weights for a

new neuron when it is added to the existing hidden layer.

Optimization of the net’s structure by combination of

adding neurons or connections and eliminating them is

known as hybrid approach. One may set different goals for

this procedure, such as finding the parsimonious architec-

ture or speeding convergence. The constructive algorithm

to synthesize arbitrarily connected feedforward neural

networks (CoACFNNA) [23], for example, has the former

goal. It starts from an empty net and calculates the average

joint mutual information (NMI) of input neurons and the

outputs. Then, it connects the input neurons with the

highest NMI and all outputs. Next, in the circle it adds

connections between hidden neurons starting from the pairs

with the highest NMI and new hidden neurons checking

that the error improves after retraining. A new neuron may

be added to the existing layers or as a new layer fully

connected with previous and subsequent neurons. In a new

circle all connections are tested on their influence on the

output error and deleted if it improves the error. Next

hidden neurons are sorted according to their NMI and

neurons with the smallest NMI are deleted if error is

reduced after retraining. As a result, a feedforward net with

a more complex than a layer by layer connection is formed.

In this paper, we combine our program death and

replication algorithms and show that one can accelerate

convergence if once in a preset number of epochs one

deletes a number of the least efficient hidden neurons and

substitutes them with equal number of new neurons pro-

vided by the replication algorithm.

The paper is organized as follows. In the following

section, we discuss the basics of artificial neural network

and of the learning dynamics. In Sect. 3, we perform sta-

tistical analysis of the learning dynamics and introduce two

different definitions of neuron efficiency. In Sect. 4, we

develop the ‘‘programmed death’’, the ‘‘replication’’ and

the combined, i.e., programmed death followed by repli-

cation, algorithms. In Sect. 5, we present numerical results

for feedforward neural networks with two hidden layers

and different architectures. In Sect. 6, the main results are

summarized and discussed.

2 Neural networks

A classical neural network with N neurons can be defined

as a septuple ðx; P̂; po; ŵ; b; f;HÞ, where

1. x is a (column) state vector of neurons,

2. P̂ is a boundary projection operator to subspace

spanned by input/output neurons,

3. poðP̂xÞ is a probability distribution which describes the

training dataset,

4. ŵ is a weight matrix,

5. b is a (column) bias vector,

6. fðyÞ is an activation map, and

7. Hðx; b; ŵÞ is a loss function.

The training data are associated only with boundary neu-

rons P̂xðtÞ that are updated periodically from the proba-

bility distribution poðP̂xÞ, but the period depends on the

architecture. For example, for a feedforward architecture,

the period could equal to the number of layers so that, in-

between updates of the training data, the signal has time to

propagate throughout the entire network. In contrast to the

boundary neurons, evolution of the bulk neurons depends

on the state of all neurons,

Î � P̂
� �

xðt þ 1Þ ¼ Î � P̂
� �

f ŵxðtÞ þ bð Þ; ð1Þ

where the activation map acts separately on each compo-

nent, i.e., fiðyÞ ¼ fiðyiÞ. Here Î is the identity operator in the
space of all neurons: Îx ¼ x. For the sake of concreteness,

we set activation functions on all boundary neurons to be

linear

P̂fðyÞ ¼ P̂y ð2Þ

and on all bulk neurons to be hyperbolic tangent

Î � P̂
� �

fðyÞ ¼ Î � P̂
� �

tanh yð Þ: ð3Þ

The main objective of machine learning is to find bias

vectors b and weight matrices ŵ which minimize a time (or

ensemble) average of some suitably defined loss function.

For example, the boundary loss function is given by

Hoðx; b; ŵÞ ¼
1

2
x� f ŵxþ bð Þð ÞT P̂ x� f ŵxþ bð Þð Þ; ð4Þ

where because of the inserted projection operator P̂ the

sum is taken over squared error at only boundary neurons.

For example, in a feedforward architecture there is no error

in the input boundary layer and all of the error is on the

output boundary layer due to a mismatch between propa-

gated data and training data. Another example is the bulk

loss function defined as

Neural Computing and Applications (2023) 35:20273–20298 20275

123

Hðx; b; ŵÞ ¼ 1

2
x� f ŵxþ bð Þð ÞT x� f ŵxþ bð Þð Þ þ VðxÞ;

ð5Þ

where in addition to the first term, which represents a sum

of local errors over all neurons, there may be a second term

VðxÞ which represents local objectives. For example, one

may add a term rewarding signals close to the upper and

lower boundaries of the signal after activation via

VðxÞ ¼ �m

2

X

i

xTx ð6Þ

with an appropriately chosen m.

During learning the trainable variables (i.e., bias vector

b and weight matrix ŵ) are continuously adjusted (or

transformed)

biðt þ TÞ ¼ biðtÞ � c
ohHðx; b; ŵÞi

obi
; ð7Þ

wijðt þ TÞ ¼wijðtÞ � c
ohHðx; b; ŵÞi

owij
; ð8Þ

where c is the learning rate and the time-averaged quanti-

ties are defined as

:::h i � lim
T!1

1

T

XT

t¼1

::: ð9Þ

The time interval T can depend on the mini-batch size and

on the number of layers. Note that in general the ensemble

average (for a given training dataset poðP̂xÞ) and the time

average (for a given time interval T) need not be the same,

but, if the trainable variables (i.e., weights and biases)

change very slowly, the two averages are approximately

the same.

In the long run, the learning system settles down in a

local minimum of the average loss function and the

learning effectively stops. For certain algorithms the sys-

tem can still transition to an even lower minimum of the

loss function, but such transitions are usually exponentially

suppressed. The main problem is that in a local minimum

continuous transformations (e.g., stochastic gradient

decent) cannot be effective and discontinuous transforma-

tions must be performed instead. In Sects. 4 and 5, we shall

describe one such transformation by combining two algo-

rithms: programmed death and replication. More generally,

the programmed death and replication transformations (or

algorithms) need not be combined and can be used sepa-

rately. The programmed death algorithm may be used to

compress, either gradually (i.e., one neuron at a time) or

suddenly (i.e., a bunch of neurons at once), the neural

network. Such compression could be relevant, for example,

if relatively large computational resources are available

during the training phase, but the resources are limited

during predicting phase. In addition, the replication algo-

rithm may be used for improving the performance of an

already pre-trained neural network. This can be done, for

example, by adding new neurons in order to assist the most

efficient neuron.

3 Statistical analysis

In the previous section, we mentioned the discrete machine

learning algorithms (programmed death and replication)

that rely on determining the efficiency of individual neu-

rons. In this section we will describe the two definitions of

neuron efficiency that will be used in Sect. 4 for devel-

oping these algorithms and in Sect. 5 for presenting the

results of the numerical experiments.

3.1 Covariance matrix

To study the statistical efficiency of neurons, it is conve-

nient to introduce the covariance matrix

Cij � ðxi � hxiiÞðxj � hxjiÞ
� �

� DxiDxj
� �

¼ xixj
� �

� xih i xj
� �

;

ð10Þ

where Dxj � xj � hxji. The variables in brackets hxji denote
the expected values of xj. One can measure them as the

average values of xj over the training dataset.

C is a positive definite symmetric matrix whose eigen-

values kl are real nonnegative numbers and the corre-

sponding orthonormal eigenvectors vðlÞ are given by

CvðlÞ ¼ klv
ðlÞ: ð11Þ

In a general net, it is sensible to consider the covariance

matrix of all neurons of the net. However, for a feedfor-

ward net, we will use the covariance matrix of the neurons

on a particular hidden layer, which we want to prune. Then,

the dimension of this matrix is the square of the number of

neurons on the particular hidden layer.

If the states of neurons are approximately linearly

dependent, i.e., one can find such numbers a0 and ak that
X

k

akxk � a0; ð12Þ

then at least one of the eigenvalues must be zero. For

example, if k1 ¼ 0, then by setting

v
ð1Þ
k ¼ ak ð13Þ

we get

X

k

v
ð1Þ
k hxki ¼

X

k

akxk

* +

� ha0i ¼ a0; ð14Þ

20276 Neural Computing and Applications (2023) 35:20273–20298

123

or
X

k

xk � hxkið Þvð1Þk � 0: ð15Þ

in agreement with zero-eigenvalue equation

Cvð1Þ ¼
X

k

Cikv
ð1Þ
k ¼ Dxi

X

k

akDxk

* +

� 0: ð16Þ

In this limit, any one of the neurons can be removed after

appropriate adjustment of weights.

3.2 Efficiency of neurons

In general, ki 6¼ 0 for all i and then one can define efficiency

of individual neurons as the degree of nonlinearity or how

poorly the output of a given neuron can be approximated by a

linear function of the outputs of all other neurons (for a given

training dataset poðP̂xÞ). The accuracy of approximation of

the state of neuron k is high (and thus the efficiency should be

low) if ki is small and v
ðiÞ
k

� �2
is large. Therefore, we can

define the efficiency of neuron k as

E0
k ¼ min

i

ki

v
ðiÞ
k

� �2 ; ð17Þ

where the smallest ratio is obtained by looking at all

eigenvalues and the corresponding eigenvectors. Then, we

use Eq. (15) rewritten for the i-th eigenvalue, i.e.,
X

k

xk � hxkið ÞvðiÞk � 0 ð18Þ

to remove the k’th neuron:

xk ¼
P

j v
ðiÞ
j xj �

P
j 6¼k v

ðiÞ
j xj

v
ðiÞ
k

!
h
P

j v
ðiÞ
j xji �

P
j 6¼k v

ðiÞ
j xj

v
ðiÞ
k

:

ð19Þ

The mistake we make via such a substitution reads

d
X

l

wqlxlþbq

 !

¼
X

l6¼k

wqlxlþwqk

P

j

v
ðiÞ
j xj

* +

�
P

j 6¼k

v
ðiÞ
j xj

v
ðiÞ
k

þbq�ð
X

l

wqlxlþbqÞ

¼wqk

P

j

v
ðiÞ
j xj�h

P

j

v
ðiÞ
j xji

v
ðiÞ
k

¼wqk

P

j

v
ðiÞ
j Dxj

v
ðiÞ
k

�wqk

ffiffiffiffiffi
E0
k

q

ð20Þ

since

Cijv
ðmÞ
i v

ðnÞ
j ¼ ð

X

i

v
ðmÞ
i DxiÞð

X

j

v
ðnÞ
j DxjÞ

* +

¼ knd
mn;

ð21Þ

where dmn ¼ 1 for m ¼ n and 0 for m 6¼ n. Unfortunately,

such an algorithm may not be very useful in practice since

it involves calculation of the covariance matrix—a com-

putational task which scales as OðN2Þ. What we really

want is to be able to identify an approximate linear

dependence of neurons, but with an algorithm whose

complexity would scale as OðNÞ.
Consider a linear expansion of activation function

xi ¼ fi yið Þ þ f 0i yið Þ
X

k

wik xk � hxkið Þ þ ::: ð22Þ

where

yi �
X

k

wikhxki þ bi: ð23Þ

At the zeroth order xih i � fi yið Þ and at the first order

xi � hxii � f 0i yið Þ
X

k

wik xk � hxkið Þ: ð24Þ

If the direct impact of neuron k on neuron i is small, then

Cii � f 0i yið Þ2w2
ikCkk; ð25Þ

or

1 � f 0i yið Þ2w2
ikCkkC

�1
ii : ð26Þ

In this limit, all possible variations of the signal

xk � hxki ð27Þ

do not significantly modify the expected signal xi, and (if

our task is to implement a programmed death algorithm)

then we must identify the least efficient neuron by sum-

ming over all impacts that a given neuron k has on all other

neurons i, i.e.,

Ek � Ckk

X

i

f 0i yið Þ2w2
ikC

�1
ii : ð28Þ

If Ek � 1, then we can drop all of the connection from

neuron k to neuron i, or the neuron k can be removed

without sacrificing much of the neural network perfor-

mance. More precisely, we can set wik ¼ 0 for all i and

then use (27) to readjust biases bi’s of all other neurons so

that the input to i-th neuron remains approximately the

same. See Eq. (41) with k ¼ 1. Note that all of Cjj’s and all

of f 0j yj
� �

’s can be calculated locally by analyzing statistics

of the signals for each of the neurons separately—a com-

putational task which scales as OðNÞ.

Neural Computing and Applications (2023) 35:20273–20298 20277

123

3.3 Conditional distribution

In the limit opposite to (25) or (26), the impact of neuron k

on neuron i is large,

Cii � f 0i yið Þ2w2
ikCkk; ð29Þ

or

1 � f 0i yið Þ2w2
ikCkkC

�1
ii ; ð30Þ

and variations of signal xk can significantly modify the

signal xi. However, since variations of f 0i yið Þwik xk � hxkið Þ
must remain much larger than variations of xi � hxiið Þ,
variations of all other incoming signals f 0i yið Þwij xj � hxji

� �

(where j 6¼ k) must be anti-correlated with

f 0i yið Þwik xk � hxkið Þ. More precisely, all of the incoming

signals must be approximately linearly dependent and then

the output xk can be approximated as a linear function of

the outputs of all other neurons

xk �
X

j

wij

wik
hxji �

X

j 6¼k

wij

wik
xj þ

xi � hxii
f 0i yið Þwik

: ð31Þ

Then the conditional distribution for variable xk (with all

other xj’s for j 6¼ k fixed) can be modeled as a Gaussian

pðxkÞ / exp � 1

2

li � xkð Þ2

r2i

 !

ð32Þ

with mean

li �
X

j

wij

wik
hxji �

X

j 6¼k

wij

wik
xj ð33Þ

and variance

r2i ¼ f 0i yið Þ2w2
ikC

�1
ii

� ��1

: ð34Þ

To improve the estimate further, we can average over all

such approximations for i 6¼ k and then the overall distri-

bution is proportional to a product of Gaussians

pðxkÞ / exp � 1

2

X

i 6¼k

li � xkð Þ2

r2i

 !

/ exp � 1

2

Mk � xkð Þ2

S2k

 !

ð35Þ

with mean

Mk ¼
P

i6¼k lir
�2
iP

i 6¼k r
�2
i

¼ S2k
X

i 6¼k

f 0i yið Þ2wikC
�1
ii

	
X

j

wijhxji �
X

j 6¼k

wijxj

 ! ð36Þ

and variance

S2k ¼
X

i 6¼k

r�2
i

 !�1

¼
X

i6¼k

f 0i yið Þ2w2
ikC

�1
ii

 !�1

: ð37Þ

Note that the neurons efficiency (28) is inversely propor-

tional to the variance

Ek ¼
Ckk

S2k
ð38Þ

and so the variance is large for neurons with smaller effi-

ciencies and vice versa.

4 Machine learning algorithms

In this section, we develop the three machine algorithms:

programmed death, replication and combined (i.e., pro-

grammed death followed by replication), using the two

measures of efficiencies of individual neurons, or just

efficiencies, that were introduce in the previous sec-

tion. Without loss of generality, we assume that the least

efficient neuron is the k ¼ 1 neuron where the efficiency is

defined either by Eq. (17) (and then the linear dependence

of Eq. (15) should be used) or by Eq. (28) (and then the

linear dependence of Eqs. (27) or (36) should be used). For

the numerical experiments of Sect. 5, we shall refer to

A1. ‘‘Connection cut’’ algorithm—method of Eqs. (27)

and (28).

A2. ‘‘Probability’’ algorithm—Eqs. (36) and (28).

A3. ‘‘Covariance’’ algorithm—method of Eqs. (15) and

(17).

However, once the least efficient k ¼ 1 neuron is identified

(using either (17) or (28)) and once an approximate linear

relation is established (using either (15), (27) or (36))
X

j

ajxj � a0 ð39Þ

all three algorithms (i.e., covariance, connection cut and

probability) are treated similarly. Also note that in a

feedforward architecture the approximate linear depen-

dence (39) can only be established between neurons j on

the same layer with the least efficient neuron k ¼ 1.

4.1 Programmed death

In the programmed death algorithm, the least efficient

neuron is removed from the neural network and the rest of

the network is re-wired to accommodate the changes.

The activation dynamics of neuron xi ¼ fiðziÞ is deter-

mined by the state of all other neurons xj only through a

linear function

20278 Neural Computing and Applications (2023) 35:20273–20298

123

zi ¼
X

j

wijxj þ bi; ð40Þ

which can be approximated using (39) as

zi ¼
X

j 6¼1

wijxj þ wi1x1 þ bi

�
X

j 6¼1

wijxj þ wi1
a0
a1

�
X

l6¼1

al
a1

xl

 !

þ bi

¼
X

j 6¼1

wij � wi1
aj
a1

	

xj þ bi þ wi1

a0
a1

	

:

ð41Þ

If we are to disconnect a neuron from the network with a

minimal modification to the states of other neurons, then

we have to readjust the biases and weights so that zi’s

remain approximately the same. This can be done using the

following discrete transformation of the weight matrix

w0
ij ¼

0 if i ¼ 1 or j ¼ 1

wij � wi1
aj
a1

otherwise

(

ð42Þ

and of the bias vector

b0i ¼
0 if i ¼ 1

bi þ wi1
a0
a1

otherwise

(

: ð43Þ

In other words, the transformation sets all of the signals to

and from the ‘‘dead’’ neuron to zero and readjusts all other

weights and biases so that equations (41) are approximately

satisfied for i 6¼ 1. In this way, it is ensured that the per-

formance of the neural network is not significantly altered

or that the value of the average loss function, for a given set

of training data, is not significantly changed.

The proposed algorithms have similarities with the

works of other authors. As local algorithms [18, 19], they

use only the expected data of the particular neurons and the

weights connecting them to other neurons to estimate their

efficiency. The difference with [18, 19] is in the way we

estimate the neuron’s efficiency from these data. In the

feedforward net our algorithms A1 and A2 use variances of

the neurons’ signals on the particular neuron’s level and the

next level to calculate the particular neuron’s efficiency. In

the case which we study in Sect. 5, e.g., with 784 input and

100 next layer neurons, it means measuring 884 variances

and multiplying them and the weights connecting these 2

layers to estimate the input neurons’ efficiencies (17). Our

covariance algorithm A3 estimates the neuron’s efficiency

(28) by the covariance matrix of the neurons (on the

specific layer for a feedforward net) without knowledge of

the weights, i.e., in this particular case one needs to mea-

sure the 784	 784 covariance matrix and find its eigen-

values and eigenvectors. In this respect, A3 is more

computationally demanding than A1 and A2.

This is in contrast to the global algorithms, which esti-

mate the efficiency of a particular neuron or connection

from the output error. For example, the OBS algorithm [15]

calculates the Hessian matrix of the second derivatives of

the final error with respect to the weights. In the example

above we have 784	 100 weights connecting the input

neurons and the second layer neurons. Therefore the Hes-

sian matrix for these weights has the size 78400	 78400.

Then one has to invert it. This task is more computationally

demanding than our algorithms.

Formulas (42) and (43) are similar to the weight and bias

adjustments of other authors. For example algorithm of

[19] changes biases keeping the weights, which is a par-

ticular case of (42) and (43) with a1 ¼ 1, aj ¼ 0 and

a0 ¼ hx1i. We have such substitution in algorithm A1.

The programmed death algorithm is equivalent to a

biological phenomenon known as the programmed death,

e.g., programmed cell death. From a more practical point of

view, the algorithm can be used for compression of neural

networks for further use, for example, on devices with

constrained computational resources.

4.2 Replication

In the replication algorithm, the learning system adds a

new neuron to the neural network in order to reduce the

load on the most efficient neuron, not necessarily imme-

diately, but in the long run. Once again, the efficiency of

individual neurons can be defined by either (17) or (28), but

now the main challenge is to introduce coupling between

the two neurons: the new (or ‘‘child’’) neuron ‘‘c’’ and the

most efficient (or ‘‘parent’’) neuron ‘‘p’’. By following the

biological analogy of the phenomenon of cell replication,

we shall only couple the neurons at the time of the repli-

cation. This must correspond to some clever reinitialization

of biases and weights to and from the child and parent

neurons that in the long run would lead to the largest

decrease of the average loss function.

For example, consider reinitialization described by a

discrete transformation of the weight matrix

w0
ij ¼

wpj if i ¼ c

1

2
wip if j ¼ c or j ¼ p

wij otherwise

8
>><

>>:
ð44Þ

and of the bias vector

b0i ¼
bp if i ¼ c

bi otherwise

�
: ð45Þ

This transformation first splits in half all of the outgoing

weights from the parent neuron ‘‘p’’ and then copies all of

the outgoing weights from the parent ‘‘p’’ to child neuron

Neural Computing and Applications (2023) 35:20273–20298 20279

123

‘‘c’’. As a result, the overall performance of the neural

network is not altered and we end up with two identical (or

replicated) neurons that are, however, linearly dependent

xc ¼ xp: ð46Þ

This means that if the programmed death procedure were to

be executed right after replication, then it would immedi-

ately identify and delete one of these neurons. Moreover, if

the two neurons carry exactly the same information, the

positive effect of the replication on learning would be only

marginal.

To avoid the problem of immediate removal of a newly

replicated neuron and to improve the learning efficiency we

can set the outgoing weights from the child and parent

neurons to be arbitrary given that

w0
ip þ w0

ic ¼ wip: ð47Þ

For example, we can split the outgoing signals between the

child and parent neurons by defining a discrete transfor-

mation of the weight matrix

w0
ip ¼viwip; ð48Þ

w0
ic ¼ð1� viÞwip; ð49Þ

where vi 2 f0; 1g is a random bit. Note, that the random-

ization procedure can be improved further by employing

continuous probability distributions PðviÞ which may or

may not be symmetric.

The replication algorithm can be used for increasing the

effective dimensionality of the space of trainable variables

in the regions where the learning resources are most nee-

ded. This may be important for initialization of the neural

networks as well as for improving the performance of

already trained neural networks. More generally, as we

shall see below, the replication algorithm can be used in

conjunction with programmed death algorithm for

improving the convergence of arbitrary learning systems.

5 Numerical results

In the previous section, we developed two bio-inspired

machine learning algorithms (i.e., programmed death,

replication) and suggested that the programmed death fol-

lowed by replication can be used for increasing the learning

efficiency of arbitrary algorithms. In this section we will

analyze the performance of these algorithms by training a

feedforward neural network with four layers (i.e., two

hidden layers) and different neural architectures:

N1. 784 neurons ! 5 neurons ! 20 neurons ! 10

neurons

N2. 784 neurons ! 10 neurons ! 10 neurons ! 10

neurons

N3. 784 neurons ! 20 neurons ! 5 neurons ! 10

neurons

N4. 784 neurons ! 100 neurons ! 5 neurons ! 10

neurons

We use network N1 in 5.1, 5.6 and 5.7, networks N2 and

N3 in Sects. 5.1, 5.6, and network N4 in Sects. 5.2, 5.3,

5.8. We chose nets N1–N3 to see how the work of the

algorithms differs for expanding, contracting and constant

net architecture in terms of the number of neurons in the

consecutive layers. Net N4 was chosen with a large number

of neurons to better see the effect of pruning on the second

layer. When we discuss the replication algorithms the net

N1 is most sensitive to the addition of a neuron to layer 2.

For plotting the numerical results we use the neuron

efficiency calculated according to Eq. (28) for algorithms

A1 ‘‘connection cut’’ and A2 ‘‘probability’’, and via (17)

for the algorithm A3 ‘‘covariance’’ from Sect. 4.

The neural networks were trained on the MNIST [24]

dataset of 60,000 data and 10,000 validation 28 	 28 pixel

gray level handwritten digits with 784 input channels and

10 output classes 0,..., 9, poðP̂xÞ; with linear activation

function, f ðyÞ ¼ y, for input neurons; with the softmax

activation function xi ! exiP
k
exk

for the final layer; with

nonlinear activation function, f ðyÞ ¼ thðyÞ, for bulk neu-

rons (i.e., second and third layers); and with cross-entropy

loss function, Hðx; b; ŵÞ. The training was done via the

stochastic gradient descent method with the batch size 600,

momentum 0, L2 regularization parameter 0.001, and the

constant learning rate 0.001. Calculations were done in

Wolfram Mathematica 12.3.1.0 by 16Gb Intel i7 4702MQ

and 16Gb AMD Ryzen 7 5000 systems. Time measure-

ments were done with the latter system.

5.1 Programmed death

For numerical testing of the programmed death algorithms,

described in the previous section, we trained the feedfor-

ward neural networks N1, N2 and N3 for 50,000 epochs.

In Fig. 1, we plot the efficiency of neuron, Ek or E0
k,

versus change in the average loss function, DhHi, (i.e., loss
after neuron is removed minus loss before neuron is

removed) for three different neural networks (N1, N2 and

N3) and three different algorithms (A1, A2 and A3) at

epochs 500 and 50,000. For the individual runs, efficiency

of every neuron on the second layer is calculated, then each

neuron is removed and the change in the loss function is

calculated. Statistics is acquired by running fifty simula-

tions with different initialization for every algorithm and

neural architecture. In the third row (or for the neural

20280 Neural Computing and Applications (2023) 35:20273–20298

123

network N3) and for ‘‘connection cut’’ and ‘‘probability’’

plots (or for A1 and A3 algorithms) the log-log plot is used

to show that there are many neurons with efficiency smaller

than
 10�3 at epoch 500, but only one such neuron at

epoch 50000. In programmed death algorithms, such low-

efficiency neurons can be removed without significantly

changing the performance of the neural network.

In Fig. 2, we plot change in the average loss function,

DhHi, as a function of time (or the number of epochs) for

three different algorithms (A1, A2 and A3) and for three

different neural architectures (N1, N2 and N3). For each

run of the simulation every neuron on the second layer is

removed and then DhHi is calculated. For N1 neural

architecture we executed 50 separate runs of the simula-

tion, for N2 neural architecture—25 runs, and for N3

neural architecture—13 runs all with different initial con-

ditions. The solid lines show the mean DhHi averaged over

all neurons on the second layer and all runs, and the dashed

Fig. 1 Efficiency of neuron, Ek or E
0
k, versus change in the average loss function, DhHi, for algorithms A1 (first row), A2 (second row) and A3

(third row), and for neural architectures N1 (blue dots), N2 (pink dots) and N3 (brown dots) after 500 (left plots) and 50,000 (right plots) epochs

Neural Computing and Applications (2023) 35:20273–20298 20281

123

lines show the mean DhHi for only the least efficient

neuron on the second layer in each run averaged over all

runs. The least efficient neuron is the one with the smallest

efficiency, i.e., smallest E0
k for the A1 and smallest Ek for

A2 or A3 algorithms. Clearly, only when the dotted line is

much lower than the solid line (of the same color) the

removal of the least efficient neuron would lead to the

smallest distortion to the overall performance of the net-

work. With this respect only for the neural networks N2

and N3, and only for the algorithm A2 (or pink lines) the

corresponding probability method is not very useful.

Next, we make linear fits of Ek vs. DhHi (for algorithms

A1 and A2),

Ek ¼ aþ bDhHi; ð50Þ

or E0
k vs. DhHi (for algorithm A3),

E0
k ¼ aþ bDhHi; ð51Þ

for all times. In Fig. 3, we plot the slopes b(t) as a function

of learning time, where the data are obtained from the same

runs as for Fig. 2. Note that for algorithm A2 (second plot)

and neural network N3 (green line) the slopes are almost

zero (or slightly negative) and so the probability method is

not very useful for identifying and removing a neuron

which would give the smallest change in loss. In fact,

according to Fig. 2, one should remove the least efficient

neuron using algorithm A1 or A2 for neural network N1

and using algorithm A1 or A3 for neural networks N2 and

N3. Moreover, according to Fig. 3, the algorithms A1 and

A3 should work for all neural networks since the blue and

yellow lines remain positive, which allows us to predict the

effect of removing a given neuron, but the algorithm A2

Fig. 2 DhHi as a function of learning time for algorithms A1 (blue lines), A2 (pink lines) and A3 (brown lines) and for neural networks N1 (left

plot), N2 (middle plot) and N3 (right plot)

Fig. 3 Slopes b(t) of the linear fits (of Ek (or E0
k) vs. DhHi) as a function of time t

Fig. 4 Averaged results for 28 N4 nets trained for 5000 epochs to

accuracy 0:97981� 0:00023 and pruned by A1 algorithm. Results are

given after first pruning and after 500 epochs training and second

pruning with the same cutoff

20282 Neural Computing and Applications (2023) 35:20273–20298

123

would not work for neural network N3 since the green line

on the rightmost plot remains near zero.

5.2 Pruning of the trained net

Pruning of the trained net is important for applications. We

test our algorithm A1 on net N4 with 100 neurons in the

second layer. In this section we trained 28 N4 nets with

different initialization and applied algorithm A1 to reduce

the number of neurons only on the second layer. Training

was done for 5000 epochs. We choose A1 since from the

analysis in the previous section we conclude that algorithm

A1 works better than others since it is faster than A3 and

more reliable than A2.

Fig. 5 Averaged results for 28 N4 nets trained for 5000 epochs to

accuracy 0:97981� 0:00023 and pruned by A1 algorithm. Initial

number of neurons on the second layer is 100. Maximal efficiency of

the neuron on the second layer is 0:631� 0:026. After pruning the net
was retrained for 500 epochs and pruned again with the same cutoff

Fig. 6 Averaged results for 28

N4 nets with 100 neurons on the

second layer trained for 5000

epochs to accuracy 0:97981�
0:00023 and pruned by A1

algorithm with accuracy goal.

First row gives results for

pruning of the initial net. Next

five rows give results for five

iterations of retraining for 500

epochs and pruning again with

the same accuracy goal

Neural Computing and Applications (2023) 35:20273–20298 20283

123

There are several strategies to follow in pruning the

trained net. One can introduce the cutoff � for neuron

efficiency (28) and eliminate all neurons with smaller

efficiencies. Then, one can retrain and do the same. The

results of such approach are in Fig. 4 and the table in

Fig. 5.

One can see that learning after pruning improves accu-

racy but does not change the number of neurons more

efficient than the cutoff, i. e. second pruning with the same

cutoff does not reduce the number of neurons. Hence, it

does not affect loss and accuracy.

Another strategy is to set an accuracy goal and remove

neurons one by one while accuracy is greater than the goal.

Once removing the next neuron makes accuracy less than

the goal, one stops pruning and retrains the net. After

retraining, one repeats pruning again. The results of this

approach are given in Fig. 6 for accuracy goals 0.97 and

0.95.

Comparing Figs. 5 and 6, one can see that the first

strategy is more efficient than the second. One gets a net

with accuracy 0.95 and 21 neurons on the second layer via

the first strategy with efficiency cutoff 0.2 and one step of

retraining for 56 s. According to the second strategy, one

gets a net with accuracy 0.95 and 29 neurons on the second

layer with 5 steps of retraining for 407 s. For accuracy

0.97, the first strategy with cutoff 0.1 gives a net with 43

neurons for 76 s and the second strategy gives a net with 44

neurons for 468 s.

5.3 Pruning of input neurons in trained net

Input neurons may also be inefficient. Although we intro-

duced our algorithms for neurons in the hidden layers, one

can apply them to the input neurons as well. As in the

previous section, one discards the neurons with the effi-

ciency less than a cutoff or until the net’s accuracy, e.g., is

greater than the accuracy goal.

To demonstrate how algorithm A1 with efficiency cutoff

works on the input neurons, we applied it to the nets

obtained in the previous section after A1 with efficiency

cutoffs 0.1 and 0.2 reduced the number of the second layer

neurons (see Fig. 5 lines 5 and 7). The results with dif-

ferent efficiency cutoffs for the initial neurons are in Fig. 7

for the nets obtained with the second layer cutoff 0.1. The

input neurons eliminated for the cutoffs in Fig. 7 are shown

in Fig. 8.

The results for the second layer cutoff 0.2 with different

initial neuron efficiency cutoffs are in Fig. 9.

We also give accuracies for the validation set demon-

strating that net reduction keeps accuracy on the unknown

data.

Comparing the net’s sizes in Figs. 7–9 for similar

accuracies � 0:95, one finds the net with 193 input neurons

and 43 second layer neurons in line 7 (in cutoff 0.01, 2nd

layer cutoff 0.1) in Fig. 7 and the net with 337 input

neurons and 21 second layer neurons in line 3 (in cutoff

0.001, second layer cutoff 0.2) in Fig. 9. These nets have

193	 43 ¼ 8299 and 337	 21 ¼ 7077 weights connect-

ing input and second layer neurons. So in the situation with

the large number of input neurons reduction of the hidden

neurons, i.e., large efficiency cutoff for them gives smaller

nets than the reduction of the input neurons, i.e., large

efficiency cutoffs for them.

Figures 7 and 9 show that cutoff � 0:05	(Max effi-

ciency) reduces accuracy for � 1%, which is recovered

after retraining.

To demonstrate how algorithm A1 with accuracy goal

works on the input neurons we applied it to the nets

Fig. 7 Averaged results for 28 N4 nets with initial neurons pruned by

A1 algorithm with different efficiency cutoffs. Initial parameters of

the nets are in line 5 in Fig. 5: accuracy is 0.9730 ± 0.0004, number

of neurons on the second layer is 42.5 ± 0.7, second layer efficiency

cutoff 0.1, maximal efficiency of the input neuron 0:0432� 0:0017.
After pruning, the net was retrained for 500 epochs

20284 Neural Computing and Applications (2023) 35:20273–20298

123

obtained after A1 was applied to the neurons on the second

layer with accuracy goals 0.97 and 0.95 after 5 steps of

retraining (see Fig. 6). The results for the same accuracy

goals are in Fig. 10.

One can see that 45–50%% of input neurons are inef-

ficient and are removed by the algorithm. Figure 11 shows

that they are the neurons in the boundary of the field.

The results in Fig. 10 show accuracies after pruning

without retraining. Comparing the size of the net obtained

with the accuracy goal 0.97 436	 44 ¼ 19184 (Fig. 10)

and the size of net obtained with cutoffs for the initial and

second layer neurons 0.0005 and 0.1 (Fig. 7),

407	 43 ¼ 17501, one can see that the cutoff based

approach is more effective. The results are similar for the

nets with accuracy 0.95, see Fig. 7 and 10. Timewise cutoff

pruning takes about 3.5 s while accuracy goal based

pruning takes about 450 s.

Fig. 8 Input neurons removed from the 28 	 28 pixel field by A1 algorithm with nine efficiency cutoffs. Nets have parameters from Fig. 7.

Averaged results for 28 N4 nets. Black neurons were not removed in all 28 runs, and blue neurons were always removed in all 28 runs

Neural Computing and Applications (2023) 35:20273–20298 20285

123

5.4 Pruning of untrained net

One may also try pruning the input neurons in the untrained

net since inefficient input neurons with zero variance will

have zero efficiency independently of the weights. One can

see the computational advantage of pruning before training

in Fig. 12, where we use the A1 algorithm to prune the

initial neurons in 28 N4 nets. The removed input neurons

are shown in Fig. 13.

One can see that the input neurons in Fig. 13 removed

before training are mainly the same as the ones removed

after training depicted in Fig. 11.

Hidden layer neurons may also be inefficient upon ini-

tialization. If they have small efficiency from the start, then

not only do they have small influence on the output but also

they need more steps of learning to change the output. It

means that their learning is inefficient, i.e., the gradients

with respect to change in their weights are small. To test

how pruning of the hidden neurons in the untrained

Fig. 9 Averaged results for 28 N4 nets with initial neurons pruned by

A1 algorithm with different efficiency cutoffs. Initial parameters of

the nets are in line 7 in Fig. 5: accuracy is 0.9517 ± 0.0013, number

of neurons on the second layer is 20.6 ± 0.7, second layer efficiency

cutoff 0.2, maximal efficiency of the input neuron 0:0278� 0:0017.
After pruning the net was retrained for 500 epochs

Fig. 10 Averaged results for 28

N4 nets after elimination of

input neurons with A1

algorithm with accuracy goal.

Initial nets have parameters

from Fig. 6

Fig. 11 Inefficient input neurons removed from the 28 	 28 pixel

field by A1 algorithm with accuracy goals 0.97 (left) and 0.95 (center)

and the neurons which were not necessary for accuracy 0.95 but were

necessary for accuracy 0.97 (right). In Left and Center plots black

neurons were not removed in all 28 runs and blue neurons were

always removed in all 28 runs. Nets have parameters from Fig. 10.

Averaged results for 28 N4 nets

20286 Neural Computing and Applications (2023) 35:20273–20298

123

networks, we use the A1 algorithm to prune both the initial

neurons and the second layer neurons in 28 N4 nets with

the same cutoff in the presence of maximal neuron

efficiency calculated on each layer separately. The results

are given in Fig. 14.

One can see that although there is little change in

training time with respect to the nets with larger number of

neurons on the hidden layer, initial pruning of both the

input and the hidden neurons leads to smaller nets without

much loss in accuracy after training.

5.5 Comparison with other approaches

We will compare our algorithm A1 with one local algo-

rithm, the N2PS algorithm [18], and one global algorithm,

NNSP [17]. N2PS algorithm was introduced for a feed-

forward net with the sigmoidal activation function and the

mean squared error. It uses the sigmoidal function 1
1þe�x to

define the neuron’s significance. Therefore, to compare

with it we trained 28 N4 nets with the sigmoidal activation

function instead of th(x) and applied the pruning algo-

rithms. The results are in Fig. 15.

Fig. 12 Averaged results for 28 N4 nets after elimination of input

neurons with A1 algorithm with different efficiency cutoffs (% of max

efficiency) for input neurons applied to the untrained net and trained

for 5000 epochs after that. Average accuracy of the initial untrained

nets is 0:099� 0:004. It changed within the error bars after initial

pruning with all three cutoffs. Number of neurons on the second layer

is 100

Fig. 13 Inefficient input neurons removed from the 28 	 28 pixel

field by A1 algorithm with different efficiency cutoffs (% of max

efficiency) for input neurons applied to the untrained net and trained

for 5000 epochs after that. Black neurons were not removed in all 28

runs, and blue neurons were always removed in all 28 runs. Nets have

parameters from Fig. 12. Averaged results for 28 N4 nets

Fig. 14 Averaged results for 28 N4 nets after elimination of input and

second layer neurons with A1 algorithm with different efficiency

cutoffs (% of max efficiency on the layer) for input and second layer

neurons applied to the untrained net and trained for 5000 epochs after

that. Average accuracy of the initial untrained nets is 0:099� 0:004

Neural Computing and Applications (2023) 35:20273–20298 20287

123

One can understand the results of Fig. 15 looking at the

N2PS criterion to prune the neuron. They define the sig-

nificance of the input neuron i as

si ¼
Xm1

j1¼1

f ðtxipÞ þ wij1

�� ��; txip ¼
Xnp

p¼1

xip; f ðxÞ ¼ 1

1þ e�x
;

ð52Þ

where m1 is the number of neurons on the second layer, xip
is the input neuron’s value on the example p from the

dataset with np examples, and txip is the total net value of

input neuron i on the dataset. The neuron is pruned if its

significance is less than the average significance of the

input neurons.

In MNIST dataset, there are 60000 examples. The input

neurons in the corner of the pixel field are always white,

i.e., have xip ¼ 1 and the input neurons in the center of the

field are sometimes black, i. e. 0, with the average value

hxipi� 0:5. Therefore the difference in f ðtxipÞ in

significance of the central neurons and the boundary neu-

rons is � e�30000 � e�60000, i.e., 0 compared to the weights

� 1. It means that the algorithm will differentiate the input

neurons only on the basis of the weights ignoring the input

values altogether. And the weights are similarly distributed

for all the neurons. Therefore for large datasets the input

neurons will be randomly pruned. One can see it from

Fig. 16 and from the results in Fig. 15.

Moreover, for smaller datasets or using the average

input value instead of the total in (52), the always white

neurons from the boundary will have greater significance

than the neurons in the center of the pixel field. Indeed,

they have greater f ðtxipÞ and the weights are similarly

distributed for all the neurons. It means that the algorithm

will eliminate the central input neurons keeping the

boundary input neurons in the net. One can see it in

Fig. 16. If, however, we change the color coding making

Fig. 15 Averaged results for 28 N4 nets with the sigmoidal activation

functions after elimination of input and second layer neurons with

(Line 1) N2PS algorithm, (Line 2) N2PS algorithm with total net

input value changed to average input value for each neuron in the

significance calculation (52), (Line 3) N2PS algorithm with total net

input value changed to average input value for each neuron in the

significance calculation and elimination of input neurons with the

significance greater than the average, (Lines 4–5) A1 algorithms with

different efficiency cutoffs (% of max efficiency on the layer) for

input and second layer neurons. Average accuracy of the initial nets is

0:8695� 0:0023

Fig. 16 Input neurons removed from the 28 	 28 pixel field by (left)

N2PS algorithm, (center) N2PS algorithm with total net input value

changed to average input value for each neuron in the significance

calculation (52), (right) N2PS algorithm with total net input value

changed to average input value for each neuron in the significance

calculation and elimination of input neurons with the significance

greater than the average. Averaged results for 28 N4 nets. Black

neurons were not removed in all 28 runs and blue neurons were

always removed in all 28 runs

20288 Neural Computing and Applications (2023) 35:20273–20298

123

white 0 and black 1, the N2PS algorithm will eliminate the

boundary neurons keeping the central ones.

Our algorithms have the following advantages. They

work for any differentiable activation function, not only the

sigmoidal. Next, they estimate neurons not on the neurons’

values but on their (co)variances. Therefore, they are

independent of the input encoding and the size of the

dataset.

The NNSP algorithm was introduced for a feedforward

net with an input, output layers and one hidden layer

(Eq. (3) in [17])

ŷ ¼ go
Xnh

h¼1

w2
h:gh

Xni

i¼1

w1
hi:xi þ b1h

 !

þ b

 !

; ð53Þ

where go and gh are the output and the hidden layer acti-

vation functions, w2
h and w1

hi are the weights connecting the

hidden neurons with the output and input, and b and b1h are

the corresponding biases, nh and ni are the numbers of

hidden and input neurons. Such a construction assumes one

output neuron. This algorithm prunes input neurons and

hidden weights and biases. To this end, it introduces the

sensitivities as partial derivatives of the net’s output with

respect to the input neurons’ values, hidden weights and

biases. For the input neuron i, e.g., the sensitivity Sxi reads

(Eq. (7) in [17])

SxiðnÞ ¼
oŷðnÞ
oxiðnÞ

¼
Xnh

h¼1

g0oðzðnÞÞ:w2
h:ð1� ðx1hðnÞÞ

2Þw1
hi;

ð54Þ

x1hðnÞ ¼ gh
Xni

i¼1

w1
hi:xiðnÞ þ b1h

 !

; ghðxÞ ¼ thðxÞ)

ð55Þ

g0h ¼ 1� g2h ¼ 1� ðx1hðnÞÞ
2: ð56Þ

Here, n is the number of the pattern from the learning

dataset. Then, one has to find variance of this sensitivity

over the whole dataset

r̂2xi ¼ hðSxi � hSxiiÞ
2i ð57Þ

and prune neurons with r̂2xi less than a cutoff checking that

the net’s performance does not deviate too much from the

goal.

To apply this algorithm to our problem, we have to

adjust it since our net N4 is a net with ten outputs and two

hidden layers, as is shown in Fig 17.

First, we use the sum of sensitivity variances (57) for all

the output channels as the measure of the neuron’s effi-

ciency. Next, we can choose what to consider the output

channels ŷ. We can take as output the ten output neurons of

layer 6 in Fig. 17 and modify the expression after the

second equality sign in (54) accordingly. It is the global

approach. Or, we can take as output the neurons going out

of the first several levels of the N4 net if we want to study

the sensitivity to input neurons. It is the local approach. It is

interesting to see how the pruning quality changes with

choice of the output.

Here, we will compare A1 and NNSP algorithms in

input neuron pruning. We cannot choose the neurons going

out of the first layer as output ŷ since then the sensitivities

are the weights w1, which have zero r̂xk . Then, we start

with the hundred neurons going out of layer 2 in Fig. 17 as

output ŷ: The 100 sensitivities Sixk ; i ¼ 1; 2; ::100 of the 784

input neurons xk read

Sixk
��
2
¼ ð1� ðx2i Þ

2Þw1
ik: ð58Þ

Here, x2i are the output values of level 2 in Fig. 17 and 2

denotes the layer rather than a power. Therefore the sum of

the variances of these sensitivities gives the usefulness

measure of the input neuron. It reads

r̂2xk
��
2
¼
X100

i¼1

hðSixk � hSixkiÞ
2i
��
2
¼
X100

i¼1

ðhðSixkÞ
2i � hSixki

2Þ
��
2

¼
X100

i¼1

ðhðx2i Þ
4i � hðx2i Þ

2i2Þðw1
ikÞ

2:

ð59Þ

Hence, one has to measure the 100 variances of the squares

of the output of the second layer in Fig. 17.

Next, we choose the five neurons going out of layer 3 in

Fig. 17 as output ŷ: Then the 5 sensitivities Sixk ; i ¼ 1; 2; ::5

of the 784 input neurons read

Sixk

��
3
¼
X100

l¼1

w3
ilð1� ðx2l Þ

2Þw1
lk: ð60Þ

Here x2l are the output values of level 2 in Fig. 17 and 2

denotes the layer rather than a power. Therefore the sum of

Fig. 17 Structure of the net N4. Elements 1, 3, 5 are linear layers with weights w1;3;5 and biases. Elements 2, 4, 6 are activation functions: 2 and 4

are th(x) and 6 is a softmax layer xi ! exiP
k
exk
. Numbers above the arrows stand for the number of output neurons of the corresponding layers

Neural Computing and Applications (2023) 35:20273–20298 20289

123

the variances of these sensitivities gives the usefulness

measure of the input neuron. It reads

r̂2xk
��
3
¼
X5

i¼1

X100

l;r¼1

ðhðx2l Þ
2ðx2r Þ

2i � hðx2l Þ
2ihðx2r Þ

2iÞw3
ilw

3
irw

1
lkw

1
rk:

ð61Þ

Hence, one has to measure the covariance matrix of the

squares of the output of the second layer in Fig. 17 with

1002 elements.

Next, we choose the five neurons going out of layer 4 in

Fig. 17 as output ŷ: Then, the 5 sensitivities Sixk ; i ¼ 1; 2; ::5

of the 784 input neurons read

Sixk

��
4
¼
X100

l¼1

ð1� ðx4i Þ
2Þ

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
zi

w3
ilð1� ðx2l Þ

2Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ul

w1
lk: ð62Þ

Here x2l and x4i are the output values of levels 2 and 4 in

Fig. 17 and 2;4 denote the layer rather than a power and we

introduced zi and ul to shorten notation. The sum of the

variances of these sensitivities gives usefulness of the input

neuron xk. It reads

r̂2xk
��
4
¼
X5

i¼1

X100

l;r¼1

ðhz2i uruli � hziulihziuriÞw3
ilw

3
irw

1
lkw

1
rk:

ð63Þ

Here one has to measure the covariance matrices hz2i uruli
and hziuri of the neurons on levels 2 and 4 in Fig. 17 with

5	 1002 and 5	 100 elements.

We can choose the ten neurons going out of layer 5 in

Fig. 17 as output ŷ: Then, the ten sensitivities Sixk ; i ¼
1; 2; ::10 of the 784 input neurons read

Sixk
��
5
¼
X5

j¼1

X100

l¼1

w5
ijð1� ðx4j Þ

2Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

zj

w3
jlð1� ðx2l Þ

2Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ul

w1
lk: ð64Þ

The sum of the variances of these sensitivities giving

usefulness of the input neuron xk reads

r̂2xk
��
5
¼
X10

i¼1

X5

j;n¼1

X100

l;r¼1

ðhzjznuruli � hzjulihznuriÞ

	 w5
ijw

5
inw

3
jlw

3
nrw

1
lkw

1
rk:

ð65Þ

Here one has to measure the covariance matrix hzjznuruli of
the neurons on levels 2 and 4 in Fig. 17 with 52 	 1002

elements.

Finally, we can choose the ten neurons going out of

layer 6 in Fig. 17 as output ŷ: Using the softmax yq ¼
exqP
k
exk

derivative

oyq
oxi

¼ o

oxi
exq

P
k e

xk
¼ yiðdqi � yqÞ; dqi ¼

1; q ¼ i

0; q 6¼ i;

�

ð66Þ

ten sensitivities Sixk ; i ¼ 1; 2; ::10 of the 784 input neurons

read

Sixk
��
6
¼
X10

q¼1

X5

j¼1

X100

l¼1

x6i ðdqi

�x6qÞw5
qjð1� ðx4j Þ

2Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

zj

w3
jlð1� ðx2l Þ

2Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ul

w1
lk:

ð67Þ

The sum of these sensitivities variances giving usefulness

of the input neuron xk reads

r̂2xk
��
6
¼
X10

i;q;p¼1

X5

j;n¼1

X100

l;r¼1

ðhzjznurulðx6i Þ
2ðdqi � x6qÞðdpi � x6pÞi

� hzjulx6i ðdqi � x6qÞihznurx6i ðdpi
� x6pÞiÞw5

qjw
5
pnw

3
jlw

3
nrw

1
lkw

1
rk:

ð68Þ

Fig. 18 Performance of NNSP algorithm with output layers 2–5 in

Fig. 17 for input neurons’ pruning compared to performance of the

A1 algorithm. NNSP algorithm pruned input neurons with

r̂2xk\0:1max r̂2xk , A1 algorithm pruned input neurons with

efficiencies less than 0:05	 maxðefficiencyÞ cutoff. Averaged results

for 28 N4 nets. Initial nets were trained for 5000 epochs to accuracy

0:97981� 0:00023. Retraining was done for 500 epochs

20290 Neural Computing and Applications (2023) 35:20273–20298

123

Here, one has to measure the covariance matrix
P10

i¼1hzjznurulðx6i Þ
2x6qx

6
pÞi of the neurons on levels 2, 4 and

6 in Fig. 17 with 52 	 1002 	 102 elements.

One can clearly see the increase in the computational

demands to implement the NNSP algorithm as we choose

the output closer to the final layer. We pruned the input

neurons in 28 N4 nets according to this algorithm elimi-

nating the input neurons with r̂2xk\0:1max r̂2xk for r̂2xk
calculated on layers 2–5 in Fig. 17. Level 6 was beyond

our computational resources. The results are given in

Fig. 18.

The corresponding input pixel fields are shown in

Fig. 19.

These figures also give results for the performance of

our algorithm A1 for comparison.

Figure 18 shows that A1 and NNSP have comparable

results in terms of number of pruned input neurons and

accuracy after retraining. However, pruning time grows

rapidly with the number of the output layer for NNSP

algorithm from 3 to 60 s while A1 pruning time is about

3.7 s, which is comparable to NNSP with output layers 2

and 3. For layer 6 as output, one can estimate pruning time

� 100	 60 seconds as the covariance matrix becomes 100

times bigger. However, this is exactly the logic of all global

algorithms, which estimate usefulness of net’s elements by

the whole net’s output. In this respect our algorithms are

faster and independent of the number of layers in the net

and the whole net’s output. Thus for input neuron pruning

in N4 net, algorithm A1 needs 784 variances of input

neuron values and 100 variances of second layer neuron

values. This number of measurements is � 8 times bigger

than NNSP with output at layer 2, � 10 times smaller than

NNSP with output at layer 3, � 60 times smaller than

NNSP with output at layer 4, � 280 times smaller than

NNSP with output at layer 5, and � 28; 000 times smaller

than NNSP with output at layer 6.

Figures 18 and 19 also show that NNSP algorithm does

not need to consider the final layer as output since it

eliminates the unnecessary input neurons with layers 2, 3,

4, and 5 as output, i.e., when applied locally. Figure 19

tells us that the eliminated neurons are on the boundary of

the pixel field and Fig. 18 tells us that after retraining the

net’s accuracy does not deteriorate. Surely, on can choose

Fig. 19 Input neurons removed from the 28 	 28 pixel field by (left)

NNSP algorithm with output taken at layers 2–5 in Fig. 17 where the

input neurons with r̂2xk\0:1max r̂2xk were removed, (right) A1

algorithm with 0:05	 maxðefficiencyÞ cutoff. Averaged results for

28 N4 nets. Black neurons were not removed in all 28 runs and blue

neurons were always removed in all 28 runs. Initial nets were trained

for 5000 epochs to accuracy 0:97981� 0:00023

Neural Computing and Applications (2023) 35:20273–20298 20291

123

the threshold for r̂2xk differently at each layer as output and

vary the number of eliminated input neurons. This obser-

vation may indicate that global algorithms do extra cal-

culations propagating the information about input neuron

usefulness further along the net.

Figure 18 gives uncertainties for the number of elimi-

nated neurons. For A1 algorithm, it is from 3 to 10 times

smaller than for the NNSP algorithm with different output

layers. It indicates that our algorithm is much more

stable with respect to net initialization and learning.

One can understand it in the following way. First, our

algorithm measures the variance of the input neuron’s

value. If it is zero this neuron will be eliminated whatever

its weights are. NNSP algorithm measures variance of the

sensitivity of the output to the input neuron, i.e., variance

of the partial derivatives of the output with respect to the

input neuron’s value. However, if the input neuron’s value

does not change, it is not important whether this partial

derivative together with its variance are big or small. In

other words the sensitivity to this neuron may be big and

varying but the neuron has always constant value and may

be substituted by a bias and eliminated from the net.

Nevertheless, Fig. 19 shows that NNSP algorithm prunes

the neurons on the boundary of the pixel field although the

transition from the boundary unnecessary neurons to the

central always useful neurons is very wide compared to the

A1 algorithm. It means that the sensitivities to the

boundary input neurons became smaller than the average

through learning, i.e., the net via training made the weights

connected to the boundary neurons smaller than average.

Since learning is a stochastic process, these weights

became smaller in general but varying from neuron to

neuron. As a result, we see wide boundaries between the

central and the peripheral input neurons in Fig. 19.

This statement can be tested via pruning the untrained

net. Figure 20 shows the input neurons removed from the

28 N4 untrained nets by NNSP algorithm with output layer

3 (left) and by A1 algorithm (center). One can see that

NNSP algorithm does not work on the untrained net, while

A1 works although it eliminates 40 neurons less than on the

trained net in Fig. 19. Another way to prove this statement

is to prune input neurons in the trained net with sensitivities

measured on layer 1 in Fig. 17 less than a cutoff, i.e.,

S2xk

��
1
¼
X100

i¼1

ðSixkÞ
2
��
1
¼
X100

i¼1

ðw1
ikÞ

2\0:1max
k

S2xk

��
1
: ð69Þ

The result is given in Fig. 20 (right). One can see that while

training the net learns that the neurons in the boundary are

unnecessary. Therefore, the better is the net’s accuracy the

better is the NNSP algorithm performance.

The conclusion is that our algorithm can prune input

neurons in the untrained net while NNSP cannot.

Comparison of hidden neurons pruning by A1 and

NNSP algorithms may be done in a similar way, which we

do not present here.

Another global algorithm is OBS algorithm [15]. It is a

global algorithm which calculates the Hessian matrix of

second derivatives of output error with respect to the net’s

parameters. For N4 net with 784 input and 100 hidden

neurons on the first layers we have 784	 100 weights and

we need to invert the matrix with ð784	 100Þ2 elements,

which is beyond our computational resources. Moreover by

construction as NNSP algorithm, the OBS algorithm works

Fig. 20 Input neurons removed from the 28 	 28 pixel field of the

untrained net (left) by NNSP algorithm with output taken at layer 3 in

Fig. 17 where the input neurons with r̂2xk\0:5max r̂2xk were removed,

(center) by A1 algorithm with 0:05	 maxðefficiencyÞ cutoff. (right)

Input neurons with S2xk j1\0:1max S2xk j1 were removed from the

trained net with accuracy 0:97981� 0:00023. Averaged results for 28

N4 nets. Black neurons were not removed in all 28 runs and blue

neurons were always removed in all 28 runs

20292 Neural Computing and Applications (2023) 35:20273–20298

123

with the net in a local minimum. So one does not apply it to

the untrained net.

5.6 Replication

For numerical testing of the replication algorithms,

described in the previous section, we trained the feedfor-

ward neural networks N1, N2 and N3 for 25,000 epochs.

Then we use one of the algorithms to add one more neuron

to the second layer and run the simulation for 10, 100, and

1000 additional epochs.

In Fig. 21, we plot PDF (or probability distribution

function) of DhHi, acquired from fifty runs with different

initialization, for different neural networks and for different

numbers of additional epochs. We use the b distribution to

model probability distribution PðviÞ for splitting weights

between the parent and child neurons in Eqs. (48) and (49).

The five lines on each plot describe five different

algorithms:

B1. ‘‘Beta(0.01, 0.01)’’—neuron is replicated with Beta

distribution and both shape parameters equal to 0.01

(blue lines in Fig. 21),

B2. ‘‘Beta(1, 1)’’—neuron is replicated with Beta distri-

bution and both shape parameters equal to 1 (yellow

lines in Fig. 21),

B3. ‘‘Beta(100, 100)’’—neuron is replicated with Beta

distribution and both shape parameters equal to 100

(green lines in Fig. 21),

B4. ‘‘Random’’—neuron with random weights (drawn

from the same distribution as other weights) is added

(purple line),

B5. ‘‘Original’’—no new neurons are added (red lines in

Fig. 21).

Fig. 21 PDF of DhHi for neural networks N1 (first row), N2 (second row) and N3 (third row) after 10 (first column), 100 (second column), and

1000 (third column) additional epochs

Fig. 22 Averaged accuracies of 28 N1 nets trained for 10000 epochs to accuracy 0:91751� 0:00034. After training one new neuron was added

according to algorithm B1, randomly (B4) or not added (original B5). Then retraining was done for 10, 100, and 1000 epochs

Neural Computing and Applications (2023) 35:20273–20298 20293

123

For algorithms B1, B2, and B3 the most efficient neuron

(smallest E0
k or E

0
k) on the second layer was replicated. One

can see in Fig. 21 that after 1000 additional epochs the

most efficient algorithm is B1 (i. e. outgoing connections

from a parent neuron are randomly split between parent

and child neurons) and the least efficient algorithm is B3 (i.

e. new outgoing weights from parent and child neuron

equal to half of old outgoing weight from parent neuron).

The main reason is that algorithm B1 creates a child neuron

which is maximally independent from parent neuron while

for algorithm B3 the parent and child neurons are equiva-

lent and it would take time for them to diverge due to

stochastic learning dynamics. B4 algorithm is inefficient in

the short run (i.e., after 10 or 100 epochs), but the algo-

rithm becomes as efficient as B1 in a long run (i.e., after

1000 epochs).

The additional neuron gives the most pronounced effect

for network N1 since it has only 5 neurons on the second

layer. In terms of accuracy, it is given in Fig. 22, where the

one can clearly see the advantage of the B1 algorithm.

5.7 Replication on a new dataset

One may meet a situation when the net was trained on a set

unevenly distributed among the output classes with a

majority of data of one particular class. Then a new

training set becomes available peaked at a different class.

In this section we study the ability of our most efficient

replication algorithm B1 to train on such a new set. To this

end we trained 28 N1 nets on the set with 6000 examples of

number ‘‘3’’ and 600 examples of each other digit for

10,000 epochs. The total number of examples in the set is

11,400. Then retrained these nets on the set with 6000

examples of number ‘‘1’’ and 600 examples of each other

digit. In Fig. 23, we compare the work of three algorithms

B1, B4, and B5. One can see that random addition of a

neuron (B4) becomes most efficient in a long run, i.e., after

1000 epochs while algorithm B1 behaves better in inter-

mediate time interval 100 epochs. In a short run of 10

epochs, B1 is comparable to the original algorithm and

they both are better than random addition of a neuron.

5.8 Programmed death followed by replication

To demonstrate the computational advantage of a com-

bined algorithm, i.e., programmed death followed by

replication, we used algorithm A1 (for neuron removal)

and B1 (for neuron addition) with neural architecture N4.

The main reason for using N4 (as opposed to N1, N2 or

N3) is that one needs a large number of neurons on the

second layer for the effect to be most noticeable. We first

run the simulation for Dt epochs, calculate efficiencies (28)

Fig. 23 Averaged accuracies of 28 N1 nets trained for 10,000 epochs

on the dataset peaked on ‘‘3’’ (6000 - ‘‘3‘‘ and 600 each other digit).

After training one new neuron was added according to algorithm B1,

randomly (B4) or not added (original B5). Then retraining was done

on the dataset peaked on ‘‘1’’ (6000 - ‘‘1‘‘ and 600 each other digit).

Accuracies are given on these 2 sets and the validation set of 10000

evenly distributed digits

20294 Neural Computing and Applications (2023) 35:20273–20298

123

of all neurons on the second layer and use algorithm A1 to

remove all neurons (but not more than N/2) whose effi-

ciencies are less than a cutoff �. If n neurons were removed,

then we use algorithm B1 to replicates n most efficient

neurons and continue the simulation for another Dt epochs
and then execute the combined A1-B1 algorithm again, etc.

In Fig. 24, we plot the average loss function for the

combined A1–B1 algorithm for 5000 training epochs with

� ¼ 0:01 and Dt ¼ 500 epochs, and the original algorithm

(or more precisely with � ¼ 0 and Dt ¼ 500).

In Fig. 25, we plot the average loss function and accu-

racy for the combined A1-B1 algorithm after 5000 training

epochs with different choice of � and Dt ¼ 500 epochs

compared with the original algorithm (or more precisely

with � ¼ 0 and Dt ¼ 500).

In Fig. 26, we plot the number of neurons affected by

the combined A1-B1 algorithm for different � and Dt ¼

500 epochs. For the optimal parameters � ¼ 0:01 and Dt ¼
500 about 40% of neurons are affected by the algorithm

after Dt ¼ 500 epochs, but this fraction goes to 20% after

2Dt ¼ 1000 epochs, etc.

The computational advantage of the combined A1-B1

algorithm is easy to understand. Indeed, the inactive neu-

rons are constantly removed by the programmed death

algorithm A1 and become active by the replication algo-

rithm B1 which improves the learning efficiency for a

carefully chosen cutoff threshold.

6 Conclusion

In this article, we took a small step toward developing

machine learning algorithms inspired by the well-known

biological phenomena. In particular, we analyzed the

Fig. 24 Log-linear plot of

average loss function (minus

asymptotic loss function) vs.

time for a combined A1–B1

algorithm with cutoff � ¼ 0:01
and Dt ¼ 500 epochs (yellow

line with error bands) and for

original algorithm � ¼ 0 (blue

line with error bands) averaged

over 28 runs with different

initialization

Fig. 25 Average loss (left) and accuracy (right) after 5000 epochs versus cutoff threshold � averaged over 28 runs with different initialization.

Bands show the results for � ¼ 0

Neural Computing and Applications (2023) 35:20273–20298 20295

123

computational advantage of the programmed death and

replication, since they represent the most essential phe-

nomena not only in biology [9], but also in physics [11].

Indeed, in both biological and physical systems, the fun-

damental information processing units can either be added

to the system or removed from the system, which gives rise

to the biological phenomena of replication and pro-

grammed death [9] and to the physical phenomena of

emergent quantumness [11].

The developed programmed death and replication

algorithms may have a wide range of applications in

machine learning. For example, the programmed death

algorithm may be useful for compression of neural net-

works for the use on devices with limited computational

resources. In contrast, the replication algorithm may be

useful for improving the performance of already trained

neural networks on the devices where additional compu-

tational resources are available. We have also shown that a

combination of programmed death and replication algo-

rithms (i.e., reconnecting the least efficient neuron to

reduce the load on the most efficient neuron) may be useful

for improving the learning efficiency of an arbitrary

machine learning system.

More generally, when the machine learning system is

stuck in a local minimum of the average loss function, the

continuous transformations (e.g., stochastic gradient

decent) cannot be efficient and a discrete transformation

must be performed instead. With this respect the pro-

grammed death followed by replication is an example of

such transformation. Indeed, the rewiring of connections

from the least efficient (i.e., programmed death) to assist

the most efficient neurons (i.e., replication) is a discrete

transformation that may turn out to be useful for certain

machine learning tasks.

Although our analytical results are robust, the numerical

results are only preliminary and a lot more numerical

testing is needed in order to confirm the computational

advantages of the proposed algorithms. Moreover, so far

we have analyzed the discrete transformations that corre-

spond to only two biological phenomena, programmed

death and replication, and there are many other important

biological [9] and physical [14] phenomena that can be

analyzed in a similar manner which we leave for future

work.

A Appendix

Here, we list the pruning algorithms customized for the

feedforward neural network with n neurons

fx1ðtÞ; :::xnðtÞg ¼ fx1; :::xng in an hidden layer t such that

xi ¼ f
X

k

wt�1
ik xkðt � 1Þ þ bt�1

i

 !

;

xjðt þ 1Þ ¼ f
X

k

wt
jkxk þ btj

 !

:

ð70Þ

A.1 Connection cut algorithm

1. Measure variances of neurons on level t and level t þ 1

Ct
kk ¼ hDxkðtÞ2i; Ctþ1

ii ¼ hDxiðt þ 1Þ2i: ð71Þ

2. Find the neuron l with minimal efficiency (28)

El ¼ min
k

Ek ¼ min
k

Ct
kk

X

i

ðwt
ikÞ

2

Ctþ1
ii

f 0i ð
X

j

wt
ijhxji þ btiÞ

2:

ð72Þ

3. Use xl ¼ hxli as linear dependence equation (39) with

ak 6¼l ¼ 0; al ¼ 1; a0 ¼ hxli: ð73Þ

4. Remove neuron l from the net according to (41)
X

k

wt
jkxk þ btj ’

X

k 6¼l

wt
jkxk þ ~b

t

j;
~b
t

j ¼ wt
jlhxli þ btj:

ð74Þ

5. Do so while there are neurons with efficiency less than

a cutoff or while accuracy or loss stays acceptable.

A.2 Probability algorithm

1. Measure variances of neurons on level t and level t þ 1

Ct
kk ¼ hDxkðtÞ2i; Ctþ1

ii ¼ hDxiðt þ 1Þ2i: ð75Þ

2. Find the neuron l with minimal efficiency (28)

El ¼ min
k

Ek ¼ min
k

Ct
kk

X

i

ðwt
ikÞ

2

Ctþ1
ii

f 0
X

j

wt
ijhxji þ bti

 !2

:

ð76Þ

Fig. 26 Number of neurons affected by the combined A1-B1

algorithm with cutoff � and Dt ¼ 500 epochs vs. time averaged over

28 runs with different initialization

20296 Neural Computing and Applications (2023) 35:20273–20298

123

3. Use linear dependence equation (39)
P

j ajxj ¼ a0 with

aj ¼
X

i

wt
ilw

t
ij

Ctþ1
ii

f 0
X

k

wt
ikhxki þ bti

 !2

; a0 ¼
X

j

ajhxji:

ð77Þ

4. Remove neuron l from the net according to (41)
X

k

wt
jkxk þ btj ’

X

k 6¼l

~wt
jkxk þ ~b

t

j; ð78Þ

where

~wt
jk ¼ wt

jk � wt
jl

ak
al
; ~btj ¼ wt

jl

a0
al

þ btj: ð79Þ

5. Do so while there are neurons with efficiency less than

a cutoff or while accuracy or loss stays acceptable.

A.3 Covariance algorithm

1. Measure covariance matrix Ct
kj ¼ hDxkDxji (10) of the

neurons on hidden layer t and find its eigenvectors v

and eigenvalues k (11).

2. Find the neuron l and the eigenvalue kp with minimal

efficiency (17)

E0
l ¼ min

k
E0
k ¼ min

i;k

ki

v
ðiÞ
k

� �2 ¼
kp

v
ðpÞ
l

� �2 : ð80Þ

3. Use
P

k v
ðpÞ
k xk ¼ kp as linear dependence equation (39)

with

ak ¼ v
ðpÞ
k ; a0 ¼ kp: ð81Þ

4. Remove neuron l from the net according to (41)
X

k

wt
jkxk þ btj ’

X

k 6¼l

~wt
jkxk þ ~b

t

j; ð82Þ

where

~wt
jk ¼ wt

jk � wt
jl

ak
al
; ~btj ¼ wt

jl

a0
al

þ btj: ð83Þ

5. Do so while there are neurons with efficiency less than

a cutoff or while accuracy or loss stays acceptable.

Acknowledgements V.V. was supported in part by the Foundational

Questions Institute (FQXi) and the Oak Ridge Institute for Science

and Education (ORISE).

Data availability The MNIST dataset [24] analyzed during the current

study is available in the MNIST database, http://yann.lecun.com/

exdb/mnist/.

Declarations

Conflict of interest The authors have no competing interests to

declare that are relevant to the content of this article.

References

1. Galushkin AI (2007) Neural networks theory. Springer, Berlin,

p 396

2. Schmidhuber J (2015) Deep learning in neural networks: an

overview. Neural Netw 61:85–117

3. Haykin Simon S (1999) Neural networks: a comprehensive

foundation. Prentice Hall, Hoboken

4. Vapnik Vladimir N (2000) The nature of statistical learning

theory. Information Science and Statistics

5. Hopfield JJ (1982) Neural networks and physical systems with

emergent collective computational abilities. PNAS

79(8):2554–2558

6. Shwartz-Ziv R, Tishby N (2017) Opening the black box of deep

neural networks via information. arXiv:1703.00810 [cs.LG]

7. Roberts D, Yaida S, Hanin B (2022) The principles of deep

learning theory: an effective theory approach to understanding

neural networks. Cambridge University Press, Cambridge

8. Vanchurin V (2021) Toward a theory of machine learning. Mach

Learn: Sci Technol 2:035012

9. Vanchurin V, Wolf YI, Katsnelson MO, Koonin EV (2022)

Towards a theory of evolution as multilevel learning. Proc Natl

Acad Sci USA 119:e2120037119

10. Vanchurin V, Wolf YI, Koonin EV, Katsnelson MO (2022)

Thermodynamics of evolution and the origin of life. Proc Natl

Acad Sci USA 119:e2120042119

11. Katsnelson MI, Vanchurin V (2021) Emergent quantumness in

neural networks. Found Phys 51(5):1–20

12. Katsnelson MI, Vanchurin V, Westerhout T (2021) Self-orga-

nized criticality in neural networks. arXiv:2107.03402

13. Vanchurin V (2022) Towards a theory of quantum gravity from

neural networks. Entropy 24:7

14. Vanchurin V (2020) The world as a neural network. Entropy

22:1210

15. Hassibi B, Stork DG (1992) Second order derivatives for network

pruning: optimal brain surgeon. Adv Neural Inform Proc Syst 5

16. Medeiros CMS, Baretto GA (2013) A novel weight pruning

method for MLP classifiers on the MAXCORE principle. Neural

Comput Appl 22:71–84

17. Thomas P, Suhner M-C (2015) A new multilayer perceptron

pruning algorithm for classification and regression applications.

Neural Process Lett 42(2):437–458

18. Augasta MG, Kathirvalavakumar T (2011) A novel pruning

algorithm for optimizing feedforward neural network of classi-

fication problems. Neural Process Lett 34:241–258

19. Zeng X, Yeung DS (2006) Hidden neuron pruning of multilayer

perceptrons using a quantified sensitivity measure. Neuro Comput

69:825–837

20. Kwok TY, Yeung DY (1997) Constructive algorithms for struc-

ture learning in feedforward neural networks for regression

problems. IEEE Trans Neural Netw 8(3):630–645

21. Parekh R, Yang J, Honavar V (2000) Constructive neural-net-

work learning algorithms for pattern classification. Trans Neural

Netw 11(2):436–451

22. Monirul IMd, Abdus SMd, Faijul Md, Xin Y, Kazuyuki M (2009)

A new constructive algorithm for architectural and functional

adaptation of artificial neural networks. IEEE Trans Syst, Man,

Cybern Part B, Cyberne: Publ IEEE Syst, Man, Cybern Soc

39(6):1590–1605

Neural Computing and Applications (2023) 35:20273–20298 20297

123

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1703.00810
http://arxiv.org/abs/2107.03402

23. Puma-Villanueva WJ, dos Santos EP, Von Zuben FJ (2012) A

constructive algorithm to synthesize arbitrarily connected feed-

forward neural networks. Neurocomputing 75(1):14–32

24. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based

learning applied to document recognition. Proc IEEE

86(11):2278–2324

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

20298 Neural Computing and Applications (2023) 35:20273–20298

123

	Bio-inspired machine learning: programmed death and replication
	Abstract
	Introduction
	Neural networks
	Statistical analysis
	Covariance matrix
	Efficiency of neurons
	Conditional distribution

	Machine learning algorithms
	Programmed death
	Replication

	Numerical results
	Programmed death
	Pruning of the trained net
	Pruning of input neurons in trained net
	Pruning of untrained net
	Comparison with other approaches
	Replication
	Replication on a new dataset
	Programmed death followed by replication

	Conclusion
	A Appendix
	A.1 Connection cut algorithm
	A.2 Probability algorithm
	A.3 Covariance algorithm

	Data availability
	References

