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The effects of final-state interaction of hadrons, produced in 𝑒+𝑒− annihilation near the threshold, 
are discussed. If there is a loosely bound state or a virtual state in a system of produced hadrons, 
then the energy dependence of hadroproduction cross section is very strong. Our approach is 
based on the use of the effective potentials accounting for the interaction between hadrons in 
the final state. The cases of a few channels with nonzero transition amplitudes between them are 
considered. It is shown that these transitions drastically change the energy dependence of the 
cross sections. In particular, a narrow resonance below the threshold in one channel leads to a 
broad peak in another channel. We explained the non-trivial energy dependence of the production 
cross sections of 𝐵𝐵̄, 𝐵∗𝐵̄, 𝐵𝐵̄∗, 𝐵∗𝐵̄∗ near the thresholds in 𝑒+𝑒− annihilation and obtained good 
agreement between our predictions and the experimental data available.

1. Introduction

Typical values of potentials, describing interaction of hadrons, are relatively large (hundreds of MeV), and the radii of these 
potentials are about 1 fm. Therefore, a loosely bound state may exist with the modulus of binding energy much less than a depth of 
the potential well. In this case, the scattering length 𝜉 is positive and considerably exceeds the radius 𝑎 of the potential. The binding 
energy 𝜀 is expressed via the scattering length as 𝜀 = −1∕𝑀𝜉2, where 𝑀 is the mass of hadrons. It is also possible that there is no 
bound state, but a slight increase in the potential depth leads to appearance of such a state (so-called virtual state). In this case the 
scattering length is negative, and its absolute value is much larger than 𝑎. The energy of the virtual state is defined as 𝜀 = 1∕𝑀𝜉2. In 
both cases (bound or virtual state) a resonance is observed in the hadron scattering cross section.

The process of heavy meson or baryon production in 𝑒+𝑒− annihilation starts with heavy quark-antiquark pair production at small 
distances of the order of 1∕

√
𝑠. At larger distances the final state consists of mesons or baryons described by the wave function 𝜓(𝒓). 

Therefore, the production cross section of heavy hadrons is proportional to |𝜓(0)|2 for a pair in the s-wave, ||𝜓 ′(0)||2 for a pair in the 
p-wave, etc. (see Refs. [1,2]). Here 𝜓(0) is the wave function at distances 𝑟 ≪𝑎 and 𝑟 ≫ 1∕Λ𝑄𝐶𝐷 . The latter condition allows one to 
consider the produced hadronic state in terms of mesons and baryons but not in terms of quarks and antiquarks. Note that 𝜓(0) is 
nothing but the inverse of the Jost function (see, f.i., [3]).

For a low-energy bound or virtual state, the absolute value of the wave function or its derivative inside the potential well is much 
larger than the corresponding values in the absence of interaction potential. As a result, the hadroproduction cross sections increase 
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near the thresholds of the corresponding processes. Note that the shape of near-threshold resonances differs drastically from that 
obtained using the commonly used Breit-Wigner formula.

At present, near-threshold resonances in 𝑒+𝑒− annihilation have been observed in many processes: 𝑒+𝑒− → 𝑝𝑝̄ [4–11], 𝑒+𝑒− →

𝑛𝑛̄ [12–14], 𝑒+𝑒− → ΛΛ̄ [15–18], 𝑒+𝑒− → Λ𝑐Λ̄𝑐 [19,20], 𝑒+𝑒− → 𝐵𝐵̄ [21], and others. In all these cases, the shapes of near-threshold 
resonances differ from that described by the Breit-Wigner formula and differ also from each other. The shapes of resonances are 
determined by many factors: isotopic structure of the produced states, angular momentum, magnitude of tensor forces, the Coulomb 
interaction of charged particles, and others. For instance, tensor forces are responsible for transitions between the states with different 
angular momenta and affect the ratio of hadron electromagnetic form factors. The account for the final-state interaction of produced 
hadrons allows one to describe all experimental data within the same approach (see Refs. [22–29] and references therein).

In addition to a non-trivial behavior of the hadroproduction cross sections near the corresponding thresholds, the production 
cross sections of light mesons reveal a strong energy dependence near the same thresholds. This behavior is due to production 
of virtual hadrons below and above threshold with subsequent annihilation into light mesons. Examples of such processes are 
𝑒+𝑒− → 6𝜋 [9,30–32], 𝑒+𝑒− →𝐾+𝐾−𝜋+𝜋− [9,33,34], 𝐽∕𝜓 → 𝛾𝜂′𝜋+𝜋− [35], and others. The unusual energy dependence of the cross 
sections of these processes has been explained by the interaction of virtual hadrons in the intermediate state [28,36,37].

In this work, we use the final-state interaction approach to describe the production of 𝐵𝐵̄, 𝐵𝐵̄∗, 𝐵∗𝐵̄, 𝐵∗𝐵̄∗ in 𝑒+𝑒− annihilation 
near the thresholds of these processes. The corresponding experimental data are published in Refs. [21,38–40]. In Refs. [25,41], the 
final-state interaction approach was used to study the effects of isotopic invariance violation in the production of 𝐵𝐵̄ and 𝐵∗𝐵̄∗ near 
the thresholds. Since the states 𝐵𝐵̄, 𝐵𝐵̄∗, 𝐵∗𝐵̄∗, produced in 𝑒+𝑒− annihilation, have identical quantum numbers 𝐽𝑃𝐶 = 1−−, then 
the amplitudes of transitions between these states are not zero. These transitions are irrelevant to the effects of isotopic invariance 
violation, since only narrow region close to the peak of resonance is essential. However, the account for the transition amplitudes is 
crucial for the description of the entire energy region near the thresholds of coupled channels. This is the main goal of our paper.

The paper is organized as follows. In Section 2, using a simple potential model of rectangular wells, we elucidate the main 
features of the resonance production cross sections near the thresholds in the cases of one channel, two channels, and three channels. 
In Section 3, our approach is applied to description of the experimental data on the cross sections of 𝐵(∗)𝐵̄(∗) pair production near 
the thresholds. The main results obtained are summarized in Conclusion.

2. Simple model

In this section, using a simple approach, we discuss the cross sections of 𝑒+𝑒− annihilation into hadron-antihadron pairs near 
the thresholds of the processes. This approach allows one to understand the origin of the enhancement of the cross sections and to 
achieve good agreement with available experimental data as well. We consider the cases of one, two, and three channels in the final 
state having the same quantum numbers 𝐽𝑃𝐶 and close thresholds. We show that the shape of the cross section drastically depends 
on the number of channels due to transitions between them.

2.1. One channel

Let us consider only one channel when the radial wave function 𝜓(𝑟) of produced hadrons satisfies the Schrödinger equation(
𝑝2
𝑟
+𝑀𝑉 + 𝑙(𝑙 + 1)

𝑟2
− 𝑘2

)
𝜓(𝑟) = 0 , (1)

where (−𝑝2
𝑟
) is the radial part of the Laplacian operator, 𝑀 is the hadron mass, 𝑘 =

√
𝑀𝐸, 𝐸 is the kinetic energy of a pair counted 

from the reaction threshold, and 𝑉 is the interaction potential. We are interested in regular solution 𝜓𝑅(𝑟) with asymptotic behavior

𝜓𝑅(𝑟→∞) = 1
2𝑖𝑘𝑟

(
𝑆𝜒+ − 𝜒−) , 𝜒± = exp

[
±𝑖 (𝑘𝑟− 𝜋𝑙∕2)

]
. (2)

Cross section of pair production in the state with angular momentum 𝑙 is given by the relation (see, e.g., Refs. [25,28] and references 
therein)

𝜎 = 2𝜋𝛽𝛼2

𝑠

|||𝑔 𝜓 (𝑙)
𝑅
(0)|||2 , (3)

where 𝛽 = 𝑘∕𝑀 is the hadron velocity, 𝑠 = (2𝑀 +𝐸)2, and 𝜓 (𝑙)
𝑅
(𝑟) = (𝜕∕𝜕𝑟)𝑙 𝜓𝑅(𝑟). The coefficient 𝑔 is related to the amplitude of pair 

production at small distances ∼ 1∕
√
𝑠 and can be considered as an energy independent constant.

The strong energy dependence of the cross section near the threshold appears if there is a bound state with a small value of 
binding energy or a low-energy virtual state. In the latter case a small increase of the potential depth leads to appearance of a bound 
state with a small binding energy. To illustrate this point, let us consider a rectangular potential well 𝑉 (𝑟) = 𝑈 𝜃(𝑎 − 𝑟), where 𝑈 < 0, 
and 𝜃(𝑥) is the Heaviside function. For 𝑙 = 0, Eq. (1) can easily be solved analytically. As a result, the wave function at the origin 
reads

𝜓𝑅(0) =
𝑞 𝑒−𝑖𝑘𝑎

𝑞 cos (𝑞𝑎) − 𝑖𝑘 sin (𝑞𝑎)
, 𝑞 =

√
𝑀(𝐸 −𝑈 ) . (4)
2

Near the threshold, we have 𝑘 ≪ 𝑞. Then, the cross section (3) is enhanced if
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Fig. 1. The energy dependence of ||𝜓𝑅(0)||2 for 𝑙 = 0 (left) and
|||𝜓 (1)

𝑅
(0)|||2 for 𝑙 = 1 (right). The radius 𝑎 = 1.5 fm and a few values of 𝑈 are used.

𝑞0𝑎 ≈ 𝜋
(
𝑛+ 1

2

)
+ 𝛿 , |𝛿|≪ 1 , (5)

where 𝑞0 =
√
𝑀 |𝑈 |, and 𝑛 is an integer. Under this condition a low-energy bound or virtual state exists in the potential well. For |𝛿|≪ 1, the scattering length is 𝜉 = 1∕𝑞0𝛿, where 𝛿 > 0 for the bound state with the binding energy 𝜀 = −1∕𝑀𝜉2, and 𝛿 < 0 for the 

virtual state with the energy 𝜀 = 1∕𝑀𝜉2. In both cases |𝜀|≪ |𝑈 |.
By means of Eqs. (4) and (5) the expression for ||𝜓𝑅(0)||2 can be simplified (see Ref. [29]):

||𝜓𝑅(0)||2 = 𝑞2

𝑞2 cos2 (𝑞𝑎) + 𝑘2 sin2 (𝑞𝑎)
≈ 𝛾 |𝑈 |(

𝐸 + 𝜀0
)2 + 𝛾𝐸 ,

𝛾 = 4𝜅2 |𝑈 | , 𝜀0 = 2𝜅 𝛿 |𝑈 | , 𝜅 = 1
𝜋(𝑛+ 1∕2)

. (6)

Corresponding energy dependence of the cross section (3) is equivalent to the Flatté formula [42], which is expressed in terms of the 
scattering length and the effective range of interaction. Note that for the rectangular potential well the latter equals to the radius 𝑎

of the potential. One can easily verify that the precise and approximate formulas for the cross section are in good agreement with 
each other for |𝛿|≪ 1 and 𝐸 ≲ 𝜀0 ≪ |𝑈 |. Note that ||𝜀0||≫ |𝜀| for both bound and virtual states, namely 𝜀0 ≈ 2 |𝜀| 𝜉∕𝑎. However, the 
position of peak in the cross section, which is proportional to 

√
𝐸 ||𝜓𝑅(0)||2, is located at energy 𝐸 ≈ |𝜀| for both bound and virtual 

states.

Thus, the description of near-threshold resonances by means of Flatté formula or by model potential is equivalent. However, the 
approach based on the use of model potential significantly simplifies consideration in the case of multiple coupled channels. The 
effective potential method is very convenient for account of the Coulomb interaction between hadrons. It is especially powerful for 
calculation of the total cross section of a process which includes an annihilation of real or virtual hadron pairs into light mesons, see, 
e.g., Ref. [28] and references therein.

We emphasize that model potentials can have significantly different shapes, but at the same time give close values of the scattering 
length and effective range of interaction, so that the shapes of the resonances will also be similar. Therefore, to describe near-

threshold resonances it is convenient to use the simplest form of effective potentials. This is the approach we use in our work, 
choosing potentials in the form of rectangular wells, the parameters of which follow from comparing the predictions of the model 
with the experimental data.

As an example, we set 𝑀 =𝑀𝐵 , where the mass of neutral 𝐵 meson is 𝑀𝐵 = 5279.65 MeV. The energy dependence of ||𝜓𝑅(0)||2
with the wave function given in Eq. (4) is shown in Fig. 1 for 𝑎 = 1.5 fm and a few values of potential well depths. For such value of 
𝑎, the bound state with 𝑛 = 3 appears at 𝑈 = −396 MeV. At 𝑈 = −420 MeV there is a bound state with binding energy 𝜀 = −12 MeV. 
For 𝑈 = −370 MeV, there is a virtual state, which results in the peak in the energy dependence of ||𝜓𝑅(0)||2 at 𝐸 ≈ 20 MeV. For smaller 
values of the potential well depth, the peak becomes less pronounced.

For 𝑙 = 1, the cross section of hadron production (3) is proportional to the factor |||𝜓 (1)
𝑅

(0)|||2. The analytical form of this quantity is 

given in Eq. (8) of Ref. [25]. The energy dependence of |||𝜓 (1)
𝑅

(0)|||2 for 𝑎 = 1.5 fm and a few potential well depths is shown in Fig. 1. 
For 𝑙 = 1 and 𝑈 = −504 MeV, a loosely bound state, corresponding to 𝑛 = 4, appears. At 𝑈 = −525 MeV there is a low-energy bound 
state with 𝜀 = −4 MeV. For 𝑈 = −490 MeV, there is a virtual state, which leads to a peak in ||𝜓𝑅(0)||2 at 𝐸 ≈ 20 MeV. As for 𝑙 = 0, 
for smaller values of |𝑈 |, the peak becomes less lower and wider. Qualitatively, the pictures for 𝑙 = 0 and 𝑙 = 1 look very similar. 
Therefore, existence of a loosely bound state or a virtual state is possible for any angular momentum 𝑙, although the specific positions 
of resonances and their widths depend on 𝑙.

The energy dependence of the cross section within our simple model is shown in Fig. 2 for a few values of the potential parameters. 
We consider the cases when a low-energy bound or virtual state with 𝑙 = 0 or 𝑙 = 1 exists. It is seen that for some depth of the potential 
well there is a near-threshold peak in the cross section. As mentioned above, the position of this peak is determined by the energy of 
the virtual state, while the shape of this peak depends also on the effective range of interaction. The near-threshold peaks turned out 
to be quite smooth and the next peaks in the cross section are located much higher in energy.

Let us include into consideration the possibility for produced hadron pair to annihilate into other particles. The number of different 
3

final states in this inelastic process can be huge and the probability of such annihilation can be significant. Inelastic processes are 
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Fig. 2. The cross section of hadron pair production for 𝑙 = 0 (left) and 𝑙 = 1 (right) at 𝑎 = 1.5 fm and various depths of the potential well. The cross section without 
final-state interaction corresponds to the energy dependence of the phase volume.

Fig. 3. The cross sections of hadron pair production for 𝑙 = 0 and 𝑎 = 1.5 fm. The depths of the optical potential are 𝑈 = (−370 − 10𝑖) MeV (left) and 𝑈 =
(−420 − 10𝑖) MeV (right). The dashed line corresponds to 𝜎el , the dotted line to 𝜎in , and the solid line to 𝜎tot .

usually taken into account by means of so-called optical potentials in the same way as it is done in nuclear physics. These optical 
potentials contain not only the real part, but also the imaginary part. We refer to the cross section of real pair production as the 
elastic cross section, 𝜎el, which is given by Eq. (3). The inelastic cross section, 𝜎in, corresponds to the process, in which a produced 
virtual hadron pair annihilates into the final state. Note that the inelastic cross section, as well as the total cross section 𝜎tot = 𝜎el+𝜎in, 
reveals a strong energy dependence near the threshold of real hadron pair production. This effect was discovered experimentally 
(see, e.g., Refs. [9,30–34]) and then have been explained theoretically (see Ref. [28] and references therein).

The total cross section is expressed via the Green’s function (𝑟, 𝑟′|𝐸) of the Schrödinger equation (see Ref. [28] and references 
therein):

𝜎tot =
2𝜋𝛼2
𝑀𝑠

|𝑔|2 Im(0,0|𝐸) , (7)

where (𝑟, 𝑟′|𝐸) satisfies the equation(
𝑝2
𝑟
+𝑀𝑉 + 𝑙(𝑙 + 1)

𝑟2
− 𝑘2

)
(𝑟, 𝑟′|𝐸) = 1

𝑟𝑟′
𝛿(𝑟− 𝑟′) . (8)

The Green’s function can be expressed in terms of the regular solution 𝜓𝑅(𝑟) and the non-regular solution 𝜓𝑁 (𝑟) of Eq. (1), having 
the asymptotics

𝜓𝑁 (𝑟→∞) = 1
𝑘𝑟
𝜒+ . (9)

We have

(𝑟, 𝑟′|𝐸) = 𝑘(𝜓𝑅(𝑟)𝜓𝑁 (𝑟′)𝜃(𝑟′ − 𝑟) +𝜓𝑅(𝑟′)𝜓𝑁 (𝑟)𝜃(𝑟− 𝑟′)
)
. (10)

For 𝑙 = 0 one can easily obtain the analytical expression for the imaginary part of the Green’s function

Im(0,0|𝐸) = Im
[
𝑞
𝑞 sin (𝑞𝑎) + 𝑖𝑘 cos (𝑞𝑎)
𝑞 cos (𝑞𝑎) − 𝑖𝑘 sin (𝑞𝑎)

]
. (11)

Note that for complex potential 𝑈 the quantity 𝑞 is also complex. For Im𝑈 = 0, the cross section 𝜎tot above the threshold coincides 
with the elastic cross section 𝜎el. Below the threshold 𝜎tot contains contributions of possible bound states. For energy 𝐸 < 0, the 
momentum 𝑘 should be considered as having positive imaginary part, namely 𝑘 =

√
𝑀 (− |𝐸|+ 𝑖0).

The energy dependence of the cross sections 𝜎el, 𝜎in and 𝜎tot is shown in Fig. 3 for Im𝑈 = −10 MeV. The left and right plots 
4

correspond, respectively, to the cases when a virtual state and a bound state exist. Though the imaginary part of potential is small, 
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the elastic cross section is significantly smaller than that for Im𝑈 = 0 (cf. Fig. 2). At the same time, above the threshold the inelastic 
cross section 𝜎in becomes comparable to 𝜎el. Below the threshold, a peak is observed if a bound state exists. The width and height of 
this peak are determined by the imaginary part of the optical potential. With vanishing of the imaginary part of the potential, this 
peak turns into a 𝛿-function at the energy of a bound state. Naturally, in the case of a virtual level, a peak below the threshold does 
not occur.

2.2. Two channels

Let us consider now a two-channel process in which hadron pairs appear with the same quantum numbers 𝐽𝑃𝐶 = 1−−, close 
masses but different spins. To be specific, we will talk about pairs in the states 𝑋 = 𝐵𝐵̄ and 𝑌 =

(
𝐵∗𝐵̄ −𝐵𝐵̄∗)∕√2. Since the spins 

of 𝐵 and 𝐵∗ mesons are different, the interaction potential 𝑉𝑋𝑋 between 𝐵 and 𝐵̄ differs slightly from the interaction potential 
𝑉𝑌 𝑌 between 𝐵∗ and 𝐵̄. In addition, identical quantum numbers 𝐽𝑃𝐶 make transition between the 𝑋 and 𝑌 states to be possible. 
The corresponding off-diagonal matrix element 𝑉𝑋𝑌 is small compared to the potentials 𝑉𝑋𝑋 and 𝑉𝑌 𝑌 . However, the value of 𝑉𝑋𝑌
should be compared not with these potentials, but with the energies of the real or virtual states. We show that in this case the energy 
dependence of the pair production cross sections differs noticeably from the case of 𝑉𝑋𝑌 = 0.

In the near-threshold energy region the wave function of produced hadron pairs satisfies the coupled-channel Schrödinger equa-

tion (
𝑝2
𝑟
+𝑀𝐵 + 𝑙(𝑙 + 1)

𝑟2
−2

)
Ψ(𝑟) = 0 , 2 =

(
𝑘2
𝑋

0
0 𝑘2

𝑌

)
,  =

(
𝑉𝑋𝑋 𝑉𝑋𝑌
𝑉𝑋𝑌 𝑉𝑌 𝑌

)
. (12)

Here 𝑘𝑋 =
√
𝑀𝐵𝐸, 𝑘𝑌 =

√
𝑀𝐵 (𝐸 −Δ), Δ =𝑀𝐵∗ −𝑀𝐵 = 45.97 MeV, 𝑀𝐵 = 5279.65 MeV and 𝑀𝐵∗ = 5325.62 MeV are the masses of 

corresponding neutral mesons. In Eq. (12), the wave function Ψ = (𝑢, 𝑣)𝑇 consists of a radial wave function 𝑢 of the 𝑋 state and 
the radial wave function 𝑣 of the 𝑌 state. The superscript 𝑇 denotes the transposition. In following, we assume that the angular 
momentum of pairs is 𝑙 = 1, since it corresponds to the process of 𝐵-meson pair production in 𝑒+𝑒− annihilation.

The cross sections of meson production in the case of two channels are

𝜎𝑋 =
2𝜋𝛽𝑋𝛼2

𝑠

|||𝑔𝑋𝑢(1)1𝑅(0) + 𝑔𝑌 𝑣
(1)
1𝑅(0)

|||2 ,
𝜎𝑌 =

2𝜋𝛽𝑌 𝛼2

𝑠

|||𝑔𝑋𝑢(1)2𝑅(0) + 𝑔𝑌 𝑣
(1)
2𝑅(0)

|||2 , (13)

where 𝛽𝑋 = 𝑘𝑋∕𝑀𝐵 , and 𝛽𝑌 = 𝑘𝑌 ∕𝑀𝐵 . Here 𝑢1𝑅, 𝑣1𝑅, 𝑢2𝑅, and 𝑣2𝑅 are the corresponding components of the regular solutions Ψ1𝑅
and Ψ2𝑅 of Eq. (12). These solutions have the asymptotic forms at 𝑟 →∞

Ψ1𝑅 = 1
2𝑖𝑘𝑋𝑟

(
𝑆11𝜒

+
𝑋
− 𝜒−

𝑋
, 𝑆12𝜒

+
𝑌

)𝑇
,

Ψ2𝑅 = 1
2𝑖𝑘𝑌 𝑟

(
𝑆21𝜒

+
𝑋
, 𝑆22𝜒

+
𝑌
− 𝜒−

𝑌

)𝑇
,

𝜒±
𝑋
= exp

[
±𝑖

(
𝑘𝑋𝑟− 𝜋∕2

)]
, 𝜒±

𝑌
= exp

[
±𝑖

(
𝑘𝑌 𝑟− 𝜋∕2

)]
. (14)

Complex coefficients 𝑔𝑋 and 𝑔𝑌 are related to the amplitudes of corresponding meson pair production at small distances, and 𝑆𝑖𝑗 are 
some constants.

In order to demonstrate how the interaction between channels affect the energy dependence of the cross sections, let us consider 
a few examples. We choose the parametrization of the potential in the form of rectangular wells with the same radius but different 
depths:

 =
(
𝑈𝑋𝑋 𝑈𝑋𝑌
𝑈𝑋𝑌 𝑈𝑌 𝑌

)
𝜃(𝑎− 𝑟) , (15)

where the matrix elements 𝑈𝑖𝑗 and the radius 𝑎 are some constants. Below we present the numerical results of our investigations 
within such a model. Let us first consider the values of 𝑈𝑖𝑗 and 𝑎 that lead to low-energy virtual states in both channels. The 
corresponding cross sections 𝜎𝑋 , 𝜎𝑌 , and their sum are shown in Fig. 4 as functions of energy. The plot 4a corresponds to 𝑈𝑋𝑌 = 0, 
the plot 4b to 𝑈𝑋𝑌 = 20 MeV, and the plot 4c to 𝑈𝑋𝑌 = −20 MeV. In all three cases we use 𝑔𝑋 = 1 fm and 𝑔𝑌 = 0.3 fm. For zero 𝑈𝑋𝑌 , 
there is no pronounced dip in the total cross section, as well as for 𝑈𝑋𝑌 = −20 MeV. However, at 𝑈𝑋𝑌 = 20 MeV the peaks in the 
cross section become more noticeable, and the cross section between peaks drops almost to zero. In the latter case there is also a dip 
in the cross section 𝜎𝑋 near the threshold of production of 𝑌 . Such a difference in the behavior of the cross sections is due to the 
interference of different terms in Eq. (13). Note that the cross sections are invariant under the simultaneous change of the signs of 
𝑈𝑋𝑌 and 𝑔𝑌 .

Now we pass to the existence of a virtual state in the 𝑋 channel and a low-energy bound state in the 𝑌 channel (see Fig. 5). For 
𝑈𝑋𝑌 = 0, the bound state does not manifest itself, and the cross section 𝜎𝑌 is small. However, when a small value of 𝑉𝑋𝑌 is introduced, 
the behavior of the cross section changes significantly. This is due to the transition of the bound state in the 𝑌 channel into the 𝑋
5

channel with subsequent decay into 𝐵 mesons. As a result, a resonant structure appears in the 𝐵𝐵̄ production cross section.
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Fig. 4. The energy dependence of the cross sections 𝜎𝑋 (dashed line), 𝜎𝑌 (dotted line) and their sum (solid line). The parameters of the model are 𝑈𝑋𝑋 = 𝑈𝑌𝑌 =
−490 MeV, 𝑎 = 1.5 fm, 𝑔𝑋 = 1 fm, 𝑔𝑌 = 0.3 fm. On plot (a) off-diagonal potential 𝑈𝑋𝑌 = 0, on plot (b) 𝑈𝑋𝑌 = 20 MeV, and on plot (c) 𝑈𝑋𝑌 = −20 MeV.

Fig. 5. The energy dependence of the cross sections 𝜎𝑋 (dashed line), 𝜎𝑌 (dotted line) and their sum (solid line). The parameters of the model are 𝑈𝑋𝑋 = −490 MeV, 
𝑈𝑌 𝑌 = −525 MeV, 𝑎 = 1.5 fm, 𝑔𝑋 = 1 fm, 𝑔𝑌 = 0.3 fm. On plot (a) off-diagonal potential 𝑈𝑋𝑌 = 0, on plot (b) 𝑈𝑋𝑌 = 20 MeV, and on plot (c) 𝑈𝑋𝑌 = −20 MeV.

For a low-energy bound state in the 𝑋 channel and a virtual or a bound state in the 𝑌 channel, the energy dependence of the cross 
sections are shown in Figs. 6 and 7. In both cases there is no pronounced peak above the threshold of 𝑋 state production. However, 
a peak above the threshold of 𝑌 state production can be seen in Fig. 6. This peak, corresponding to the virtual state, becomes more 
noticeable for one sign of 𝑈𝑋𝑌 and almost disappears for another sign. If there is a bound state in the 𝑌 channel, then there are no 
significant peaks in the cross section at 𝑈𝑋𝑌 = 0. However, for a small 𝑈𝑋𝑌 , a resonant structure manifests itself at the energy of a 
bound state. For one sign of the potential 𝑈𝑋𝑌 , there is a narrow and high peak in the cross section, and for another sign there is a 
6

sharp dip.
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Fig. 6. The energy dependence of the cross sections 𝜎𝑋 (dashed line), 𝜎𝑌 (dotted line) and their sum (solid line). The parameters of the model are 𝑈𝑋𝑋 = −525 MeV, 
𝑈𝑌 𝑌 = −490 MeV, 𝑎 = 1.5 fm, 𝑔𝑋 = 1 fm, 𝑔𝑌 = 0.3 fm. On plot (a) off-diagonal potential 𝑈𝑋𝑌 = 0, on plot (b) 𝑈𝑋𝑌 = 20 MeV, and on plot (c) 𝑈𝑋𝑌 = −20 MeV.

Fig. 7. The energy dependence of the cross sections 𝜎𝑋 (dashed line), 𝜎𝑌 (dotted line) and their sum (solid line). The parameters of the model are 𝑈𝑋𝑋 = 𝑈𝑌𝑌 =
−525 MeV, 𝑎 = 1.5 fm, 𝑔𝑋 = 1 fm, 𝑔𝑌 = 0.3 fm. On plot (a) off-diagonal potential 𝑈𝑋𝑌 = 0, on plot (b) 𝑈𝑋𝑌 = 20 MeV, and on plot (c) 𝑈𝑋𝑌 = −20 MeV.

Similar to one channels problem, we introduce the imaginary part of the optical potential. There are two elastic cross sections, 
𝜎el,𝑋 and 𝜎el,𝑌 , which are given by Eq. (13). There is also an inelastic cross section 𝜎in corresponding to the processes of annihilation 
of virtual 𝑋 and 𝑌 states into other particles. The total cross section is a sum 𝜎tot = 𝜎el,𝑋 + 𝜎el,𝑌 + 𝜎in and is expressed via the Green’s 
function (𝑟, 𝑟′|𝐸) of Eq. (12):

2𝜋𝛼2 [ ]

7

𝜎tot =
𝑀𝐵𝑠

Im †(0,0|𝐸) . (16)
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Fig. 8. The cross sections of hadron production for 𝑎 = 1.5 fm, 𝑈𝑋𝑋 = 𝑈𝑌 𝑌 = (−525 − 10𝑖) MeV, 𝑔𝑋 = 1 fm, 𝑔𝑌 = 0.3 fm. On plot (a) off-diagonal potential 𝑈𝑋𝑌 = 0, 
on plot (b) 𝑈𝑋𝑌 = 20 MeV, and on plot (c) 𝑈𝑋𝑌 = −20 MeV. The dashed line corresponds to the elastic cross section, the dotted line to the inelastic cross section 
(annihilation into other mesons), and the solid line to the total cross section.

Here  =
(
𝑔𝑋, 𝑔𝑌

)†
, and the superscript † means the hermitian conjugation. In the two-channel case the Green’s function is a matrix 

2 × 2 and satisfies the equation(
𝑝2
𝑟
+𝑀𝐵 + 𝑙(𝑙 + 1)

𝑟2
−2

)
(𝑟, 𝑟′|𝐸) = 1

𝑟𝑟′
𝛿(𝑟− 𝑟′) . (17)

The Green’s function can be written in terms of the regular solutions Ψ1𝑅, Ψ2𝑅 and the non-regular solutions Ψ1𝑁 , Ψ2𝑁 of Eq. (12):

(𝑟, 𝑟′|𝐸) = 𝑘𝑋 (
Ψ1𝑅(𝑟)Ψ𝑇

1𝑁 (𝑟′)𝜃(𝑟′ − 𝑟) + Ψ1𝑅(𝑟′)Ψ𝑇
1𝑁 (𝑟)𝜃(𝑟− 𝑟′)

)
+ 𝑘𝑌

(
Ψ2𝑅(𝑟)Ψ𝑇

2𝑁 (𝑟′)𝜃(𝑟′ − 𝑟) + Ψ2𝑅(𝑟′)Ψ𝑇
2𝑁 (𝑟)𝜃(𝑟− 𝑟′)

)
. (18)

Corresponding upper (𝑢1𝑁 , 𝑢2𝑁 ) and lower (𝑣1𝑁 , 𝑣2𝑁 ) components of non-regular solutions of the Schrödinger equation have the 
asymptotics

𝑢1𝑁 (𝑟→∞) = 1
𝑘𝑋𝑟

𝜒+
𝑋
, lim

𝑟→∞
𝑟 𝑣1𝑁 = 0 ,

lim
𝑟→∞

𝑟 𝑢2𝑁 = 0 , 𝑣2𝑁 (𝑟→∞) = 1
𝑘𝑌 𝑟

𝜒+
𝑌
. (19)

In all formulas of this subsection it is assumed that both 𝑘𝑋 and 𝑘𝑌 have positive imaginary parts below the thresholds of the 
corresponding channels.

When both 𝑋 and 𝑌 channels have low-energy bound states, the cross sections are shown in Fig. 8 for small values of Im𝑉𝑋𝑋
and Im𝑉𝑌 𝑌 . For 𝑉𝑋𝑌 = 0, the bound states in both channels manifest itself only as peaks in the inelastic and total cross sections 
(see Fig. 8a). However, for 𝑉𝑋𝑌 = 20 MeV, the bound state in the 𝑌 channel affects the elastic cross sections as well. As a result, the 
cross section 𝜎el,𝑋 decreases below the threshold of 𝑌 state production, and the peak in the total cross section at energy near 50 MeV
becomes more pronounced (see Fig. 8b). For another sign of the off-diagonal potential, 𝑉𝑋𝑌 = −20 MeV, the interference between 
channels leads to the opposite effect. Namely, the peak in the cross section close to the threshold of 𝑌 state production disappears 
(see Fig. 8c).

2.3. Three channels

The most interesting case from the experimental point of view is the process in which the final state consists of hadron pairs in 
three channels with the same quantum numbers 𝐽𝑃𝐶 = 1−− but different spin states. To be specific, we consider the states 𝑋 = 𝐵𝐵̄, 
𝑌 =

(
𝐵∗𝐵̄ −𝐵𝐵̄∗)∕√2 and 𝑍 = 𝐵∗𝐵̄∗. As mentioned above, different spin of 𝐵 and 𝐵∗ mesons leads to slightly different interaction 

potentials in all three channels. The transitions between channels are possible, because the quantum numbers 𝐽𝑃𝐶 of all states are 
8

identical.
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Fig. 9. The energy dependence of the cross sections 𝜎𝑋 (dashed line), 𝜎𝑌 (dotted line), 𝜎𝑍 (dash-dotted line) and their sum (solid line). The parameters of the 
model are 𝑈𝑋𝑋 = 𝑈𝑌 𝑌 = 𝑈𝑍𝑍 = −490 MeV, 𝑎 = 1.5 fm, 𝑔𝑋 = 1 fm, 𝑔𝑌 = 0.3 fm, 𝑔𝑍 = 0.3 fm. On plot (a) off-diagonal potentials 𝑈𝑋𝑌 = 𝑈𝑋𝑍 = 𝑈𝑌𝑍 = 0, on plot (b) 
𝑈𝑋𝑌 =𝑈𝑋𝑍 =𝑈𝑌𝑍 = 20 MeV.

The approach used for description of three-channel problem is a simple generalization of that for two-channel case. The corre-

sponding Schrödinger equation reads

(
𝑝2
𝑟
+𝑀𝐵 + 𝑙(𝑙 + 1)

𝑟2
−2

)
Ψ(𝑟) = 0 , 2 =

⎛⎜⎜⎝
𝑘2
𝑋

0 0
0 𝑘2

𝑌
0

0 0 𝑘2
𝑍

⎞⎟⎟⎠ ,  =
⎛⎜⎜⎝
𝑉𝑋𝑋 𝑉𝑋𝑌 𝑉𝑋𝑍
𝑉𝑋𝑌 𝑉𝑌 𝑌 𝑉𝑌𝑍
𝑉𝑋𝑍 𝑉𝑌𝑍 𝑉𝑍𝑍

⎞⎟⎟⎠ , (20)

where 𝑘𝑍 =
√
𝑀𝐵 (𝐸 − 2Δ), and other momenta are defined in the previous subsection. In Eq. (20), the wave function Ψ = (𝑢, 𝑣,𝑤)𝑇

consists of radial wave functions for the 𝑋, 𝑌 and 𝑍 states. As above, the angular momentum of all states is 𝑙 = 1.

The cross sections of pair production in each state are

𝜎𝑋 =
2𝜋𝛽𝑋𝛼2

𝑠

|||𝑔𝑋𝑢(1)1𝑅(0) + 𝑔𝑌 𝑣
(1)
1𝑅(0) + 𝑔𝑍𝑤

(1)
1𝑅(0)

|||2 ,
𝜎𝑌 =

2𝜋𝛽𝑌 𝛼2

𝑠

|||𝑔𝑋𝑢(1)2𝑅(0) + 𝑔𝑌 𝑣
(1)
2𝑅(0) + 𝑔𝑍𝑤

(1)
2𝑅(0)

|||2 ,
𝜎𝑍 =

2𝜋𝛽𝑍𝛼2

𝑠

|||𝑔𝑋𝑢(1)3𝑅(0) + 𝑔𝑌 𝑣
(1)
3𝑅(0) + 𝑔𝑍𝑤

(1)
3𝑅(0)

|||2 , (21)

where 𝛽𝑍 = 𝑘𝑍∕𝑀𝐵 and 𝑔𝑋 , 𝑔𝑌 , 𝑔𝑍 are some constants related to the amplitudes of the corresponding state production at small 
distances. The functions 𝑢𝑖𝑅, 𝑣𝑖𝑅 and 𝑤𝑖𝑅 are the components of three regular solutions Ψ𝑖𝑅, having the asymptotics at 𝑟 →∞

Ψ1𝑅 = 1
2𝑖𝑘𝑋𝑟

(
𝑆11𝜒

+
𝑋
− 𝜒−

𝑋
, 𝑆12𝜒

+
𝑌
, 𝑆13𝜒

+
𝑍

)𝑇
,

Ψ2𝑅 = 1
2𝑖𝑘𝑌 𝑟

(
𝑆21𝜒

+
𝑋
, 𝑆22𝜒

+
𝑌
− 𝜒−

𝑌
, 𝑆23𝜒

+
𝑍

)𝑇
,

Ψ3𝑅 = 1
2𝑖𝑘𝑍𝑟

(
𝑆31𝜒

+
𝑋
, 𝑆32𝜒

+
𝑌
, 𝑆33𝜒

+
𝑍
− 𝜒−

𝑍

)𝑇
,

𝜒±
𝑋
= exp

[
±𝑖

(
𝑘𝑋𝑟− 𝜋∕2

)]
, 𝜒±

𝑌
= exp

[
±𝑖

(
𝑘𝑌 𝑟− 𝜋∕2

)]
,

𝜒±
𝑍
= exp

[
±𝑖

(
𝑘𝑍𝑟− 𝜋∕2

)]
, (22)

where 𝑆𝑖𝑗 are some coefficients.

In order to demonstrate how the transitions between channels affect the energy dependence of the cross sections, let us consider 
a few simple examples. We choose the parametrization of the potential in the form of rectangular wells with the same radius but 
different depths:

 =
⎛⎜⎜⎝
𝑈𝑋𝑋 𝑈𝑋𝑌 𝑈𝑋𝑍
𝑈𝑋𝑌 𝑈𝑌 𝑌 𝑈𝑌𝑍
𝑈𝑋𝑍 𝑈𝑌𝑍 𝑈𝑍𝑍

⎞⎟⎟⎠𝜃(𝑎− 𝑟) , (23)

where the matrix elements 𝑈𝑖𝑗 and the radius 𝑎 are some constants. Below we present the numerical results obtained within this 
model for 𝑎 = 1.5 fm, 𝑔𝑋 = 1 fm, 𝑔𝑌 = 0.3 fm, 𝑔𝑍 = 0.3 fm, and various depths of the potential wells.

First consider the case when there are low-energy virtual states in all three channels. If the transitions between channels are 
absent, then the peaks corresponding to these virtual states are seen, but the contributions of the 𝑌 and 𝑍 states to the total cross 
section are small (see Fig. 9a). However, for the off-diagonal potentials 𝑈𝑋𝑌 = 𝑈𝑋𝑍 = 𝑈𝑌𝑍 = 20 MeV, the peaks and dips in the cross 
sections are more pronounced (see Fig. 9b). Because of the transitions between channels, the cross section 𝜎𝑋 has strong energy 
dependence in the vicinity of 𝑌 and 𝑍 thresholds. Moreover, the cross section 𝜎𝑌 becomes almost zero at the threshold of 𝑍 state. 
9

For the opposite signs of the mixing potentials the dips in the cross sections disappear and the peaks become less pronounced. If there 
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Fig. 10. The energy dependence of the cross sections 𝜎𝑋 (dashed line), 𝜎𝑌 (dotted line), 𝜎𝑍 (dash-dotted line) and their sum (solid line). The parameters of the model 
are 𝑈𝑋𝑋 = −490 MeV, 𝑈𝑌 𝑌 = 𝑈𝑍𝑍 = −525 MeV, 𝑎 = 1.5 fm, 𝑔𝑋 = 1 fm, 𝑔𝑌 = 0.3 fm, 𝑔𝑍 = 0.3 fm. On plot (a) off-diagonal potentials 𝑈𝑋𝑌 = 𝑈𝑋𝑍 = 𝑈𝑌𝑍 = 20 MeV, on plot 
(b) 𝑈𝑋𝑌 = 20 MeV, 𝑈𝑋𝑍 = −20 MeV, 𝑈𝑌𝑍 = 0.

are virtual states in each channel, then the energy dependence of the cross sections in the vicinity of each threshold looks similar to 
that for the two-channels problem, see Fig. 4.

Then consider a virtual state in the 𝑋 channel and low-energy bound states in the other channels. If there are no transitions 
between channels, then these bound states are not observable. However, for 𝑈𝑋𝑌 =𝑈𝑋𝑍 =𝑈𝑌𝑍 = 20 MeV, these states can decay into 
lighter particles. Namely, the bound state in the 𝑌 channel can pass into the 𝑋 channel, and the bound state in the 𝑍 channel can 
pass into both 𝑋 and 𝑌 channels. As a result, sharp peaks occur close to the thresholds of 𝑌 and 𝑍 states, and the total cross section 
falls almost to zero below these peaks (see Fig. 10a). Note that the energy dependence of the cross sections may change drastically 
for other values of mixing potentials. For instance, the cross section energy dependence for 𝑈𝑋𝑌 = 20 MeV, 𝑈𝑋𝑍 = −20 MeV, 𝑈𝑌𝑍 = 0
is shown in Fig. 10b. The direct transition between the 𝑌 and 𝑍 channels is now forbidden, hence there is no pronounced peak 
corresponding to the bound state in the 𝑍 channel. Nevertheless, the total cross section has a sharp dip close to the threshold of the 
𝑍 state production.

Obviously, other combinations of real and virtual states in the potentials, as well as the signs of the mixing potentials and the 
constants 𝑔𝑋 , 𝑔𝑌 , 𝑔𝑍 , are also possible. For each set of parameters, the cross sections have their own peculiarities. We focused our 
attention on such parameters which lead to the energy dependence of the cross sections similar to the experimental one. The detailed 
description of the experimental data within our model is performed in the next section.

3. Production of 𝑩(∗)
𝑩̄

(∗) near the thresholds

Precise measurement of 𝐵𝐵̄, 𝐵𝐵̄∗, 𝐵∗𝐵̄, 𝐵∗𝐵̄∗ pair production cross sections in 𝑒+𝑒− annihilation near the thresholds of the 
corresponding processes [39,40], as well as the total cross section of these processes [21] demonstrate a non-trivial energy depen-

dence. There are peaks with very unusual shape and deep dips in these cross sections (see Fig. 11). In this section, we show that our 
approach described above completely explains such a behavior.

As mentioned above, the states 𝑋 = 𝐵𝐵̄, 𝑌 =
(
𝐵∗𝐵̄ −𝐵𝐵̄∗)∕√2 and 𝑍 = 𝐵∗𝐵̄∗ have the same quantum numbers 𝐽𝑃𝐶 = 1−− and 

isospin 𝐼 = 0. These quantum numbers correspond to the angular momentum 𝑙 = 1 of meson pairs. The spin of 𝐵∗𝐵̄∗ pair can be 
𝑆 = 0 or 𝑆 = 2. At present, there is no experimental information on the contributions of specific spin states to the cross section of 
𝑒+𝑒− → 𝐵∗𝐵̄∗. This is why, for simplicity, we consider both possible states as a single state. The thresholds of 𝑋, 𝑌 , and 𝑍 channels 
are close to each other, so the transition amplitudes between these channels are essential.

The isotopic invariance violating effects, such as the Coulomb interaction between charged mesons and the mass difference of 
charged and neutral mesons, result in slight shift of peak positions in the cross sections of charged and neutral meson production. 
This effect has been studied in detail in Refs. [25,41]. Since the main goal of the present paper is to study the influence of transitions 
between several channels on the energy dependence of the cross sections, we do not discuss the effects of isotopic invariance violation. 
However, we have checked that these effects only slightly modify the energy dependence of the cross sections.

The exclusive cross sections of various final states (𝑋, 𝑌 , and 𝑍) production can be calculated directly by means of Eq. (21), where 
the wave functions are the corresponding solutions of the Schrödinger equation (20) for the three-channel case. For the description 
of experimental data, we use the parametrization of diagonal and off-diagonal potentials as the rectangular wells

𝑉𝑖𝑗 (𝑟) =𝑈𝑖𝑗 ⋅ 𝜃(𝑎𝑖𝑗 − 𝑟) , 𝑖, 𝑗 =𝑋,𝑌 ,𝑍 . (24)

Of course, the model potentials (24) do not match the real interaction potentials. However, as explained above, if there are low-

energy real or virtual states, the specific form of the potentials are not very important to reproduce the experimental data near the 
thresholds. The use of model potentials in the form (24) simplifies significantly calculation of the cross sections in the multichannel 
case.

Our analysis shows that it is possible to neglect the imaginary parts of 𝑈𝑖𝑗 since the probabilities for 𝐵(∗)𝐵̄(∗) pairs to annihilate 
into lighter particles are small. The quantities 𝑈𝑖𝑗 , 𝑎𝑖𝑗 , as well as the complex constants 𝑔𝑋 , 𝑔𝑌 , and 𝑔𝑍 , are the seventeen fitting 
parameters of our model. The values of these parameters, which provide the best agreement of our predictions with the experimental 
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data, are listed in Table 1. The corresponding value of 𝜒2 characterizing the agreement of predictions and experimental data is 
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Fig. 11. The energy dependence of the cross sections of 𝐵 mesons production. The total cross section 𝜎𝑋 +𝜎𝑌 +𝜎𝑍 is shown on plots (a) and (b) with the solid line. On 
plot (c) the exclusive cross sections 𝜎𝑋 (solid line), 𝜎𝑌 (dotted line), and 𝜎𝑍 (dashed line) are shown. Experimental data for the total cross section were recalculated 
in Ref. [38] using the data [21]. Experimental data for the exclusive cross sections are taken from Refs. [39,40].

Table 1

Parameters of the model describing 𝐵 mesons production in 𝑒+𝑒− annihilation.

𝑉𝑋𝑋 𝑉𝑌 𝑌 𝑉𝑍𝑍 𝑉𝑋𝑌 𝑉𝑋𝑍 𝑉𝑌𝑍

𝑈𝑖𝑗 (MeV) −613.1 −360.6 −586.7 26.7 20 78.6
𝑎𝑖𝑗 (fm) 1.361 1.804 1.809 0.953 2.819 2.209

𝑔𝑖 (fm) 𝑔𝑋 = 0.118 𝑔𝑌 = −0.004 + 0.217 𝑖 𝑔𝑍 = −0.6 + 0.193 𝑖

𝜒2∕𝑁𝑑𝑓 = 47∕31 = 1.5, where 𝑁𝑑𝑓 is the number of degrees of freedom. The energy dependence of the total cross section 𝜎tot =
𝜎𝑋 + 𝜎𝑌 + 𝜎𝑍 , as well as the exclusive cross sections 𝜎𝑋 , 𝜎𝑌 , and 𝜎𝑍 , is shown in Fig. 11. Note that there are other sets of potential 
parameters that provide good agreement with experimental data. However, we rejected them for several reasons. Firstly, the values 
of the diagonal potentials differed from each other by several times. Secondly, the potential radii were either very small or very large 
compared to 1 fm. Thirdly, the off-diagonal potentials were very large. Under these restrictions, the potential parameters specified 
in the Table 1 are determined with an accuracy of a few percents. Similar to the case of two coupled channels discussed above, 
the energy dependence of the cross sections is invariant under the simultaneous change of signs of constants 𝑔𝑖 and off-diagonal 
potentials. Therefore, only the relative signs of these quantities are important. Int the Table 1 we present one of the possibilities.

In our work we consider the resonance structure of 𝐵(∗)𝐵̄(∗) production in 𝑒+𝑒− annihilation near the threshold. This structure 
can be described either in terms of resonances in the quark-antiquark system, or in terms of resonances in the system of interacting 
𝐵(∗)-mesons. For instance, Υ(4𝑆) meson can be considered as a 𝑏𝑏̄ resonance and also as a resonance in 𝐵𝐵̄ system. In this sense both 
approaches are equivalent, though the language of mesons and baryons is more convenient for qualitative predictions.

A peak in the total cross section corresponding to Υ(4𝑆) resonance is observed at an energy around 20 MeV. Within our model 
this peak is the result of the production of 𝐵𝐵̄ pair near the threshold in the presence of a virtual state in this channel. There is also a 
peak at an energy around 75 MeV corresponding to 𝐵𝐵̄∗ and 𝐵∗𝐵̄ pair production, as well as a broad peak above 100 MeV associated 
with the production of 𝐵∗𝐵̄∗ pairs. It turned out, however, that the positions and shapes of the latter two peaks depend strongly on 
the magnitude of the off-diagonal potentials responsible for the transitions between the channels. Although the magnitudes of these 
potentials are much smaller than the diagonal potentials (see Table 1), these magnitudes are comparable to the energies of real or 
virtual states, which are also small compared to the diagonal potentials. This is why the transitions between channels significantly 
affect the energy dependence of the cross sections. The transitions between channels are also responsible for the sharp dips in the 
cross section at energies near 45 MeV and 90 MeV. Neglecting the off-diagonal potentials, we obtain that the dips in the cross section 
practically disappear. It is seen that our model describes well the main features of the total cross sections.

Our model explains also the unusual energy dependence of the exclusive cross sections. For instance, there is a peak in 𝜎𝑌 below 
the threshold of 𝐵∗𝐵̄∗ production (see Fig. 11c). This peak is a manifestation of 𝐵∗𝐵̄∗ bound state, because this state can decay into 
the 𝑌 channel. Thus, such a decay is possible solely due to the transitions between 𝑌 and 𝑍 channels. It is a very non-trivial effect, 
and its detailed study seems to be very important. Apparently, similar phenomena are also observed in the cross sections for the 
11

production of various 𝐷 mesons, but this problem requires special investigation.



Nuclear Physics, Section A 1041 (2024) 122764S.G. Salnikov, A.E. Bondar and A.I. Milstein

For zero off-diagonal potentials, the energy of 𝐵∗𝐵̄∗ bound state is 67 MeV that is 25 MeV below the 𝐵∗𝐵̄∗ threshold. We expect 
that this bound state can also manifest itself in the inelastic processes, where non-𝐵-meson final states are produced. The width of 
the peak in the corresponding cross sections is expected to be about 20 MeV.

4. Conclusion

In our work, the production of hadron pairs near the thresholds is discussed, when there are low-energy bound or virtual states of 
produced particles. The consideration is based on the effective potential approach, which takes into account the interaction between 
hadrons in the final state. Particular attention is paid to the case when there are several reaction channels with nonzero transition 
amplitudes between them. It is shown that the energy dependence of the cross sections is very sensitive to the off-diagonal potentials, 
though the latter are small as compared to the diagonal ones. In particular, a narrow resonance below the threshold in one channel 
can lead to broad peaks in other channels.

Using our approach we have explained all available experimental data for the cross sections of 𝐵𝐵̄, 𝐵∗𝐵̄, 𝐵𝐵̄∗ and 𝐵∗𝐵̄∗ pair 
production in 𝑒+𝑒− annihilation. It is shown that the non-trivial shape of the peaks in the cross sections, as well as the sharp dips, 
are the result of the transitions between different channels.
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