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A R T I C L E I N F O A B S T R A C T

Editor: Hong-Jian He It is shown that an account for the final-state interaction of real or virtual nucleon and antinucleon 
produced in the processes 𝐽∕𝜓 → 𝑝�̄�𝛾 , 𝜓(2𝑆) → 𝑝�̄�𝛾 , 𝐽∕𝜓 → 𝑝�̄�𝜔, and 𝐽∕𝜓 → 3 

(
𝜋+𝜋−) 𝛾 near 

the threshold of 𝑁�̄� pair production allows one to obtain self-consistent description of these 
processes. Predictions of our model are in good agreement with experimental data available. The 
proposed potential model also reproduces the corresponding partial cross sections of 𝑝�̄� scattering.

1. Introduction

Invariant mass 𝑀 of a nucleon-antinucleon pair 𝑁�̄� in the decay 𝐽∕𝜓 →𝑁�̄� + 𝐴, where 𝐴 = 𝛾, 𝜌, 𝜔, 𝜋0, 𝜂, in the rest frame 
of 𝐽∕𝜓 is determined by the energy 𝐸𝐴 of particle 𝐴, 𝑀2 = 𝑚2

𝐽∕𝜓 − 2𝑚𝐽∕𝜓𝐸𝐴. Therefore, measurement of 𝐸𝐴 allows one to 
fix the value of 𝑀 . Anomalous behavior of the decay probabilities has been observed in the processes 𝐽∕𝜓 → 𝑝�̄� + 𝐴 [1–7] and 
𝐽∕𝜓 → mesons +𝐴 [8,9], where the invariant mass of produced mesons is close to the double proton mass, 𝑀 ≈ 2𝑚𝑝. Usually, this 
anomalous behavior is explained by the existence of a family of resonances 𝑋(1835), 𝑋(1840), 𝑋(1870), and others. However all 
available experimental data can be well explained within the approach based on an account for the interaction of real or virtual 
nucleon and antinucleon produced in 𝐽∕𝜓 decays (see [10–15] and references therein). The same approach explains successfully 
experimental data for the cross sections of processes 𝑒+𝑒− → mesons near the threshold of real 𝑁�̄� pair production (see [16–18]).

In the approach based on the account for the final-state interaction, a quark-antiquark pair is produced at small distances 𝑟 ∼
1∕2𝑚𝑝 and then transforms into a nucleon-antinucleon pair at large distances 𝑟 ∼ 1∕Λ𝑄𝐶𝐷 as a result of hadronization. For small 
relative velocity of 𝑁 and �̄� , the 𝑁�̄� interaction may significantly increase the modulus of wave function |𝜓(0)| (here 𝜓(0) is the 
value of wave function of 𝑁�̄� pair at distances 𝑟 ∼ 1∕Λ𝑄𝐶𝐷). Firstly, this happens when there is a loosely bound 𝑁�̄� state with the 
binding energy |𝜀|≪ |||𝑈 |||, 𝜀 < 0, where 𝑈 is the characteristic value of the potential 𝑈 (𝑟) of 𝑁�̄� interaction. Secondly, there is no 
loosely bound state, but a slight increase of the potential depth results in its appearance. We refer to the latter case as a virtual state 
with an energy 𝜀 ≪ |||𝑈 |||, 𝜀 > 0. In both cases, an energy 𝜀 is expressed in terms of the 𝑁�̄� scattering length 𝑎, |𝜀| = 1∕𝑚𝑝𝑎

2, where |𝑎| is much larger than the characteristic size 𝑅 of the potential. Moreover, 𝑎 > 0 in the case of a loosely bound state and 𝑎 < 0 for a 
virtual state.

Frequently, to describe the production of near-threshold resonances, the Flatté approach is applied, which exploit scattering 
lengths as parameters [19]. However, it is shown in our previous works that the method of effective potentials of produced particles 
is more convenient. These potentials, of course, are not the real interaction potentials. However, for the production of near-threshold 
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resonances these potentials reproduce the corresponding scattering amplitudes, and therefore the scattering lengths. It is this ap-

proach that we use in this work.

We refer to the production of a real 𝑁�̄� pair as an elastic process. A produced virtual 𝑁�̄� pair can annihilate into a system of 
mesons, we refer to such process as inelastic. The sum of probabilities of elastic and inelastic processes is the total probability. The 
inelastic processes are possible above the threshold of real 𝑁�̄� pair production as well as below this threshold (due to annihilation 
of a virtual pair). Therefore, the anomalous behavior of the probabilities of decays 𝐽∕𝜓 →𝑁�̄� +𝐴 → mesons +𝐴 are determined 
by the energy dependence of the probability of virtual 𝑁�̄� production.

The quantum numbers of a nucleon-antinucleon pair are determined by that of particle 𝐴 and also by the quantum numbers 
of mesonic system. For instance, the main contribution to the probabilities of 𝐽∕𝜓 →𝑁�̄�𝛾(𝜌, 𝜔) decays near the 𝑁�̄� production 
threshold is given by the production of 𝑁�̄� pair with the angular momentum 𝑙 = 0, total spin 𝑆 = 0, and charge parity 𝐶 = +1. Then, 
the isospin of 𝑁�̄� pair is 𝐼 = 1 in the decay with 𝜌 meson production, isospin 𝐼 = 0 with 𝜔 meson production, and the isospin 𝐼 is 
not fixed in the decay 𝐽∕𝜓 →𝑁�̄�𝛾 . In the process 𝐽∕𝜓 → (6𝜋)𝛾 the 𝐺-parity of 6𝜋 state is 𝐺 = +1, and the 𝐶 -parity of 𝑁�̄� pair 
in the process 𝐽∕𝜓 →𝑁�̄�𝛾 is 𝐶 = +1. Therefore, the contribution to the probability of the decay 𝐽∕𝜓 → (6𝜋)𝛾 is given by virtual 
𝑁�̄� pair with the isospin 𝐼 = 0. Let’s now consider the process 𝐽∕𝜓 → (6𝜋)𝜋0, where 6𝜋 are produced through an intermediate 𝑁�̄�

state. In this case, the 𝐶 -parity of 𝑁�̄� pair is 𝐶 = −1, total spin 𝑆 = 1, and the isospin of the pair is 𝐼 = 1, as well as the isospin of 
produced 6𝜋 system. Therefore, the effective nucleon-antinucleon potentials in the processes 𝐽∕𝜓 →𝑁�̄�𝛾 and 𝐽∕𝜓 →𝑁�̄�𝜋0 are 
different, and the probabilities of the corresponding processes are also different. This is the reason why a large number of resonances 
𝑋 has been introduced for interpretation of anomalous behavior of probabilities in various processes with the meson production.

In the present paper, using the approach based on the account for the final-state interaction, we perform a self-consistent descrip-

tion of the processes 𝐽∕𝜓 → 𝑝�̄�𝛾 , 𝜓(2𝑆) → 𝑝�̄�𝛾 , 𝐽∕𝜓 → 𝑝�̄�𝜔, and 𝐽∕𝜓 → 3 
(
𝜋+𝜋−) 𝛾 . We show that the effective potential approach 

successfully reproduces the nontrivial structure of all these cross sections around the threshold. The natural explanation of the sharp 
dip in the energy dependence of 𝐽∕𝜓 → 3 

(
𝜋+𝜋−) 𝛾 decay probability [9] is given.

2. Theoretical approach

In Ref. [12] we successfully described the experimental data for the energy dependence of 𝐽∕𝜓 → 𝑝�̄�𝛾(𝜔) decays probabilities. 
Therefore, we can predict the behavior of 𝐽∕𝜓 → (6𝜋)𝛾 decay probability near the threshold of 𝑁�̄� pair production. The probability 
of the process 𝐽∕𝜓 → 𝑝�̄�𝛾 can be written as (see Ref. [12])

𝑑Γ𝑝�̄�𝛾
𝑑𝑀

= 𝑝𝑘3

24 3𝜋3𝑚4
𝐽∕𝜓

|||𝛾0𝜓 (0)(0) + 𝛾1𝜓
(1)(0)|||2 ,

𝑘 =
𝑚2
𝐽∕𝜓 −𝑀2

2𝑚𝐽∕𝜓
, 𝑝 =

√
𝑚𝑝𝐸 , 𝐸 =𝑀 − 2𝑚𝑝 . (1)

Here 𝑘 is the photon momentum in the 𝐽∕𝜓 rest frame, 𝑝 is the nucleon momentum in the 𝑁�̄� center of mass frame, 𝛾0 and 
𝛾1 are some energy-independent constants related to the amplitudes of 𝑁�̄�𝛾 state production at small distances. The functions 
𝜓 (𝐼)(𝑟) are the regular solutions of the radial Schrödinger equations for 𝑁�̄� pair with the corresponding isospin 𝐼 . The probability 
of 𝐽∕𝜓 → 𝑝�̄�𝜔 decay reads (see Ref. [12])

𝑑Γ𝑝�̄�𝜔
𝑑𝑀

=
𝑝𝑝3

𝜔

24 3𝜋3𝑚4
𝐽∕𝜓

|||𝜔𝜓 (0)(0)|||2 , 𝑝𝜔 =
√
𝜀2
𝜔
−𝑚2

𝜔
, 𝜀𝜔 =

𝑚2
𝐽∕𝜓 +𝑚2

𝜔
−𝑀2

2𝑚𝐽∕𝜓
, (2)

where 𝜔 is some constant.

The total probability Γ(0)tot of 𝐽∕𝜓 →𝑁�̄� + 𝛾 and 𝐽∕𝜓 →𝑁�̄� + 𝛾 → mesons + 𝛾 processes, in which real or virtual 𝑁�̄� pair has 
the isospin 𝐼 = 0, is expressed via the Green’s function (0)(𝑟, 𝑟′|𝐸) of the radial Schrödinger equation for 𝑁�̄� pair with quantum 
numbers 𝑙 = 0, 𝑆 = 0, and 𝐼 = 0 (see Ref. [12])

𝑑Γ(0)tot
𝑑𝑀

= −
|||𝛾0|||2 𝑘3

24 3𝜋3𝑚𝑝𝑚
4
𝐽∕𝜓

Im(0) (0, 0|𝐸) . (3)

It is known that, due to the unitarity relation, the total probability Γtot of production of a state with given quantum numbers is 
expressed via the imaginary part of the corresponding polarization operator (see, e.g., [20], Eq. (113.5)). However, in the non-

relativistic approximation the polarization operator is proportional to the Green’s function (𝑟, 𝑟′|𝐸) (see Ref. [21]).

The probability of elastic process 𝐽∕𝜓 →𝑁�̄�𝛾 , where 𝑁�̄� has 𝐼 = 0, reads

𝑑Γ(0)
el

𝑑𝑀
=

|||𝛾0|||2 𝑝𝑘3
24 3𝜋3𝑚4

𝐽∕𝜓

|||𝜓 (0)(0)|||2 . (4)
2

The probability 𝑑Γ(0)
inel

∕𝑑𝑀 of inelastic decays 𝐽∕𝜓 → mesons + 𝛾 , in which the system of mesons has 𝐼 = 0, is



Nuclear Physics, Section B 1002 (2024) 116539S.G. Salnikov and A.I. Milstein

𝑑Γ(0)
inel

𝑑𝑀
=
𝑑Γ(0)tot

𝑑𝑀
−
𝑑Γ(0)

el

𝑑𝑀
. (5)

Note that the effects of isotopic invariance violation (the proton and neutron mass difference and the Coulomb interaction of proton 
and antiproton) only slightly affect 𝑑Γ(0)

inel
∕𝑑𝑀 .

3. Results

In a recent work [9], the distribution 𝑑Γ6𝜋∕𝑑𝑀 over the invariant mass of 3 
(
𝜋+𝜋−) in the decay 𝐽∕𝜓 → 3 

(
𝜋+𝜋−) 𝛾 has been 

measured with high accuracy. To describe the probability of this process, it is necessary to take into account both the contribution of 
virtual 𝑁�̄� pair with 𝐼 = 0 in an intermediate state and the contributions of mechanisms not related to the annihilation of a virtual 
𝑁�̄� pair. The energy dependence of latter contributions is a smooth function of 𝑀 near the threshold of real 𝑁�̄� pair production, 
while the former contribution depends strongly on 𝑀 in the near-threshold region. A smooth dependence on 𝑀 of contributions, 
which are not related to the virtual 𝑁�̄� pair production, can be approximated using few parameters [9].

Eq. (5) predicts the sum of probabilities of all inelastic processes, and the production of 3 
(
𝜋+𝜋−) system is only one of possible 

channels. However, it is natural to assume that the annihilation amplitude of 𝑁�̄� pair into mesons weakly depends on 𝑀 near 
the threshold, and it can be considered a constant. Therefore, the contribution of virtual 𝑁�̄� annihilation to the probability of 
𝐽∕𝜓 → 3 

(
𝜋+𝜋−) 𝛾 decay is proportional to 𝑑Γ(0)

inel
∕𝑑𝑀 . This assumption was fully justified when describing the anomalous behavior 

of meson production cross sections in 𝑒+𝑒− annihilation near the threshold of real 𝑁�̄� production [12,17,18].

Using the experimental data [9] we found that the contribution of background processes in the near-threshold region can be 
approximated with good accuracy by a linear function of energy 𝐸. As a result, we describe the distribution 𝑑Γ6𝜋∕𝑑𝑀 by the 
formula

𝑑Γ6𝜋
𝑑𝑀

= 𝑎+ 𝑏𝐸 + 𝑐
𝑑Γ(0)

inel

𝑑𝑀
, (6)

where 𝑎, 𝑏 and 𝑐 are some parameters that have been determined by comparison of our predictions with experimental data.

In order to determine 𝑑Γ(0)
inel

∕𝑑𝑀 it is necessary to find the parameters of 𝑁�̄� interaction potential with quantum numbers 
𝑙 = 0, 𝑆 = 0, and 𝐼 = 0. We have used the experimental data on the production of 𝑝�̄� in 𝐽∕𝜓 → 𝑝�̄�𝛾 , 𝜓(2𝑆) → 𝑝�̄�𝛾 and 𝐽∕𝜓 → 𝑝�̄�𝜔

decays [3–7], and also the results of partial-wave analysis of elastic and inelastic 𝑝�̄� scattering data performed by the Nijmegen 
group [22]. In processes 𝐽∕𝜓 → 𝑝�̄�𝛾 and 𝜓(2𝑆) → 𝑝�̄�𝛾 , 𝑝�̄� pairs are produced both with 𝐼 = 0 and 𝐼 = 1 (see Eq. (1)). In the process 
𝐽∕𝜓 → 𝑝�̄�𝜔, the 𝑝�̄� pair is produced with 𝐼 = 0 (see Eq. (2)). However, the experimental data for this decay are limited as compared 
to the decay 𝐽∕𝜓 → 𝑝�̄�𝛾 . Therefore, we have used the whole set of experimental data listed above to better fix the parameters of the 
potential. As a result, we found not only the effective interaction potential of 𝑁�̄� with 𝐼 = 0, but also with 𝐼 = 1.

As shown in Refs. [23,24], the behavior of cross sections in the near-threshold region is determined by a small number of 
parameters (scattering lengths, effective ranges of interaction). Therefore, one can use any convenient parameterization of the 
effective potentials, which reproduces the required values of these parameters. We have used the parameterization of 𝑁�̄� interaction 
potentials in states with 𝑙 = 0, 𝑆 = 0, and 𝐼 = 0, 1 in the form of rectangular wells

𝑈 (𝐼)(𝑟) =
(
𝑉 (𝐼) − 𝑖𝑊 (𝐼)) ⋅ 𝜃(𝑅(𝐼) − 𝑟) , (7)

where 𝑉 (𝐼), 𝑊 (𝐼) and 𝑅(𝐼) — are some parameters, and 𝜃(𝑥) is the Heaviside function. The optical potential 𝑈 (𝐼)(𝑟) contains an 
imaginary part that accounts for annihilation of 𝑁�̄� pair into mesons. For such a parameterization one can obtain the analytical 
form of the wave functions 𝜓 (𝐼)(𝑟) and the Green’s functions (𝐼)(𝑟, 𝑟′|𝐸). We have (see Ref. [24])

𝜓 (𝐼)(0) = 𝑞 𝑒−𝑖𝑝𝑅
(𝐼)

𝑞 cos
(
𝑞𝑅(𝐼)

)
− 𝑖𝑝 sin

(
𝑞𝑅(𝐼)

) ,
Im(𝐼)(0,0|𝐸) = Im

[
𝑞
𝑞 sin

(
𝑞𝑅(𝐼))+ 𝑖𝑝 cos

(
𝑞𝑅(𝐼))

𝑞 cos
(
𝑞𝑅(𝐼)

)
− 𝑖𝑝 sin

(
𝑞𝑅(𝐼)

)] ,
𝑞 =

√
𝑚𝑝

(
𝐸 − 𝑉 (𝐼) + 𝑖𝑊 (𝐼)

)
. (8)

The values of potential parameters, that provide the best fit of the experimental data, are given in the Table 1. Fig. 1 shows 
the comparison of our predictions with experimental data for 𝐽∕𝜓 → 𝑝�̄�𝛾 , 𝜓(2𝑆) → 𝑝�̄�𝛾 , and 𝐽∕𝜓 → 𝑝�̄�𝜔 decays. In all cases, good 
agreement between the predictions and the experimental data is evident. We have checked that our model is consistent with the 
results of partial-wave analysis of 𝑝�̄� scattering data performed by the Nijmegen group [22]. The agreement of our predictions for 
the scattering cross sections with that of the Nijmegen group is as good as in our previous paper [18].

The Green’s function (0)(𝑟, 𝑟′|𝐸) for quantum numbers 𝑙 = 0, 𝑆 = 0, 𝐼 = 0 has poles in the complex energy plane at 𝐸 =
𝐸

(0)
𝑅

. For 𝑊 (0) = 0 we obtain 𝐸(0)
𝑅

= −2 MeV, which correspond to subthreshold resonance. For 𝑊 (0) = 114 MeV we have 𝐸(0)
𝑅

=
(36 − 57𝑖) MeV, that corresponds to the unstable bound state, see Ref. [25]. Relatively large imaginary part of 𝐸(0)

𝑅
explains absence 

of a pronounced peak in the probability of 𝐽∕𝜓 → 𝑝�̄�𝜔 decay.

Using the obtained potentials and Eq. (6), we compare our predictions with the recent experimental data [9]. To obtain 𝑑Γ6𝜋∕𝑑𝑀
3

one should multiply the number of 𝐽∕𝜓 decays into 3(𝜋+𝜋−)𝛾 observed in Ref. [9] by the ratio Γ𝐽∕𝜓∕𝑁𝐽∕𝜓 , where Γ𝐽∕𝜓 = 92.6 keV
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Table 1

Parameters of potentials (7) of 
𝑁�̄� interaction in the states 
with isospin 𝐼 = 0, 1.

𝑈 (0) 𝑈 (1)

𝑉 (MeV) −92 −24
𝑊 (MeV) 114 89
𝑅 (fm) 1.17 1.06

Fig. 1. Energy dependence of the probabilities of decays 𝐽∕𝜓 → 𝑝�̄�𝛾 , 𝜓(2𝑆) → 𝑝�̄�𝛾 , and 𝐽∕𝜓 → 𝑝�̄�𝜔 in comparison with experimental data [3–7]. All graphs are 
normalized to the number of events in the earliest experiment.

Fig. 2. The dependence of 𝐽∕𝜓 → 3(𝜋+𝜋−)𝛾 decay probability on the invariant mass 𝑀 . The solid line is our predictions for 𝑑Γ6𝜋∕𝑑𝑀 , the dashed line is the 
background contribution. The vertical dotted line indicates the 𝑁�̄� threshold. Experimental points are recalculated from Ref. [9].

is the total width of 𝐽∕𝜓 meson and 𝑁𝐽∕𝜓 = 10087 ⋅ 106 is the total number of 𝐽∕𝜓 events. Our comparison is shown in Fig. 2

for 𝑎 = 1.4 ⋅ 10−9, 𝑏 = 0.017 ⋅ 10−9 MeV−1, and 𝑐 = 7 ⋅ 10−4. It is seen that our model successfully reproduces the nontrivial energy 
dependence of 𝐽∕𝜓 → 3 

(
𝜋+𝜋−) 𝛾 decay probability near the 𝑁�̄� threshold.

4. Conclusion

A simple model, based on the account for the final-state interaction, is proposed for self-consistent description of the processes 
𝐽∕𝜓 → 𝑝�̄�𝛾 , 𝜓(2𝑆) → 𝑝�̄�𝛾 , 𝐽∕𝜓 → 𝑝�̄�𝜔 and 𝐽∕𝜓 → 3 

(
𝜋+𝜋−) 𝛾 near the threshold of 𝑁�̄� pair production. It is shown that the 

nontrivial energy dependence of the probabilities of these processes is related to the interaction of real and virtual 𝑁 and �̄� . The 
4

proposed potential model is also consistent with the results of partial-wave analysis of 𝑝�̄� scattering data.
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