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1 Introduction

Since the discovery of the charmonium J/ψ state in 1974 [1, 2], its properties have been
intensively studied. The J/ψ decays primarily through strong and electromagnetic interactions.
Because the mass of J/ψ lies below the DD̄ threshold, it cannot decay into a pair of charmed
mesons, but it is kinematically allowed for J/ψ to decay weakly into a single charmed meson,
for example J/ψ → D

(∗)
(s)X, where X denotes a light hadron such as π or a light lepton pair

such as e+νe or µ+νµ. Throughout this paper, charge-conjugate processes are implied. The
Feynman diagram of J/ψ → D−µ+νµ at tree-level within the Standard Model (SM) is shown
in figure 1. In the SM, these rare weak decays of the J/ψ into a single charmed meson
are predicted to have an inclusive branching fraction (BF) of about 10−8 or below [3–12],
and none have yet been observed [13–18]. The experimental results for the semi-leptonic
channels are listed in table 1. However, there are some new physics theories, such as the
Top-color Model [19], the Minimal Supersymmetric SM with or without R-parity [20], and the
two-Higgs doublet model [21], in which these BFs could be significantly enhanced, reaching
the level of 10−5 [22]. Therefore, searches for charmonium weak decays reaching toward the
SM predictions also probe new physics beyond the SM.

Thus far, the search for weak semi-leptonic charmonium decays has only covered the
electron channel. In the SM, charged leptons have identical electroweak interaction strengths,
referred to as lepton flavor universality (LFU). But for B0 → D(∗)−l+νl (l = e, µ, τ), combined
experimental results of R(D) and R(D∗) shows a tension with LFU at a significance of 3.2
standard deviations [23–34]. A search for the weak decay of charmonium with a muon in the
final state is therefore desirable. For the semi-muonic decay J/ψ → D−µ+νµ, the theoretical
predictions within the SM are at the order of 10−11 [8–12], as shown in table 2.

The BESIII [35] experiment has collected (10087 ± 44) × 106 J/ψ events [36] at a center-
of-mass energy of

√
s = 3.097 GeV operating at the Beijing Electron Positron Collider

(BEPCII) [37]. The experiment provides large samples to search for rare J/ψ decays [38–42].
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Figure 1. Feynman diagram for J/ψ → D−µ+νµ decays at tree-level.

Experiment Decay mode NJ/ψ UL at 90% C.L. Year
BESIII J/ψ → D−

s e
+νe 225.3 × 106 1.3 × 10−6 2014 [15]

BESIII J/ψ → D∗−
s e+νe 225.3 × 106 1.8 × 10−6 2014 [15]

BESIII J/ψ → D0e+e− 1310.6 × 106 8.5 × 10−8 2017 [16]
BESIII J/ψ → D−e+νe 10087 × 106 7.1 × 10−8 2021 [17]

Table 1. Experimental results for J/ψ semi-leptonic weak decays. For each result, the experiment,
the decay mode of J/ψ, the total size of the J/ψ sample, and the upper limit (UL) on the BF at 90%
confidence level (C.L.) are given, along with the year and reference.

Model QCDSR [8] LFQM [9] BSW [10] CCQM [11] BSM [12]
BF (×10−11) 0.71+0.42

−0.22 4.7 − 5.5 5.8+0.8
−0.6 1.66 1.98+0.28

−0.24

Table 2. Theoretical results for the BF of the semi-leptonic decay J/ψ → D−µ+νµ within the SM,
where QCDSR is the QCD sum rule model, CLFQ is the covariant light-front quark model, BSW
is the Bauer-Stech-Wirbel model, CCQM is the confined covariant quark model, and BSM is the
Bathe-Salpeter-Mandelstam model.

In this paper, we present the first search for the weak decay J/ψ → D−µ+νµ with D− →
K+π−π−. Pions can be misidentified as muons at low momentum [43], causing backgrounds
not present for semi-electronic final states. Since there are many J/ψ decay modes with
pions [18], the muon mode is more technically challenging. About 10% of the full data sample
is first used to validate the analysis procedure, and the final result is obtained from the full
data sample with the validated analysis strategy.

2 BESIII detector and Monte Carlo simulation

The BESIII detector [35] records symmetric e+e− collisions provided by the BEPCII storage
ring [37] in the center-of-mass energy range from 2.0 to 4.95 GeV, with a peak luminosity
of 1 × 1033 cm−2s−1 achieved at

√
s = 3.77 GeV. BESIII has collected large data samples

in this energy region [39]. The cylindrical core of the BESIII detector covers 93% of the
full solid angle and consists of a helium-based multilayer drift chamber (MDC), a plastic
scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC),
which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic
field. The magnetic field was 0.9 T in 2012, which affects 11% of the total J/ψ data. The
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solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon
identification modules (MUC) interleaved with steel.

The charged-particle momentum resolution at 1 GeV/c is 0.5%, and the dE/dx resolution
is 6% for electrons from Bhabha scattering. The EMC measures photon energies with a
resolution of 2.5% (5%) at 1 GeV in the barrel (end cap) region. The time resolution in the
TOF barrel region is 68 ps, while that in the end cap region is 110 ps. The end cap TOF system
was upgraded in 2015 using multi-gap resistive plate chamber technology, providing a time
resolution of 60 ps, which benefits 87% of the data used in this analysis [44, 45]. The minimum
momentum of muon required for the MUC to be effective is approximately 0.5 GeV/c.

Simulated data samples produced with the geant4-based [46] Monte Carlo (MC) package
BOOST [47], which includes the geometric and material description of the BESIII detec-
tor [48–50] and the detector response, are used to determine detection efficiencies and to
estimate backgrounds. The simulation models the beam energy spread and initial state
radiation (ISR) in the e+e− annihilations with the generator kkmc [51, 52]. The inclusive
MC sample includes the production of the J/ψ resonance incorporated in kkmc. All particle
decays are modeled with evtgen [53, 54] using the BFs either taken from the Particle Data
Group [18], when available, or otherwise estimated with lundcharm [55, 56]. Signal MC
events are generated according to a c → d charged current weak interaction, similar to
refs. [15, 17]. Final state radiation (FSR) from charged final state particles is incorporated
using the photos package [57].

3 Event selection and data analysis

The analysis is performed with the BESIII offline software system [58]. In the signal process
J/ψ → D−µ+νµ, D− → K+π−π−, all final-state particles except the νµ are detected.
Charged tracks detected in the MDC are required to be within a polar angle (θ) range of
|cosθ| < 0.93, where θ is defined with respect to the z axis, which is the symmetry axis of
the MDC. For all charged tracks, the distance of closest approach to the interaction point
(IP) must be less than 10 cm along the z axis and less than 1 cm in the transverse plane.
Only events with exactly four selected charged tracks and zero net charge are retained for
further analysis. Particle identification (PID) for charged tracks combines measurements
of the energy deposited in the MDC (dE/dx) and the flight time in the TOF to form
likelihoods L(h) (h = K,π) for each hadron h hypothesis. Charged kaons are identified
by L(K) > 0 and L(K) > L(π), while charged pions are identified by L(π) > 0 and
L(π) > L(K). Muon PID uses information measured in the MDC, TOF and EMC. Most
muons in J/ψ → D−µ+νµ + c.c. are low enough in momentum that using the MUC for muon
identification is ineffective because of low detection efficiency. The combined likelihoods (L′)
under the muon, electron (positron), and kaon hypotheses are obtained. Muon candidates
are required to satisfy L′(µ) > 0.001, L′(µ) > L′(e) and L′(µ) > L′(K). To further reduce
the background, the deposited energy of the muon candidate in the EMC, EEMC

µ , is required
to be less than 0.26 GeV, as shown in figure 2 (a).

Photon candidates are identified using showers in the EMC. The deposited energy of
each shower must exceed 25 MeV in the barrel region (| cos θ| < 0.80) and 50 MeV in the end
cap region (0.86 < | cos θ| < 0.92). To suppress electronic noise and showers unrelated to the
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Figure 2. Distributions of EEMC
µ (a) and χ2

1C (b) from data, signal MC sample and inclusive MC
sample. The black dots with error bars are data, the blue shaded histogram is the inclusive MC
sample and the magenta dashed line is the signal MC sample. In plot (a), the blue arrow indicates
EEMC

µ < 0.26 GeV for muon candidates. In plot (b), the blue arrow indicates χ2
1C < 4.4 for D− meson

candidates.

event, the difference between the EMC shower time and the event start time is required to
be within [0, 700] ns. In addition, to exclude showers that originate from charged tracks, the
angle subtended by the EMC shower and the position of the closest charged track at the
EMC must be greater than 10 degrees as measured from the IP. Because the signal channel
has no photon in the final state, we require the total energy of good photons (Etot

γ ) to be
less than 0.1 GeV to suppress backgrounds with a π0 or extra photon(s).

The D− meson is reconstructed through the process D− → K+π−π−, and its invariant
mass MKππ is required to be in the range of [1.85, 1.89] GeV/c2, corresponding to ±3 times
the mass resolution around the known D− mass [18]. In addition, a kinematic fit constraining
MKππ to the known D− mass is performed and the obtained χ2

1C value is required to be less
than 4.4 for D− meson candidates, where χ2

1C is obtained from lagrange multiplier method and
a smaller χ2

1C value indicates a better fit [59], as shown in figure 2 (b). The momentum of the
neutrino νµ, which is not detected, is inferred from the missing momentum |P⃗miss| defined as

|P⃗miss| = |⃗0 − P⃗D− − P⃗µ+ |, (3.1)

where P⃗D− (P⃗µ+) is the momentum of the D− (µ+) in the rest frame of the initial e+e−

collision, and |P⃗miss| is required to be greater than 0.05 GeV/c to reduce backgrounds without
missing particles. Furthermore, to suppress backgrounds from non-three-body decays, we
require 0.98 GeV/c < |P⃗µ+ | + |P⃗miss| < 1.23 GeV/c, a range including > 95% of the signal
events (with limits from colinear decay configurations).

After the above selection criteria, several hadronic backgrounds still exist in the inclusive
MC samples. The main backgrounds are composed of the following four sources [60].

• J/ψ → K+KSπ
− and J/ψ → K+KSπ

−π0 with KS → π+π−, where one of the pions
from the KS is misidentified as muon. The pair mass of oppositely-charged pions Mππ

closest to the known KS mass [18] is required to be greater than 0.52 GeV/c2 to veto
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Backgrounds Before vetoes After vetoes Veto ratio
J/ψ → K+π−π+π−(π0) 12456 91 99%
J/ψ → K+K−π+π− 10066 459 95%
J/ψ → π+π−π+π−π0 13694 332 98%
J/ψ → K+π−π+π−KL 3852 150 96%

Table 3. The number of main backgrounds from inclusive MC before (the second column) and after
(the third column) vetoes. The fourth column shows the corresponding veto ratio.

these backgrounds. A lower cut on the mass is omitted to also veto events with a KS

decay product undergoing π± → µ±νµ decay.

• J/ψ → K+K−π+π− background, in which one of kaons decays through K− → µ−ν̄µ
or K− → π0µ−ν̄µ, where the muon is misidentified as pion and one of pions is misiden-
tified as muon (double misidentification is needed to obtain like-sign pion candidates).
To reject these backgrounds, we calculate the momentum of the decay-kaon K−

by P⃗K− = P⃗J/ψ − P⃗K+ − P⃗π+ − P⃗π− and reconstruct the invariant mass M2K2π of
J/ψ → K+K−π+π−. Events with M2K2π in [3.07, 3.13] GeV/c2 are vetoed.

• J/ψ → π+π−π+π−π0 background, where one of the pions is misidentified as muon,
another pion is misidentified as kaon and the π0 contributes to the missing momentum.
The momentum of the π0 can be calculated by P⃗π0 = P⃗J/ψ − P⃗π+ − P⃗π+ − P⃗π− − P⃗π−

and the invariant mass M4ππ0 of J/ψ → π+π−π+π−π0 is required to be less than
3.05 GeV/c2 to reduce this background.

• J/ψ → K+π−π+π−KL background, where KL is a missing particle. Similar to J/ψ →
π+π−π+π−π0, we deduce the momentum of KL from P⃗KL

= P⃗J/ψ − P⃗K+ − P⃗π+ −
P⃗π− − P⃗π− . The invariant mass MK3πKL

of J/ψ → K+π−π+π−KL is required to be
greater than 3.24 GeV/c2 to suppress this background. Note that MK3πKL

calculated
for the signal mode is increased due to the KL mass, and raising the requirement well
above the known J/ψ mass [18] removes some other miscellaneous backgrounds without
decreasing signal efficiency.

The number of main backgrounds before and after vetoes are shown in table 3, which is
estimated from MC samples. Most of the expected backgrounds have been vetoed, and the
estimated remaining backgrounds are not subtracted from the result. These vetoes could
further improve the sensitivity of detecting the rare process.

We extract the signal yield of J/ψ → D−µ+νµ by examining the kinematic variable

Umiss = Emiss − |P⃗miss|c, (3.2)

where Emiss is the missing energy calculated by Emiss = EJ/ψ − ED− − Eµ+ and ED− (Eµ+)
is the energy of D− (µ+) in the rest frame of the initial e+e− collision. In such a distribution,
the signal channel would appear as a Gaussian with its centroid at 0, as shown by the
magenta dotted-dashed line in figure 3.
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Figure 3. The distribution of Umiss of the accepted candidates in data, signal MC sample and inclusive
MC sample. The black dots with error bars are data, the blue shaded histogram is the inclusive MC
sample, and the magenta dotted-dashed line is the signal MC sample. The red dashed line is the total
fit result, the magenta solid line is the signal from fit and the blue dotted-dashed line is the background
from fit. Here, the signal MC sample is drawn with the assumption of B(J/ψ → D−µ+νµ) = 4× 10−6.

4 Result

To extract the signal yield, an unbinned extended maximum likelihood fit in Umiss is performed
for data. The fit function is defined as

Ftotal = Nsig×PDF sig
⊗

G(µ, σ) +Nbkg×Poly(c0, c1), (4.1)

with each term defined as follows:

• Nsig: the number of signal events.

• Nbkg: the number of background events.

• PDF sig
⊗
G(µ, σ): the probability density function derived from the shape of signal

MC simulation of Umiss spectrum convolved with a Gaussian function G(µ, σ), where µ
and σ are obtained from the control sample.

• G(µ, σ): the Gaussian function with µ = (0.35 ± 0.12) MeV and σ = (3.32 ± 0.27) MeV
to describe the resolution difference and mean shift of the signal between data and MC
simulation. We perform a fit to the control sample D0 → K−µ+νµ from ψ(3773) →
D0D̄0 data with G(µ, σ) floating to obtain the values of µ and σ.

• Poly(c0, c1): a second-order polynomial shape to describe the backgrounds.

We try different signal regions and background shapes to calculate the UL, and the option
with the most conservative UL is chosen: [-0.07, 0.07] GeV for the signal region and a
second-order polynomial for the background shape.
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As shown in figure 3, the fit returns Nsig = 35 ± 28, showing no significant excess of
signal above the background. The BF of the signal decay is calculated by

B(J/ψ → D−µ+νµ) = Nsig
NJ/ψ · ϵ̂ · Bsub

, (4.2)

where NJ/ψ = (10087 ± 44) × 106 is the total number of J/ψ events [36], ϵ̂ = (14.29 ± 0.05)%
is the signal detection efficiency, where the uncertainty is statistical only, and Bsub = (9.38 ±
0.16)% is the BF of the intermediate decay D− → K+π−π− [18].

Since no significant excess of signal above the background is observed, an upper limit
(UL) on the BF is set with a Bayesian approach. A series of fits are performed, where the
number of signal events Nsig are fixed to values from 0 to 200 in steps of 0.1. For each fixed
signal number, a calculated BF value and a likelihood value are obtained by fit (initial curve;
see figure 4). Then we fit the likelihood values as a Gaussian function of the BFs (fit curve):

L(B)fit ∝ exp
[
− (B − B̂)2

2σ2
B

]
, (4.3)

where B̂ is the mean value and σB is the sigma value of the Gaussian function from fit. To
include the systematic uncertainties described in the following section, we follow the method
in refs. [61, 62] of convolving with a Gaussian function:

L(B)smear ∝
∫ 1

0
exp

[
− (ϵB/ϵ̂− B̂)2

2σ2
B

]
× 1√

2πσϵ
exp

[
− (ϵ− ϵ̂)2

2σ2
ϵ

]
dϵ, (4.4)

where ϵ̂ is the nominal efficiency and σϵ = ∆syst · ϵ̂ (∆syst is the relative systematic uncertainty
which is further discussed in section 5) is the systematic uncertainty on the efficiency. The
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Sources Relative uncertainties (×10−2)
Signal model 5.8
Tracking 4.0
PID 3.5
Limited MC sample 0.4
B(D− → K+π−π−) 1.7
Total number of J/ψ 0.5
MKππ requirement 0.6
χ2

1C requirement 3.5
|P⃗µ| + |P⃗miss| requirement 1.7
Etot
γ requirement 1.7

Mππ requirement 1.0
M2K2π requirement 1.1
MK3πKL

requirement 2.1
Total 9.5

Table 4. Summary of the systematic uncertainties for the measurement of the BF. The total value is
calculated by summing up all sources in quadrature.

distributions of the likelihood curves are shown in figure 4. The UL on the BF at 90%
confidence level is obtained by integrating the convolved likelihood curve from zero to 90% in
the physical region (B ≥ 0), resulting in B(J/ψ → D−µ+νµ) < 5.6 × 10−7 at 90% C.L.

5 Systematic uncertainty

The systematic uncertainties in measuring the BF of J/ψ → D−µ+νµ come from the signal
MC model, the value of G(µ, σ), tracking and PID efficiencies, the D− decay BF, the total
number of J/ψ events, and event selection requirements. For the latter case, data-MC
differences measured with control samples are used to evaluate uncertainties. The systematic
uncertainties are described next and are summarized in table 4.

• Signal model. To estimate the systematic uncertainty due to the signal model, we use a
phase space (PHSP) model. The 5.8% difference between the efficiencies of the nominal
and PHSP models is assigned as the systematic uncertainty.

• The value of G(µ, σ). The uncertainty of µ and σ in G(µ, σ) are estimated from the
control sample D0 → K−µ+νµ (section 4). To consider the uncertainty of G(µ, σ), the
values of µ and σ are assumed to follow a Gaussian distribution and constrained by
multiplying the likelihood function with two additional Gaussian functions in the fit.
The contribution of this item is found to be less than 0.1%, which is negligible to the
total systematic uncertainty.

• Tracking and PID efficiencies. The uncertainty due to tracking and PID efficiencies for
kaons and pions are estimated with the control samples of D+ → K−π+π+ and D− →

– 8 –
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K+π−π− from ψ(3773) → D+D−, where one π− or K+ meson is not reconstructed [63].
The uncertainties of tracking (PID) are estimated to be 1.0% (1.0%) per track. In
addition, the uncertainties of tracking and PID efficiencies from the muon, estimated by
studying a control sample of e+e− → γµ+µ−, are 1.0% for tracking and 0.5% for PID.

• Limited signal MC sample. The signal efficiency is estimated from signal MC events,
and the MC statistics is considered to be one source of systematic uncertainty, which is
0.4%.

• BF of D− → K+π−π− decay. The uncertainty on B(D− → K+π−π−) is 1.7% [18].

• Number of J/ψ events. We take the relative uncertainty of 0.5% determined using J/ψ
inclusive hadronic decays for NJ/ψ as the systematic uncertainty [36].

• MKππ and χ2
1C requirements. The control sample of ψ(3770) → D+D−, D− →

K+π−π− is used to estimate the systematic uncertainties of the MKππ and χ2
1C require-

ments as 0.6% and 3.5%, respectively.

• |P⃗µ| + |P⃗miss| requirements. The control sample of ψ(3770) → D+D− → D+π−KS is
used to estimate the systematic uncertainties of |P⃗µ| + |P⃗miss| requirements, where the
KS is considered as the missing particle. The uncertainty is assigned as 1.7%.

• Etot
γ , |P⃗miss| requirements. The control sample D0 → K−µ+νµ from ψ(3773) → D0D̄0

data is studied. The uncertainty of Etot
γ requirement is 1.7%, and the uncertainty of

|P⃗miss| requirement is negligible.

• Mππ veto. The control sample of J/ψ → K+K−π+π−, which cannot include the
decay KS → π+π− due to strangeness conservation, is used to estimate the systematic
uncertainty of Mππ veto, which is 1.0%.

• M2K2π, M4ππ0 and MK3πKL
vetoes. J/ψ → K+π−π+π−π0 is selected as the control

sample for study, where the π0 is considered as the missing particle. The systematic
uncertainties of the M2K2π, and MK3πKL

vetoes are estimated to be 1.1% and 2.1%
respectively, and the systematic uncertainty of the M4ππ0 veto is negligible.

The sum of all contributions in quadrature, 9.5%, is taken as the total systematic uncertainty.

6 Summary

Based on (10087±44)×106 J/ψ events collected with the BESIII detector, the BF of rare semi-
leptonic decay J/ψ → D−µ+νµ is searched for. No significant signal is observed. The UL on
the BF is set to be B(J/ψ → D−µ+νµ) < 5.6×10−7 at 90% confidence level, where systematic
uncertainties are taken into account. This is the first search of a charmonium weak decay
with a muon in the final state. The result is compatible with the SM based predictions [8–12],
and the measurement is not sensitive to the predicted level by 4 orders of magnitude.
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