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1 Introduction

Gluonic saturation effects in scattering on nucleons and nuclei at small-x represent one
of the most intriguing phenomena of strong interactions. In the small-x kinematics, the
BFKL dynamics1 [1–8] predicts a power-like increase of total cross sections at low values
of the Bjorken variable x=Q2/s, where s is the center of mass and Q2 an hard scale. This
rise of cross-section is physically interpretable as a constant growth of the gluon density
inside the proton. Although this growth has been experimentally observed, confirming the
robustness of the BFKL approach, it is equally clear that it must necessarily be interpreted
as a pre-asymptotic regime. In fact, at very low values of the x variable, the parton density,
per unit of transversal area, in the hadronic wave functions becomes very large leading
to the so-called recombination effects (not included in the BFKL dynamics). When gluon
recombination balances gluon splitting, the density of the latter reaches a saturation point,
producing new and universal properties of hadronic matter. The state of gluonic matter
that is formed is known as color-glass condensate2 [10]. The evolution of parton densities
must then be described by nonlinear generalizations of the BFKL equation, i.e. the Balitsky-
Jalilian Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (B-JIMWLK) equations [11–23].
In practice, we will rely on the Balitsky shockwave formulation.

In the present article, we extend a series of works by us devoted to a complete Next-to-
Leading Order (NLO) description of the direct coupling of the Pomeron to several kinds of

1For a recent review on tests of BFKL through semi-hard processes involving jets and hadrons, see ref. [9].
2This state is characterized not only by a high density of particles possessing a color charge (color

condensate), but also by a slow evolution compared to the natural time of the interaction and by a disordered
field distribution (properties similar to those of a glass).
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diffractive states, namely exclusive diffractive dijet production [28–30], exclusive ρ-meson
production [31], double hadron production at large pT [32].

In the same spirit as in ref. [32], this study is motivated by present and future possibilities
of accessing gluonic saturation through large-pT single hadron production. The novelty of
the present study, as we will show in detail in this article, is that passing from dihadron to
single hadron production, i.e. increasing the level of inclusivity, changes rather significantly
the structure of the cancellation of IR divergencies. At the parton level, one indeed faces
contributions with one (at LO and NLO) or two (at NLO) spectator partons, contrarily
to the case of dihadron production.

Similarly to the case of dihadron production, this process could be studied both in
photoproduction and leptoproduction. One should focus on the window which is both
perturbative, the hard scale being provided either by the large virtuality Q2 of the virtual
photon (in the leptoproduction case) and/or the large pT of the produced hadron, and subject
to saturation effects, characterized by the scale Q2

s ≃ (A/x)1/3 where A is the mass number
of the nucleus. This could thus be achieved at the LHC in pA and AA scattering, using
Ultra-Peripheral Collisions (UPC), as well as at the EIC, where both photoproduction and
leptoproduction could be considered.

2 Theoretical framework

2.1 Hybrid collinear/high-energy factorization

In the present paper, we focus on the computation at full NLO of the semi-inclusive diffractive
hadron production in the high energy limit, namely

γ(∗)(pγ)+P (p0)→h(ph)+X+P ′(p0′) (2.1)

where P is a nucleon or a nucleus target, generically called proton in the following. The initial
photon plays the role of a probe (also named projectile). Our computation applies both to
the photoproduction case (including ultra-peripheral collisions) and to the electroproduction
case (e.g. at EIC). A gap in rapidity is assumed between the outgoing nucleon/nucleus (P ′)
and the diffractive system (Xh). This is illustrated by figure 1.

We will be working in a combination of collinear factorization and small-x factorization,
more precisely in the shockwave formalism for the latter.

Kinematics. We introduce a light-cone basis composed of n1 and n2, with n1 ·n2=1
defining the +/− direction. We write the Sudakov decomposition for any vector as

pµ = p+nµ
1+p−nµ

2+pµ
⊥ (2.2)

and the scalar product of two vectors as3

p·q = p+q−+p−q++p⊥ ·q⊥
= p+q−+p−q+−p⃗·q⃗ .

(2.3)

3Any transverse momentum in Euclidean space will be denoted with an arrow, while a ⊥ index will be
used in Minkowski space.
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h

γ(∗)

〈 P | | P ′ 〉

X

h

γ(∗)

〈 P | | P ′ 〉

X

rapidity gap rapidity gap

Figure 1. Left: an example of amplitude of the process (2.1) at LO. Right: an example of amplitude
contributing to the process (2.1) at NLO. The grey blob symbolizes the QCD shockwave. The double
line symbolizes the target, which remains intact in the figure, but could just as well break. The quark
and the antiquark fragment into the systems (hX) (in the specific diagram h is produced by the quark,
but can be as well produced by the anti-quark). The tagged hadron h is drawn in red.

We work in a reference frame, called probe frame4 such that the target moves ultra-
relativistically and such that s=(pγ+p0)2∼ 2p+γ p−0 ≫Λ2

QCD, s also being larger than any
other scale and p+γ ∼ p−0 ∼

√
s. Particles on the projectile side are moving in the n1 (i.e. +)

direction while particles on the target side have a large component along n2 (i.e. − direction).
We will use kinematics such that the photon with virtuality Q is forward, and thus it

does not carry any transverse momentum:

p⃗γ =0, pµ
γ = p+γ nµ

1+
p2γ

2p+γ
nµ
2 , −p2γ ≡Q2≥ 0. (2.4)

We will denote its transverse polarization εT . Its longitudinal polarization vector reads

εα
L = 1√

−p2γ

(
p+γ nα

1−
p2γ

2p+γ
nα
2

)
, ε+L =

p+γ
Q

, ε−L = Q

2p+γ
. (2.5)

We write the momentum of the produced hadron as

pµ
h = p+h nµ

1+
m2

h+p⃗2
h

2p+h
nµ
2+pµ

h⊥ . (2.6)

The momenta of the fragmenting quark of virtuality p2q reads

pµ
q = p+q nµ

1+
p2q+p⃗2

q

2p+q
nµ
2+pµ

q⊥, (2.7)

similarly for an antiquark of virtuality p2q̄ we have

pµ
q̄ = p+q̄ nµ

1+
p2q̄+p⃗2

q̄

2p+q̄
nµ
2+pµ

q̄⊥, (2.8)

and, finally, for a gluon appearing at NLO level, we can write

pµ
g = p+g nµ

1+
p2g+p⃗2

g

2p+g
nµ
2+pµ

g⊥. (2.9)

From now, we will use the notation pij = pi−pj and zij = zi−zj .
4Although the probe may itself move relativistically in this frame.
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Collinear factorization. We consider the kinematical region in which p⃗2
h ≫Λ2

QCD. This
transverse hadron momentum provides the hard scale, justifying the use of perturbative QCD
and collinear factorization. In the hard part, after collinear factorization, the quark and
antiquark can be treated as on-shell particles. We later on use the longitudinal momentum
fraction xq and xq̄, defined as

p+q =xqp+γ and p+q̄ =xq̄p+γ . (2.10)

We also denote

p+h =xhp+γ . (2.11)

Shockwave approach. We now shortly present the shockwave formalism, an effective
approach to deal with gluonic saturation.

In this effective field theory, the gluonic field A is separated into external background
fields b (resp. internal fields A) depending on whether their +-momentum is below (resp.
above) the arbitrary rapidity cut-off eηp+γ , with η < 0. This effective field theory dramatically
simplifies when using the light-cone gauge n2 ·A=0. The external field, after being highly
boosted from the target rest frame to the probe frame, take the form

bµ(x)= b−(x⊥)δ(x+)nµ
2 . (2.12)

The resummation of all order interactions with those fields leads to a high-energy Wilson
line, that represents the shockwave and is located exactly at x+=0:

Uz⃗ =P exp
(

ig

∫
dz+b−(z)

)
, (2.13)

where P is the usual path ordering operator for the + direction.
Relying on the small-x factorization, the scattering amplitude can be written as the

convolution of the projectile impact factor with the non-perturbative matrix element of
operators from the Wilson line operators on the target states.

For the present process, we will deal with two kinds of operators. The first one is the
dipole operator, which in the fundamental representation of SU(Nc) takes the form:[

Tr
(
U1U

†
2

)
−Nc

]
(p⃗1, p⃗2)=

∫
ddz⃗1d

dz⃗2⊥e−ip⃗1·z⃗1e−ip⃗2·z⃗2
[
Tr
(
Uz⃗1U †

z⃗2

)
−Nc

]
, (2.14)

where z⃗1,2 are the transverse positions of the q, q̄ coming from the photon and p⃗1,2 their
respective transverse momentums kicks from the shockwave.

The proton matrix element can be parameterized through a generic function F , following
the definition of ref. [29]〈

P ′ (p0′)
∣∣∣∣T (Tr(U z⊥

2
U †
− z⊥

2

)
−Nc

)∣∣∣∣P (p0)
〉

≡ 2πδ
(
p−00′

)
Fp0⊥p0′⊥ (z⊥)

≡ 2πδ
(
p−00′

)
F (z⊥) (2.15)

and its Fourier Transform (FT) is∫
ddz⊥ei(z⊥·p⊥)F (z⊥)≡F(p⊥) . (2.16)
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≡

h

Figure 2. Graphical convention for the fragmentation function of a parton (here a quark for
illustration) to a hadron h plus spectators. In the rest of this article, we will use the left-hand side of
this drawing.

The second operator we will deal with is the double dipole operator. Its action on proton
states, as can be seen with eqs. (5.3) and (5.6) in [29], can be written as〈

P ′ (p0′)
∣∣∣∣(Tr(U z⊥

2
U †

x⊥

)
Tr
(

Ux⊥U †
− z⊥

2

)
−NcTr

(
U z⊥

2
U †
− z⊥

2

))∣∣∣∣P (p0)
〉

≡ 2πδ
(
p−00′

)
F̃p0⊥p0′⊥ (z⊥,x⊥)≡ 2πδ

(
p−00′

)
F̃ (z⊥,x⊥) (2.17)

and its FT is ∫
ddz⊥ddx⊥ei(p⊥·x⊥)+i(z⊥·q⊥)F̃ (z⊥,x⊥)≡ F̃(q⊥,p⊥) . (2.18)

In this paper, dimensional regularization will be used with D=2+d, where d=2+2ϵ

is the transverse dimension.

2.2 LO computation

We start from the usual collinear factorization of the hadronic cross section for the production
of a single hadron which, at LO and leading twist, reads [33]

dσq→h
0JI

dxh
=
∑

q

∫ 1

xh

dxq

xq
Dh

q

(
xh1

xq
,µF

)
dσ̂0JI

dxq
, (2.19)

where q specifies the quark or anti-quark flavor types (q =u, ū,d, d̄,s, s̄, c, c̄, b, b̄), and J,I =L,T

specify the photon polarization since we deal here with a modulus square amplitude (J labels
the photon polarization in the complex conjugated amplitude and I in the amplitude). Here
µF is the factorization scale, Dh

q denotes the quark (or antiquark) Fragmentation Function
(FF) and dσ̂ is the cross-section for the production of partons,5 i.e. the cross-section for
the subprocess

γ(∗)(pγ)+P (p0)→ q(pq)+q̄(pq̄)+P ′(p0′) . (2.20)

Following the convention of our previous work [32] we denote the fragmentation process
by a small rectangle as in figure 2.

5To be precise, it contains proton matrix elements and hence it is not exactly the partonic cross section,
but it is the cross section for the production of the parton pair from which the fragmentation in the identified
hadron subsequently occurs.
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For illustrative purposes, and simplicity of notation, let us consider the case in which
the hadron fragments starting from a quark. The case of anti-quark is completely identi-
cal. Collinear factorization means that the produced hadron should fly collinearly to the
fragmenting parton, we then have the following constraints

p+q = xq

xh
p+h , p⃗q =

xq

xh
p⃗h. (2.21)

To keep things quite general with regard to photon polarization, and therefore to be able to
describe photo- and electroproduction, we build the polarization matrix

dσJI =
(

dσLL dσLT

dσT L dσT T

)
, dσT L = dσ∗

LT . (2.22)

Each element of this matrix has a LO contribution dσ0JI . This Born order result, see
eq. (5.14) of ref. [29], has the following structure:

dσ̂0JI =
αemQ2

q

2(2π)4d Nc

(
p−0

)2
2xqxq̄s2

dxqdxq̄ddpq⊥ddpq̄⊥δ (1−xq−xq̄)
(
εIβε∗Jγ

)
×
∫

ddp1⊥ddp2⊥ddp1′⊥ddp2′⊥δ (pq1⊥+pq̄2⊥)δ (p11′⊥+p22′⊥)

×
∑

λq ,λq̄

Φβ
0 (p1⊥, p2⊥)Φγ∗

0 (p1′⊥, p2′⊥)F
(

p12⊥
2

)
F∗
(

p1′2′⊥
2

)
. (2.23)

It is important to note that the formula (2.23) is divided by a factor of 1/(2(2π)4) with respect
to eq. (5.14) of ref. [29]. This is necessary to get proper normalization which is missing in
ref. [29] due to a misprint. This same division must be applied to the cross section expressions
in ref. [32], where this misprint propagated. Using the explicit expressions of the product
Φβ
0Φ

γ∗
0 , see eqs. (B.1), (B.2), (B.3) in appendix B, the LO cross-sections are obtained and read

dσq→h
0JI

dxhddph⊥
= 2αemQ2

(2π)4dNc xd
h

∑
q

Q2
q

∫ 1

xh

dxq x1+d
q (1−xq)2Dh

q

(
xh

xq

)
fJI , (2.24)

where

fLL =
∫

ddpq̄⊥

∫
ddp2⊥

F
(

xq

2xh
ph⊥+ 1

2pq̄⊥−p2⊥
)

p⃗ 2
q̄2+xq(1−xq)Q2

∫
ddp2′⊥

F∗
(

xq

2xh
ph⊥+ 1

2pq̄⊥−p2′⊥
)

p⃗ 2
q̄2′+xq(1−xq)Q2 , (2.25)

fT L =
∫

ddpq̄⊥

∫
ddp2⊥

F
(

xq

2xh
ph⊥+ 1

2pq̄⊥−p2⊥
)

p⃗ 2
q̄2+xq(1−xq)Q2

∫
ddp2′⊥

F∗
(

xq

2xh
ph⊥+ 1

2pq̄⊥−p2′⊥
)

p⃗ 2
q̄2′+xq(1−xq)Q2

× (1−2xq)
2xq(1−xq)Q

(
p⃗q̄2′ ·ε⃗T

)∗
, (2.26)

fT T =
∫

ddpq̄⊥

∫
ddp2⊥

F
(

xq

2xh
ph⊥+ 1

2pq̄⊥−p2⊥
)

p⃗ 2
q̄2+xq(1−xq)Q2

∫
ddp2′⊥

F∗
(

xq

2xh
ph⊥+ 1

2pq̄⊥−p2′⊥
)

p⃗ 2
q̄2′+xq(1−xq)Q2

×
[
(1−2xq)2gri

⊥glk
⊥−grk

⊥ gli
⊥+grl

⊥gik
⊥

] εT i pq̄2⊥r

(
εT k pq̄2′⊥l

)∗
4x2

q(1−xq)2Q2 , (2.27)

– 6 –
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Figure 3. Diagram of the LO process at cross-section level. The blob is the shockwave (we do not
draw the coupling with the target for clarity) and the square the FF, see figure 2. The dashed line
represents the integration over phase space.

are the three different functions for the LL, TL and TT cross-sections, respectively and the
sum over q is extended to the five quark flavor species (q =u,d,s,c,b). For compactness,
we use the short notation

fJI(xq,xh, p⃗h,Q2)≡ fJI . (2.28)

The correct cross section, in the case of anti-quark fragmentation, is obtained by including a
minus sign in the argument of the function F, extending the sum over q to the five anti-quark
flavor species (q = ū, d̄, s̄, c̄, b̄) and performing the relabelling (xq, p⃗q,p2,p2′)↔ (xq̄, p⃗q̄,p1,p1′).6

We will call this last operation (q ↔ q̄) relabelling.

2.3 NLO computations in a nutshell

2.3.1 Different mechanisms of fragmentation

At the next-to-leading order there are six kinds of contributions to the cross-section

(a) γ∗+P →h+q̄+X+P cross-section at one-loop (i.e. virtual contribution and fragmenta-
tion from a quark),

(b) γ∗+P →h+q+X+P cross-section at one-loop (i.e. virtual contribution and fragmenta-
tion from an anti-quark),

(c) γ∗+P →h+q̄+g+X+P cross-section at Born level (i.e. real contribution and fragmen-
tation from a quark),

(d) γ∗+P →h+q+g+X+P cross-section at Born level (i.e. real contribution and fragmen-
tation from an anti-quark),

(e) γ∗+P →h+q+q̄+X+P cross-section at Born level (i.e. real contribution and fragmen-
tation from a gluon),

(f) FFs counterterms.
6Since the variables involved are all integration variables, this last operation is not necessary at the LO

level and in some NLO contributions, but we will always do it for clarity of notation.
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2.3.2 Hard cross section

At NLO, since we rely on the shockwave approach, it is convenient to separate the various
contributions from the dipole point of view, as illustrated in figure 4. In this figure, we exhibit
a few examples of diagrams, either virtual or real, as a representative of each 5 classes of
diagrams. There are indeed 5 classes of contributions from the dipole point of view, namely
dσiJI (i=1, · · ·5), so that the NLO polarization matrix can be written as

dσJI = dσ0JI+dσ1JI+dσ2JI+dσ3JI+dσ4JI+dσ5JI . (2.29)

Now, we will shortly discuss each of these 5 NLO corrections.
For the virtual diagrams, there are two classes of diagrams: the diagrams in which

the virtual gluon does not cross the shockwave, thus contributing to dσ1IJ , purely made of
dipole × dipole terms; the diagrams in which the virtual gluon does cross the shockwave,
contributing both to dσ1IJ , made of dipole × dipole terms as well as to dσ2IJ , made of double
dipole × dipole (and dipole × double dipole) terms.

For the real diagrams, there are three classes of diagrams: the diagrams in which the
real gluon does not cross the shockwave, thus contributing to dσ3IJ , purely made of dipole
× dipole terms; the diagrams in which the real gluon crosses exactly once the shockwave,
contributing both to dσ3IJ , made of dipole × dipole terms as well as to dσ4IJ , made of
double dipole × dipole (and dipole × double dipole) terms; the diagrams in which the real
gluon crosses exactly twice the shockwave, contributing to dσ3IJ , made of dipole × dipole
terms, to dσ4IJ , made of double dipole × dipole (and dipole × double dipole) terms, and
to dσ5IJ , made of double dipole × double dipole terms.

We stress that in figure 4 we show the hard cross-section.7 In order to construct the quark
(anti-quark) part of the physical cross-section, the five contributions must be convoluted
with the quark (anti-quark) → hadron FF. To include the gluon contribution to the physical
cross-section, only the three kinds of real corrections must be convoluted with the gluon
→ hadron FF.

2.3.3 Rapidity divergences and UV-sector

The dipole × double dipole part of the virtual amplitude contains a rapidity divergences
of the form lnα. The presence of the divergence in rapidity is a natural consequence of
the separation between the impact factor and the target. Intuitively, a gluon crossing the
shockwave cannot have arbitrarily small fraction of longitudinal momentum (and hence
arbitrary small rapidity), because only gluon with positive +-momentum above the cut-off
αp+γ can contribute to the quantum corrections to the impact factor. The rapidity divergent-
terms have to be absorbed into the renormalized Wilson operators with the help of the
B-JIMWLK equation. We thus have to use the B-JIMWLK evolution for these operators
from the cutoff α to the rapidity divide eη, by writing

Ũα
12= Ũeη

12−
∫ eη

α
dρ

∂Ũ12
∂ρ

. (2.30)

7With respect to the fragmentation mechanism.
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virtual contributions

dσ1IJ dipole × dipole

dσ2IJ double dipole × dipole

real contributions

dσ3IJ dipole × dipole

dσ4IJ double dipole × dipole

dσ5IJ double dipole × double dipole

Figure 4. Illustration of the 5 kinds of contributions to the NLO hard cross-section from the
dipole point of view. Arrows show to which combination of dipole structures each type of diagrams
contributes.
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This operation, applied to the leading term, produces an additional next-to-leading contri-
bution which cancels the rapidity divergences. In next-to-leading term, the effect is simply
to replace the scale α with the scale eη. We refer the reader to appendix A or to ref. [29]
for more details.

In principle, we should deal with ultraviolet renormalization, which is very challenging in
non-covariant gauges, however, in the shockwave approach, the only UV-divergences at NLO8

are associated with the dressing of external states (e.g. quark self-energy). Since we treat
both the ultraviolet (UV) and the infrared (IR) divergences using dimensional regularization,
these singularities are of the type

1
ϵUV

− 1
ϵIR

(2.31)

and can be set to zero by choosing ϵUV = ϵIR. Then, in practice, some UV divergences will
cancel out some infrared divergences in the calculation.

2.3.4 Treatment of the IR-sector

When generically decomposing any on-shell parton momentum in the Sudakov basis as9

pµ = zp+nµ
1+

p⃗2

2zp+
nµ
2+pµ

⊥ , (2.32)

in the IR sector, we face three kinds of divergences:

• Rapidity: xg goes to zero while the value of pg,⊥ is arbitrary but strongly suppressed
with respect to p+γ ∼

√
s.

• Collinear: pg,⊥→ (xg/xq)pq,⊥ (collinear to the quark line) or pg,⊥→ (xg/xq̄)pq̄,⊥
(collinear to the anti-quark line) while xg is arbitrary.

• Soft: all components linearly vanishing (both xg and pg,⊥ go linearly to zero). Parame-
terizing the transverse momenta of the gluon as pg,⊥=xgu⊥, with |u⊥| fixed in the limit
xg goes to zero, we can then define the soft limit as xg goes to zero with u⊥ generic.10

The superposition of the last two types generates a

• Soft and collinear divergence: soft as defined above and additionaly with u⊥→
(1/xq)pq,⊥ (to ensure that the gluons becomes soft and collinear to the quark line) or
u⊥→ (1/xq̄)pq̄,⊥ (to ensure that the gluons becomes soft and collinear to the anti-quark
line).

Technically, as the integration over z is regulated through a lower cut-off (α), care must be
taken that the appearance of lnα can arise from both rapidity and soft divergences.

The calculation is organized as follows. First, the rapidity divergences, which appear only
in the virtual corrections in the present computation, are regularized at the amplitude level

8Those that are included in the impact factor.
9Here p+ is a large fixed momentum, e.g. p+

γ in our present case.
10Please note that, when computing the soft contribution, we often relabel u⃗ as p⃗g after the rescaling.
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(1) (2)

(3) (4)

Figure 5. Real diagrams with the gluon emitted after the shockwave, in the quark fragmentation
case.

by absorbing them in the shockwave through one step of B-JIMWLK evolution. Part of terms
with lnα, the one related to pure rapidity divergences, are then removed. Soft divergences
must cancel in the combination between real and virtual contributions as guaranteed by the
Kinoshita-Lee-Naurenberg theorem. To observe easily the cancellation we separate the real
cross-section into soft-divergent and soft-free part. Then, when the cancellation takes place,
any dependence on α disappears. Finally, the remaining type of divergences, which are of
purely collinear nature, will be cancelled performing the renormalization of FFs [34–37].

Before calculating all contributions, we explicitly show how the final cross section is
organized. We strongly rely on the separation of the hard cross-section in eq. (2.29).

Quark fragmentation. The virtual part of the cross-section, in the quark fragmentation
case, can be split as

dσq→h
JI

dxhddph⊥

∣∣∣∣
virt., NLO

= dσq→h
JI

dxhddph⊥

∣∣∣∣
SV

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
virt., dip. × dip.

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
virt., dip. × d. dip.

,

(2.33)
where the first term contains the singular virtual dipole × dipole contribution, the second
one contains the finite virtual dipole × dipole contribution and, finally, the last term contains
the finite dipole × double dipole contribution (see the two top diagrams in figure 4). We
observe that the latter contribution becomes completely finite once the rapidity divergences
have been removed.

– 11 –



J
H
E
P
0
2
(
2
0
2
4
)
1
6
5

The real part of the cross-section in the quark fragmentation case can be split as

dσq→h
JI

dxhddph⊥

∣∣∣∣
real, NLO

= dσq→h
JI

dxhddph⊥

∣∣∣∣
real, dip. × dip.

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
real, dip. × d. dip.

+ dσq→h
JI

dxhddph⊥

∣∣∣∣ real,
d. dip. × d. dip.

, (2.34)

where the splitting follows the separation illustrated in the bottom diagrams in figure 4. The
last two contributions are finite, while the first one can be further divided into a singular
and finite contribution,

dσq→h
JI

dxhddph⊥

∣∣∣∣
real, dip. × dip.

= dσq→h
JI

dxhddph⊥

∣∣∣∣real, singular
dip. × dip.

+ dσq→h
JI

dxhddph⊥

∣∣∣∣ real, finite
dip. × dip.

. (2.35)

The singular contribution is generated by the diagrams shown in figure 5. This contribution
contains both soft and collinear singularity that can be promptly separated by casting the
contribution into the following form (the labels (i) refer to figure 5)

dσq→h
JI

dxhddph⊥

∣∣∣∣real, singular
dip. × dip.

= dσq→h
JI

dxhddph⊥

∣∣∣∣
(1)

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
(2)

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
(3)

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
(4)

= dσq→h
JI

dxhddph⊥

∣∣∣∣
Soft

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
coll(qg)

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
coll(q̄g)

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
real, fin. sub.

. (2.36)

The first contribution contains the sum of the four diagrams in the soft limit, i.e.

dσq→h
JI

dxhddph⊥

∣∣∣∣
Soft

≡ dσq→h
JI

dxhddph⊥

∣∣∣∣
(1),Soft

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
(2),Soft

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
(3),Soft

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
(4),Soft

,

(2.37)
and hence the complete soft singular part. The second (third) contribution contains the
difference between the first (third) diagram and its soft limit, i.e.

dσq→h
JI

dxhddph⊥

∣∣∣∣
coll(qg)

≡ dσq→h
JI

dxhddph⊥

∣∣∣∣
(1)

− dσq→h
JI

dxhddph⊥

∣∣∣∣
(1),Soft

(2.38)

and
dσq→h

JI

dxhddph⊥

∣∣∣∣
coll(q̄g)

≡ dσq→h
JI

dxhddph⊥

∣∣∣∣
(3)

− dσq→h
JI

dxhddph⊥

∣∣∣∣
(3),Soft

. (2.39)

These contributions are collinearly divergent. Finally, the sum of the remaining contributions
constitutes the last term, i.e.

dσq→h
JI

dxhddph⊥

∣∣∣∣
real, fin. sub.

≡ dσq→h
JI

dxhddph⊥

∣∣∣∣
(2)

− dσq→h
JI

dxhddph⊥

∣∣∣∣
(2),Soft

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
(4)

− dσq→h
JI

dxhddph⊥

∣∣∣∣
(4),Soft

.

(2.40)
This term is finite since in diagrams (2) and (4), because of topology, there is no space
for pure collinear divergences.

The case of anti-quark fragmentation is treated in a completely identical way.
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Gluon fragmentation. This fragmentation mechanism is possible only when a real gluon
is produced, therefore we only deal with real corrections which can be arranged as

dσg→h
JI

dxhddph⊥

∣∣∣∣
real, NLO

= dσg→h
JI

dxhddph⊥

∣∣∣∣
dip. × dip.

+ dσg→h
JI

dxhddph⊥

∣∣∣∣
dip. × d. dip.

+ dσg→h
JI

dxhddph⊥

∣∣∣∣
d. dip. × d. dip.

. (2.41)

The last two contributions are finite, while the first one can be split as

dσg→h
JI

dxhddph⊥

∣∣∣∣
dip. × dip.

= dσg→h
JI

dxhddph⊥

∣∣∣∣ singular
dip. × dip.

+ dσg→h
JI

dxhddph⊥

∣∣∣∣
dip. × dip.,1

+ dσg→h
JI

dxhddph⊥

∣∣∣∣
dip. × dip.,2

.

(2.42)
The singular part contains contributions coming from diagrams (1) and (3) in figure 6,

dσg→h
JI

dxhddph⊥

∣∣∣∣ singular
dip. × dip.

= dσg→h
JI

dxhddph⊥

∣∣∣∣
(1)

+ dσg→h
JI

dxhddph⊥

∣∣∣∣
(3)

. (2.43)

Since these contributions are collinearly divergent, we relabel them as

dσg→h
JI

dxhddph⊥

∣∣∣∣
coll(qg)

≡ dσg→h
JI

dxhddph⊥

∣∣∣∣
(1)

,
dσg→h

JI

dxhddph⊥

∣∣∣∣
coll(q̄g)

≡ dσg→h
JI

dxhddph⊥

∣∣∣∣
(3)

. (2.44)

The second contribution in eq. (2.42) contains the finite diagrams (2) and (4) in figure 6 ,

dσg→h
JI

dxhddph⊥

∣∣∣∣
dip. × dip.,1

= dσg→h
JI

dxhddph⊥

∣∣∣∣
(2)

+ dσg→h
JI

dxhddph⊥

∣∣∣∣
(4)

, (2.45)

while the last contains the rest of the dipole × dipole contribution. The nature of this last
term arises from the fact that, technically, a dipole × dipole contribution can be produced by
a gluon emitted before the shockwave, but passes through it without receiving any transverse
kick (p⃗3=0) . We discuss this situation with more details in the subsection 6.1.2.

3 NLO cross-section: FF counterterms

At the next-to-leading order, the quark/anti-quark FFs should be renormalized, i.e.

Dh
q (x)=Dh

q (x,µF )−
αs

2π

(
1
ϵ̂
+ln µ2

F

µ2

)∫ 1

x

dz

z

[
Dh

q

(
x

z
,µF

)
Pqq(z)+Dh

g

(
x

z
,µF

)
Pgq(z)

]
,

(3.1)
where 1

ϵ̂ =
Γ(1−ϵ)
ϵ(4π)ϵ ∼ 1

ϵ +γE−ln(4π), µF is the factorization scale and µ is an arbitrary parameter
introduced by dimensional regularization. The LO splitting functions are given by

Pqq(z) = CF

[
1+z2

(1−z)+
+3
2δ(1−z)

]
, (3.2)

Pgq(z) = CF
1+(1−z)2

z
, (3.3)
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(3) (4)

Figure 6. Real diagrams with the gluon emitted after the shockwave, in the gluon fragmentation
case.

Figure 7. Diagrammatic representation of the quark counterterm.

where the + prescription is defined as∫ 1

a
dβ

f(β)
(1−β)+

=
∫ 1

a
dβ

f(β)−f(1)
(1−β) −

∫ a

0
dβ

f(1)
1−β

. (3.4)

The effect of the renormalization means that the leading cross section (2.24) is now calculated
at the factorization scale µF and a divergent NLO contribution is produced. In the case
of fragmentation from a quark, the renormalization of the FF, Dh

q , produces the following
NLO contribution:

dσq→h
JI

dxhddph⊥

∣∣∣∣
ct
=− 2αemQ2

(2π)4dNc xd
h

∑
q

Q2
q

∫ 1

xh

dxq x1+d
q (1−xq)2fJI

αs

2π

(
1
ϵ̂
+ln

(
µ2

F

µ2

))∫ 1

xh
xq

dβ

β

×
[
Dh

q

(
xh

βxq
,µF

)
Pqq(β)+Dh

g

(
xh

βxq
,µF

)
Pgq(β)

]
≡ dσq→h

JI

dxhddph⊥

∣∣∣∣
ct, div

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
ct, fin

,

(3.5)

which we will call counterterm (ct). In eq. (3.5) the term labelled as ct, div contains the 1/ϵ̂

contribution, while, the one labelled as ct, fin contains the ln(µ2
F /µ2) part. It is also useful to
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Figure 8. Diagrammatic representation of the divergent part of virtual contributions. The blue gluon
loop represents a generic divergence (UV or IR).

separate the divergent part accordingly to the two different FF splitting functions involved, i.e.

dσq→h
JI

dxhddph⊥

∣∣∣∣
ct, div

≡ dσq→h
JI

dxhddph⊥

∣∣∣∣
ct, div, Pqq

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
ct, div, Pgq

. (3.6)

Since this contribution is completely proportional to the LO cross-section, the counterterm
for the anti-quark fragmentation case is obtained as before, by including a minus sign in the
argument of the function F, extending the sum over q to the five anti-quark flavor species
and performing the (q ↔ q̄) relabelling.

4 NLO cross-section: virtual corrections

We discuss in this section the virtual corrections to the process in eq. (2.1). In deriving
these results, we rely on ref. [29], where the one loop corrections to the γ∗→ qq̄ impact factor
were computed. However, for completeness, we provide a brief summary of this calculation
in the appendix A. As mentioned earlier, it is necessary to separate the dipole × dipole
contribution into a finite and a divergent part. The dipole × double dipole contribution is
instead completely finite once the divergences in rapidity have been removed [29].

4.1 Divergent part of the dipole × dipole contribution

Starting from eq. (5.16) of ref. [29], the divergent part of the one-loop cross-section, sym-
bolically illustrated in figure 8 can be written as

dσ̂1JI

dxqddp⃗q
= αs

2π

Γ(1−ϵ)
(4π)ϵ

CF

(
SV +S∗

V

2

)
dσ̂0JI

dxqddp⃗q
, (4.1)

where

SV +S∗
V

2 = 1
ϵ

[
−4ϵ ln(α) ln

(
x2

qx2
q̄µ2

(xqp⃗q̄−xq̄p⃗q)2

)
+4ln(α)+4ϵ ln2(α)−2ln(xqxq̄)+3

+2ϵ ln
(

xqxq̄µ2

(xqp⃗q̄−xq̄p⃗q)2

)
ln(xqxq̄)+ϵ ln2(xqxq̄)−3ϵ ln

(
xqxq̄µ2

(xqp⃗q̄−xq̄p⃗q)2

)
−π2

3 ϵ+6ϵ

]
. (4.2)

Performing the convolution with FFs as in (2.19) and using (2.21), we can get the final
contribution separated into a divergent and a finite part, i.e.

dσq→h
JI

dxhddph⊥

∣∣∣∣
SV

= 2αemQ2

(2π)4dNc xd
h

∑
q

Q2
q

∫ 1

xh

dxq x1+d
q (1−xq)2

∫
ddpq̄⊥

∫
ddp2⊥

∫
ddp2′⊥
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Figure 9. An example of diagram which only contributes to the dipole × dipole part of virtual
contributions.

×
F
(

xq

2xh
ph⊥+ 1

2pq̄⊥−p2⊥
)

p⃗ 2
q̄2+xq(1−xq)Q2

F∗
(

xq

2xh
ph⊥+ 1

2pq̄⊥−p2′⊥
)

p⃗ 2
q̄2′+xq(1−xq)Q2 Dh

q

(
xh

xq
,µF

)
δJI

× αs

2π
CF

(1
ϵ̂

AV,div+AV,fin

)
≡ dσq→h

JI

dxhddph⊥

∣∣∣∣
SV ,div

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
SV ,fin

, (4.3)

where

AV,div =4lnα−2lnxq(1−xq)+3−4ϵ lnα ln
(

x2
h(1−xq)2µ2

(xhp⃗q̄−(1−xq)p⃗h)2

)
+ϵ ln2α2, (4.4)

AV,fin =(2lnxq(1−xq)−3) ln
(

x2
h(1−xq)µ2

xq (xhp⃗q̄−(1−xq)p⃗h)2

)

+2
(
3−ζ(2)+ 1

2 ln
2(xq(1−xq))

)
(4.5)

and

δLL =1, δT L = (1−2xq)
2xq(1−xq)Q

(
p⃗q̄2′ ·ε⃗T

)∗
,

δT T =
[
(1−2xq)2gri

⊥glk
⊥−grk

⊥ gli
⊥+grl

⊥gik
⊥

] εT i pq̄2⊥r

(
εT k pq̄2′⊥l

)∗
4x2

q(1−xq)2Q2 . (4.6)

Again, the corresponding contribution in the case of fragmentation from anti-quark is obtained
by including a minus sign in the argument of the function F, extending the sum over q

to the five anti-quark flavor species and performing the (q ↔ q̄) relabelling (also inside the
functions AV,div, AV,fin, δJI).

4.2 Finite part of the dipole × dipole contribution

An example of diagram contributing to the dipole × dipole part is shown in figure 9. Let us
now consider the finite part associated with these diagrams. We can build this contribution
starting from eqs. (5.24), (5.28) and (5.35)11 of ref. [29], it reads

dσq→h
LL

dxhd2ph⊥

∣∣∣∣
virt., dip. × dip.

= 2αemQ2

(2π)8Nc x2
h

∑
q

Q2
q

∫ 1

xh

dxqxqDh
q

(
xh

xq
,µF

)
αs

2π

CF

4

×
∫

d2p⃗q̄d2p⃗1d
2p⃗2d

2p⃗1′d
2p⃗2′δ

(
xq

xh
p⃗h−p⃗1+p⃗q̄2

)
δ(p⃗11′+p⃗22′)F

(
p⃗12
2

)
F∗
(

p⃗1′2′

2

)
11These equations refer respectively to LL, TL and TT case.
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×
{

1
p⃗ 2

q1′+xqxq̄Q2

[
6x2

qx2
q̄

p⃗ 2
q1+xqxq̄Q2 ln

(
x2

qx2
q̄µ4Q2

(xqp⃗q̄−xq̄p⃗q)2(p⃗ 2
q1+xqxq̄Q2)2

)

+

∫ xq

0
dz

[(ϕ4)LL]++
∑

n=5,6
[(ϕn)LL]+ |p⃗3=0⃗

+(q ↔ q̄)

+h.c.|p1,p2↔p1′ ,p2′

xq̄=1−xq

p⃗q=
xq
xh

p⃗h

,

(4.7)

in the LL case,

dσq→h
T L

dxhd2ph⊥

∣∣∣∣
virt., dip. × dip.

= αemQ

(2π)8Nc x2
h

∑
q

Q2
q

∫ 1

xh

dxqxqDh
q

(
xh

xq
,µF

)
αs

4π
CF ε∗T i

×
∫

d2p⃗q̄d2p⃗1d
2p⃗2d

2p⃗1′d
2p⃗2′δ

(
xq

xh
p⃗h−p⃗1+p⃗q̄2

)
δ(p⃗11′+p⃗22′)F

(
p⃗12
2

)
F∗
(

p⃗1′2′

2

)

×



∫ xq

0
dz

[(ϕ4)i
T L

]
+
+
∑

n=5,6

[
(ϕn)i

T L

]
+
|p⃗3=0⃗

+(q ↔ q̄)

∗
p⃗ 2

q1+xqxq̄Q2 +
3xqxq̄(1−2xq)pi

q1′⊥
(p⃗ 2

q1+xqxq̄Q2)

× 1
(p⃗ 2

q1′+xqxq̄Q2)

(
ln
(

x3
qx3

q̄µ8Q2(xqp⃗q̄−xq̄p⃗q)−4

(p⃗ 2
q1+xqxq̄Q2)2(p⃗ 2

q1′+xqxq̄Q2)

)
− xqxq̄Q2

p⃗ 2
q1′

ln
(

xqxq̄Q2

p⃗ 2
q1′+xqxq̄Q2

))

+

∫ xq

0
dz

[(ϕ4)i
LT

]
+
+
∑

n=5,6

[
(ϕn)i

LT

]
+
|p⃗3=0⃗

+(q ↔ q̄)


2xqxq̄

(
p⃗ 2

q1′+xqxq̄Q2
)

xq̄=1−xq

p⃗q=
xq
xh

p⃗h

, (4.8)

in the TL case, and

dσq→h
T T

dxhd2ph⊥

∣∣∣∣
virt., dip. × dip.

= αem

2(2π)8Nc x2
h

∑
q

Q2
q

∫ 1

xh

dxqxqDh
q

(
xh

xq
,µF

)
(εT iε

∗
T k)

×
∫

d2p⃗q̄d2p⃗1d
dp⃗2d

2p⃗1′d
2p⃗2′δ

(
xq

xh
p⃗h−p⃗1+p⃗q̄2

)
δ(p⃗11′+p⃗22′)F

(
p⃗12
2

)
F∗
(

p⃗1′2′

2

)

× αs

2π
CF


3
2

pq1⊥rpq1′⊥l

(p⃗ 2
q1+xqxq̄Q2)(p⃗ 2

q1′+xqxq̄Q2)

[
(1−2xq)2gri

⊥glk
⊥−grk

⊥ gli
⊥+grl

⊥gik
⊥

]

– 17 –



J
H
E
P
0
2
(
2
0
2
4
)
1
6
5

Figure 10. An example of diagram which contributes to the dipole × double dipole part of virtual
contributions.

×
[
ln
(

xqxq̄µ4

(xqp⃗q̄−xq̄p⃗q)2(p⃗ 2
q1+xqxq̄Q2)

)
−xqxq̄Q2

p⃗ 2
q1

ln
(

xqxq̄Q2

p⃗ 2
q1+xqxq̄Q2

)]

+

∫ xq

0
dz

[(ϕ4)ik
T T

]
+
+
∑

n=5,6

[
(ϕn)ik

T T

]
+
|p⃗3=0⃗

+(q ↔ q̄)


xqxq̄

(
p⃗ 2

q1′+xx̄Q2
) +h.c.|p1,p2↔p1′ ,p2′

i↔k

xq̄=1−xq

p⃗q=
xq
xh

p⃗h

,

(4.9)

in the TT case. The explicit expression for the functions (ϕn)JI can be found in appendix C.

4.3 Dipole × double dipole contribution

In the dipole × double dipole contribution, the virtual gluon crosses the shockwave (see
figure 10). This contribution, in the various cases, can be obtained from eqs. (5.39), (5.41)
and (5.44)12 of ref. [29] and it reads

dσq→h
LL

dxhd2ph⊥

∣∣∣∣
virt., dip.×d. dip.

= 2αemQ2

(2π)8Nc x2
h

∑
q

Q2
q

∫ 1

xh

dxqxqDh
q

(
xh

xq
,µF

)∫
d2p⃗q̄d2p⃗1d

2p⃗2d
2p⃗1′d

2p⃗2′

×
∫

d2p⃗3

(2π)2
δ

(
xq

xh
p⃗h−p⃗1+p⃗q̄2−p⃗3

)
δ(p⃗11′+p⃗22′+p⃗3)

αs

2π

1
8

{
1

p⃗ 2
q1′+xqxq̄Q2 F̃

(
p⃗12
2 , p⃗3

)

×F∗
(

p⃗1′2′

2

)[
4xqxq̄

[
xqxq̄(p⃗ 2

3 −p⃗ 2
q̄2−p⃗ 2

q1−2xqxq̄Q2)
(p⃗ 2

q̄2+xqxq̄Q2)(p⃗ 2
q1+xqxq̄Q2)−xqxq̄Q2p⃗ 2

3
ln
(

xqxq̄

e2η

)

×ln

(p⃗ 2
q̄2+xqxq̄Q2)

(
p⃗ 2

q1+xqxq̄Q2
)

xqxq̄Q2p⃗ 2
3

−
(

2xqxq̄

p⃗ 2
q1+xqxq̄Q2 ln

(
xq̄

eη

)
ln
(

p⃗ 2
3

µ2

)
+(q ↔ q̄)

)]

+ Q2

∫ xq

0
dz

∑
n=5,6

[(ϕn)LL]+

+(q ↔ q̄)

+h.c.|p1,p1↔p1′ ,p2′

xq̄=1−xq

p⃗q=
xq
xh

p⃗h

, (4.10)

12These equations refer respectively to LL, TL and TT case.
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in the LL case,

dσq→h
T L

dxhd2ph⊥

∣∣∣∣
virt., dip.×d. dip.

= αemQ

(2π)8Nc x2
h

∑
q

Q2
q

∫ 1

xh

dxqxqDh
q

(
xh

xq
,µF

)∫
d2p⃗q̄d2p⃗1d

2p⃗2d
2p⃗1′d

2p⃗2′

×
∫

d2p⃗3d
2p⃗3′

(2π)2 δ

(
xq

xh
p⃗h−p⃗1+p⃗q̄2−p⃗3

)
δ(p⃗11′+p⃗22′+p⃗33′)

αs

8π
ε∗T i

{
δ(p⃗3′)

p⃗ 2
q1′+xqxq̄Q2 F̃

(
p⃗12
2 , p⃗3

)

×F∗
(

p⃗1′2′

2

)[
2(1−2xq)pi

q1′⊥

[
xqxq̄(p⃗ 2

3 −p⃗ 2
q̄2−p⃗ 2

q1−2xqxq̄Q2)
(p⃗ 2

q̄2+xqxq̄Q2)(p⃗ 2
q1+xqxq̄Q2)−xqxq̄Q2p⃗ 2

3
ln
(

xqxq̄

e2η

)

×ln

(p⃗ 2
q̄2+xqxq̄Q2)

(
p⃗ 2

q1+xqxq̄Q2
)

xqxq̄Q2p⃗ 2
3

−
(

2xqxq̄

p⃗ 2
q1+xqxq̄Q2 ln

(
xq̄

eη

)
ln
(

p⃗ 2
3

µ2

)
+(q ↔ q̄)

)]

+ 1
2xqxq̄

∫ xq

0
dz

∑
n=5,6

[
(ϕn)i

T L

]
+

+(q ↔ q̄)

+ δ(p⃗3)
p⃗ 2

q1+xqxq̄Q2 F̃∗
(

p⃗1′2′

2 , p⃗3′

)

×F
(

p⃗12
2

)[[
2xqxq̄(1−2xq)pi

q1′⊥

(
−2

p⃗ 2
q1′+xqxq̄Q2 ln

(
xq̄

eη

)
ln
(

p⃗ 2
3′

µ2

)
+ln

(
xqxq̄

e2η

)

×
(

−(p⃗ 2
q̄2′+xqxq̄Q2)

(p⃗ 2
q1′+xqxq̄Q2)(p⃗ 2

q̄2′+xqxq̄Q2)−xqxq̄Q2p⃗ 2
3′

ln
(
(p⃗ 2

q1′+xqxq̄Q2)(p⃗ 2
q̄2′+xqxq̄Q2)

xqxq̄Q2p⃗ 2
3′

)

+ 1
p⃗ 2

q1′
ln
(

p⃗ 2
q1′+xqxq̄Q2

xqxq̄Q2

)))
+(q ↔ q̄)

]
+

∫ xq

0
dz

∑
n=5,6

[
(ϕn)i

LT

]
+

+(q ↔ q̄)

∗xq̄=1−xq

p⃗q=
xq
xh

p⃗h

(4.11)

in the TL case, and

dσq→h
T T

dxhd2ph⊥

∣∣∣∣
virt., dip. × d. dip.

= αem

2(2π)8Ncx2
h

∑
q

Q2
q

∫ 1

xh

dxqxqDh
q

(
xh

xq
,µF

)∫
d2p⃗1d

2p⃗2d
2p⃗1′d

2p⃗2′

×
∫

d2p⃗q̄

∫
d2p⃗3

(2π)2
δ

(
xq

xh
p⃗h−p⃗1+p⃗q̄2−p⃗3

)
δ(p⃗11′+p⃗22′+p⃗3)

αs

4π
(εT iε

∗
T j)
{

F̃
(

p⃗12
2 , p⃗3

)
F∗
(

p⃗1′2′

2

)

× 1
p⃗2q1′+xqxq̄Q2


pq1′⊥lpq1⊥k

[
(1−2x)2gki

⊥ glj
⊥−gkj

⊥ gli
⊥+gkl

⊥gij
⊥

]

−2ln

(
xq̄

eη

)
ln
(

p⃗ 2
3

µ2

)
p⃗ 2

q1+xqxq̄Q2

+ln
(

xqxq̄

e2η

)( 1
p⃗ 2

q1
ln
(

p⃗ 2
q1+xqxq̄Q2

xqxq̄Q2

)
−

p⃗ 2
q̄2+xqxq̄Q2

(p⃗ 2
q1+xqxq̄Q2)(p⃗ 2

q̄2+xqxq̄Q2)−xqxq̄Q2p⃗ 2
3

× ln
(
(p⃗ 2

q1+xqxq̄Q2)(p⃗ 2
q̄2+xqxq̄Q2)

xqxq̄Q2p⃗ 2
3

))]
+(q ↔ q̄)

]

+ 1
xqxq̄

∫ xq

0
dz

∑
n=5,6

[
(ϕn)ij

T T

]
+

+(q ↔ q̄)

+h.c.|p1,p2↔p1′ ,p2′
i↔j

}
xq̄=1−xq

p⃗q=
xq
xh

p⃗h

, (4.12)

in the TT case.
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The corresponding finite virtual contributions in the case of anti-quark fragmentation are
obtained as follows: 1) by changing the integration variables xq, p⃗q̄ to xq̄, p⃗q, 2) extending the
sum over q to anti-quark flavor types (in order to have the FFs of anti-quarks), 3) computing
the objects in the curly brackets fixing xq =1−xq̄ and p⃗q̄ = xq̄

xh
p⃗h and 4) making the changes

xq →xq̄ and p⃗q̄ → p⃗q in the argument of the first delta function.

5 NLO cross-section: divergent part of real corrections

5.1 Divergent part of the dipole × dipole cross-section

The dipole-dipole partonic cross-section is given by eq. (6.6) of ref. [29]:13

dσ̂3JI =
αs

µ2ϵ

(
N2

c −1
Nc

)
αemQ2

q

2(2π)4dNc

(p−0 )2

s2x′
qx′

q̄

εIαε∗Jβdx′
qdx′

q̄δ(1−x′
q−x′

q̄−xg)ddpq⊥ddpq̄⊥

× dxgddpg⊥
xg(2π)d

∫
ddp1⊥ddp2⊥F

(
p12⊥
2

)
δ(pq1⊥+pq̄2⊥+pg⊥)

∫
ddp1′⊥ddp2′⊥F∗

(
p1′2′⊥
2

)
×δ(pq1′⊥+pq̄2′⊥+pg⊥)Φα

3 (p1⊥,p2⊥)Φβ∗
3 (p1′⊥,p2′⊥). (5.1)

where we introduce shorthand notation by suppressing summation over helicities of partons

Φα
3 (p1⊥,p2⊥)Φβ∗

3 (p1′⊥,p2′⊥)≡
∑

λq ,λg ,λq̄

Φα
3 (p1⊥,p2⊥)Φβ∗

3 (p1′⊥,p2′⊥). (5.2)

For later convenience, we have also relabelled xq and xq̄ of ref. [29] as x′
q and x′

q̄. This is
because, in dealing with real contributions containing a qg splitting (or even a q̄g splitting),
we need to distinguish the longitudinal momentum fraction of the quark transported before
and after the splitting.

The dipole part of the γ(∗)→ qq̄g impact factor has the form Φα
3 =Φα

4 |p⃗3=0+Φ̃α
3 , where

Φ̃α
3 is the contribution in which the gluon is emitted after the shockwave and Φα

4 is the
contribution in which the gluon cross the shockwave with p⃗3, the transverse momentum
exchanged between the gluon and the shockwave, vanishes. Only the square of Φ̃α

3 provides
divergences in the cross-section and it is given by (B.3) in ref. [29].

13Again the expression is dived by a factor 1/(2(2π)4) with respect to ref. [29] in order to get the correct
normalization.
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The LL contribution reads

Φ̃+
3 (p⃗1, p⃗2)Φ̃

+∗
3 (p⃗1′ , p⃗2′)

=
8x′

qx′
q̄(p+γ )4

(
dx2

g+4x′
q(x′

q+xg)
)

(
Q2+ p⃗2

q̄2
x′

q̄(1−x′
q̄)

)(
Q2+

p⃗2
q̄2′

x′
q̄(1−x′

q̄)

)
(x′

qp⃗g−xgp⃗q)2

−
8x′

qx′
q̄(p+γ )4

(
2xg−dx2

g+4x′
qx′

q̄

)(
x′

qp⃗g−xgp⃗q

)
·
(
x′

q̄p⃗g−xgp⃗q̄

)
(

Q2+
p⃗2

q̄2′
x′

q̄(1−x′
q̄)

)(
Q2+ p⃗2

q1
x′

q(1−x′
q)

)(
x′

qp⃗g−xgp⃗q

)2(
x′

q̄p⃗g−xgp⃗q̄

)2
+

8x′
qx′

q̄(p+γ )4
(
dx2

g+4x′
q̄(x′

q̄+xg)
)

(
Q2+ p⃗2

q1
x′

q(1−x′
q)

)(
Q2+

p⃗2
q1′

x′
q(1−x′

q)

)
(x′

q̄p⃗g−xgp⃗q̄)2

−
8x′

qx′
q̄(p+γ )4

(
2xg−dx2

g+4x′
qx′

q̄

)(
x′

qp⃗g−xgp⃗q

)
·
(
x′

q̄p⃗g−xgp⃗q̄

)
(

Q2+
p⃗2

q1′
x′

q(1−x′
q)

)(
Q2+ p⃗2

q̄2
x′

q̄(1−x′
q̄)

)(
x′

qp⃗g−xgp⃗q

)2(
x′

q̄p⃗g−xgp⃗q̄

)2 ,

(5.3)

while, the TL contribution is

Φ̃+
3 (p⃗1, p⃗2)Φ̃i∗

3 (p⃗1′ , p⃗2′)

=
4x′

q

(
p+γ

)3
(
x′

q+xg

)(
Q2+

p⃗2
q̄2′

x′
q̄(1−x′

q̄)

)(
Q2+ p⃗2

q1
x′

q(1−x′
q)

)

(
x′

qpg⊥−xgpq⊥
)

µ

(
x′

q̄pg⊥−xgpq̄⊥
)

ν(
x′

qp⃗g−xgp⃗q

)2(
x′

q̄p⃗g−xgp⃗q̄

)2


×
[
xg

(
4x′

q̄+xgd−2
)(

pµ
q̄2′⊥giν

⊥ −pν
q̄2′⊥gµi

⊥

)
−
(
2x′

q̄−1
)(

4x′
qx′

q̄+xg (2−xgd)
)

gµν
⊥ pi

q̄2′⊥

]
−

4x′
q

(
p+γ

)3(
2x′

q̄−1
)(

x2
gd+4x′

q

(
x′

q+xg

))
pi

q̄2′⊥(
x′

q+xg

)(
Q2+

p⃗2
q̄2′

x′
q̄(1−x′

q̄)

)(
Q2+ p⃗2

q̄2
x′

q̄(1−x′
q̄)

)(
x′

qp⃗g−xgp⃗q

)2+(q ↔ q̄) , (5.4)

and, finally, the TT contribution reads

Φ̃i
3(p⃗1, p⃗2)Φ̃k∗

3 (p⃗1′ , p⃗2′)

=
−2
(
p+γ

)2
(
x′

q+xg

)(
x′

q̄+xg

)(
Q2+ p⃗2

q̄2
x′

q̄(1−x′
q̄)

)(
Q2+

p⃗2
q1′

x′
q(1−x′

q)

)

×


(
x′

qpg⊥−xgpq⊥
)

µ

(
x′

q̄pg⊥−xgpq̄⊥
)

ν(
x′

qp⃗g−xgp⃗q

)2(
x′

q̄p⃗g−xgp⃗q̄

)2
{xg((d−4))xg−2)

[
pν

q1′⊥

(
pµ

q̄2⊥gik
⊥ +pk

q̄2⊥gµi
⊥

)
+gµν

⊥

((
p⃗q1′ ·p⃗q̄2

)
gik
⊥ +pi

q1′⊥pk
q̄2⊥

)
−gνk

⊥ pi
q1′⊥pµ

q̄2⊥−gµi
⊥ gνk

⊥
(
p⃗q1′ ·p⃗q̄2

)]
−gµν

⊥

×
[(
2x′

q−1
)(

2x′
q̄−1

)
pk

q1′⊥pi
q̄2⊥

(
4x′

qx′
q̄+xg(2−xgd)

)
+4x′

qx′
q̄((p⃗q1′ ·p⃗q̄2)gik

⊥ +pi
q1′⊥pk

q̄2⊥)
]

+
(
pµ

q1′⊥pν
q̄2⊥gik

⊥ −pµ
q1′⊥pk

q̄2⊥gνi
⊥ −pi

q1′⊥pν
q̄2⊥gµk

⊥ −gµk
⊥ gνi

⊥ (p⃗q1′ ·p⃗q̄2)
)

×xg((d−4)xg+2)+xg(2x′
q̄−1)(xgd+4x′

q−2)
(
gµk
⊥ pν

q1′⊥−gνk
⊥ pµ

q1′⊥

)
pi

q̄2⊥

+xg(2x′
q−1)pk

q1′⊥(4x′
q̄+xgd−2)

(
gνi
⊥ pµ

q̄2⊥−gµi
⊥ pν

q̄2⊥

)}
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Figure 11. The contribution containing the collinear-divergent part associated with the quark →
quark + gluon splitting, with the quark fragmenting into the identified hadronic state. The soft part
(right diagram with the tiny red gluon) is subtracted from the total contribution (left diagram) in
order to have the pure collinear divergence accompanied by finite terms.

−
2x′

q(p+γ )2(x2
gd+4x′

q(x′
q+xg))

(
(p⃗q̄2 ·p⃗q̄2′)gik

⊥ −(1−2x′
q̄)2pi

q̄2⊥pk
q̄2′⊥+pi

q̄2′⊥pk
q̄2⊥

)
x′

q̄(x′
q+xg)2

(
Q2+ p⃗2

q̄2
x′

q̄(1−x′
q̄)

)(
Q2+

p⃗2
q̄2′

x′
q̄(1−x′

q̄)

)(
x′

qp⃗g−xgp⃗q

)2
+(q ↔ q̄) . (5.5)

When two partons labeled i and j become collinear, the variable

A⃗ij =xip⃗j−xj p⃗i (5.6)

vanishes. In the LL case, for instance, the first term on the right-hand side of eq. (5.3) gives
the collinear divergence associated to the quark-gluon splitting (A⃗ 2

qg → 0), while the third
gives the one associated to the anti-quark gluon splitting (A⃗ 2

q̄g → 0).
The calculation technique of the divergent contributions is very similar for the different

contributions afflicted by collinear divergences. For this reason, we present in the following
sections the explicit extraction of the soft contribution and the explicit computation of one
collinearly-divergent term. The others are obtained similarly.

5.2 Fragmentation from quark

In this section, we explicitly calculate the divergent contributions in the case of quark
fragmentation. The evident symmetry with the case of anti-quarks allows us to provide the
formulas for this second fragmentation mechanism as well.

5.2.1 Collinear contributions: q-g splitting

The first contribution we calculate is shown in figure 11. The left-hand side diagram in
figure 11 contains both soft and collinear divergences, as well as finite contributions. As
mentioned before, soft contributions are treated separately, and therefore we subtract them
from this contribution. The calculation of this contribution for the different cross sections
(LL,TL,TT ) is practically identical, apart from the corrective factors, δJI , which undergo
trivial transformations but do not play any deep role. For simplicity of notation, we show
the calculation in the LL case and then give the final result in a completely general form
valid for all different cases.
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xq x′
q =βxq

xg =(1−β)xq

Figure 12. Illustration of the change of variables in eq. (5.8).

The term shown in figure 11 corresponds to the first term in eq. (5.3). Performing the con-
volution as in eq. (2.19) and using the explicit form of the hard cross-section in (5.1),14 we get

dσq→h
LL

dxhddph⊥

∣∣∣∣
(1)

= αsCF

µ2ϵ

2αemQ2

(2π)4dNc

∑
q

Q2
q

∫ 1

xh

dx′
q

x′
q

Dh
q

(
xh

x′
q

,µF

)(
x′

q

xh

)d ∫
ddpq̄⊥

×
∫ 1−x′

q

α

dxg

xg

∫
ddpg⊥
(2π)d

∫
ddp1⊥ddp2⊥F

(
p12⊥
2

)∫
ddp1′⊥ddp2′⊥F∗

(
p1′2′⊥
2

)

×δ

(
x′

q

xh
p⃗h−p1⊥+pq̄2⊥+pg⊥

)
δ

(
x′

q

xh
p⃗h−p1′⊥+pq̄2′⊥+pg⊥

)

×

(
dx2

g+4x′
q(x′

q+xg)
)
(x′

q+xg)2(1−x′
q−xg)2

(x′
q)2
(
(x′

q+xg)(1−x′
q−xg)Q2+p⃗2

q̄2

)(
(x′

q+xg)(1−x′
q−xg)Q2+p⃗2

q̄2′
)(

p⃗g− xg

xh
p⃗h

)2 . (5.7)

The cross section in eq. (5.7) is expressed in terms of the fractions of longitudinal momenta of
the initial photon carried by the quark and gluon produced after the splitting. However, to ob-
serve the cancellation of collinear divergences between this contribution and the counterterms
coming from the renormalization of FF, it is necessary to perform the change of variables

x′
q =βxq, xg =(1−β)xq, (5.8)

where xq is the fraction of longitudinal momenta of the initial photon carried by the quark
before the splitting, while β is the fraction of longitudinal momenta of the initial quark
carried by the final quark (see figure 12). Then, the longitudinal integrations become

∫ 1

xh

dx′
q

∫ 1−x′
q

α
dxg

[
. . .
]
=
∫ 1

xh

dxq xq

∫ 1− α
xq

xh
xq

dβ
[
. . .
]
xg=(1−β)xq

x′
q=βxq

, (5.9)

where
[
. . .
]

represents the whole integrand function in eq. (5.7) and the factor xq in the
right hand side comes the Jacobian of the transformation in (5.8). After a bit of algebra,
we end up with

14Keeping only the first term in the squared impact factor.
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dσq→h
LL

dxhddph⊥

∣∣∣∣
(1)

= 2αsCF

µ2ϵ

2αemQ2

(2π)4dNc xd
h

∑
q

Q2
q

∫ 1

xh

dxq x1+d
q (1−xq)2

∫ 1− α
xq

xh
xq

dβ

β

× (1+β2+ϵ(1−β)2)
β2−d(1−β) Dh

q

(
xh

βxq
,µF

)∫
ddpq̄⊥

∫
ddpg⊥
(2π)d

∫
ddp2⊥

F
(

βxq

2xh
p⃗h+ p⃗q̄

2 + p⃗g

2 −p⃗2
)

(
xq(1−xq)Q2+p⃗2

q̄2

)
×
∫

ddp2′⊥
F∗
(

βxq

2xh
p⃗h+ p⃗q̄

2 + p⃗g

2 −p⃗2′
)

(
xq(1−xq)Q2+p⃗2

q̄2′
) 1(

p⃗g− (1−β)xq

xh
p⃗h

)2 . (5.10)

Then, it is convenient to express the functions F,F∗ in terms of their Fourier transforms
eq. (2.16), i.e.

F
(

βxq

2xh
p⃗h+

p⃗q̄

2 + p⃗g

2 −p⃗2

)
=
∫

ddz⃗1F (z⃗1)e
−iz⃗1·

(
βxq
2xh

p⃗h+
p⃗q̄
2 + p⃗g

2 −p⃗2

)

and

F∗
(

βxq

2xh
p⃗h+

p⃗q̄

2 + p⃗g

2 −p⃗2′

)
=
∫

ddz⃗2F ∗(z⃗2)e
iz⃗2·
(

βxq
2xh

p⃗h+
p⃗q̄
2 + p⃗g

2 −p⃗2′

)
,

in order to integrate over p⃗g by using

µ−2ϵ
∫

ddp⃗g

(2π)d
e
−i

(
z⃗1−z⃗2

2

)
·p⃗g 1

p⃗ 2
g

= 1
4π

1
ϵ̂

Γ(1+ϵ)
Γ(1−ϵ)

(
z⃗ 2
12µ

2

16

)−ϵ

. (5.11)

Finally, we get15

dσq→h
LL

dxhddph⊥

∣∣∣∣
(1)

= 2αemQ2

(2π)4dNc xd
h

∑
q

Q2
q

∫ 1

xh

dxqx1+d
q (1−xq)2

∫ 1− α
xq

xh
xq

dβ

β

(1+β2+ϵ(1−β)2)
β2−d(1−β)

×Dh
q

(
xh

βxq
,µF

)
αsCF

2π

∫
ddpq̄⊥

∫
ddp2⊥

∫
ddz⃗1F (z⃗1)e

−iz⃗1·
(

xq
2xh

p⃗h+
p⃗q̄
2 −p⃗2

)
(
xq(1−xq)Q2+p⃗2

q̄2

)

×
∫

ddp2′⊥

∫
ddz⃗2F

∗(z⃗2)e
iz⃗2·
(

xq
2xh

p⃗h+
p⃗q̄
2 −p⃗2′

)
(
xq(1−xq)Q2+p⃗2

q̄2′
) 1

ϵ̂

Γ(1+ϵ)
Γ(1−ϵ)

(
z⃗ 2
12µ

2

16β2

)−ϵ

. (5.12)

We can also write

1
ϵ̂

Γ(1+ϵ)
Γ(1−ϵ)

(
z⃗ 2
12µ

2

16β2

)−ϵ

= 1
ϵ̂

(
z⃗ 2
12µ

2

16e−2γE β2

)−ϵ

+o(ϵ)

= 1
ϵ̂

(
z⃗ 2
12µ

2

16e−2γE

)−ϵ

+2lnβ+o(ϵ) . (5.13)

We can collect the term proportional to lnβ and the third term in the square bracket
(1+β2+ϵ(1−β)2) to obtain a first finite term. As mentioned above, adapting the result to

15Color transparency prevents the function F (zi) to have any singularity in the small dipole size limit, i.e.
zi ∼ 0. Thus the large p⃗g region in eq. (5.10) does not lead to divergences.
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the TL and TT cases is simple, so we present the result for this first term in the completely
general form

dσq→h
JI

dxhddph⊥

∣∣∣∣
coll(qg),fin1

= 2αemQ2

(2π)4dNc xd
h

∑
q

Q2
q

∫ 1

xh

dxq x1+d
q (1−xq)2fJI

× αs

2π
CF

∫ 1

xh
xq

dβ

β

[
(1−β)+2 1+β2

(1−β) lnβ

]
Dh

q

(
xh

βxq
,µF

)
. (5.14)

Coming back to the LL case, from eq. (5.12) the remaining part is

dσq→h
LL

dxhddph⊥

∣∣∣∣
(1), rest

= 2αemQ2

(2π)4dNc xd
h

∑
q

Q2
q

∫ 1

xh

dxqx1+d
q (1−xq)2

∫ 1− α
xq

xh
xq

dβ

β

(1+β2)
(1−β)

×Dh
q

(
xh

βxq
,µF

)
αsCF

2π

∫
ddpq̄⊥

∫
ddp2⊥

∫
ddz⃗1F (z⃗1)e

−iz⃗1·
(

xq
2xh

p⃗h+
p⃗q̄
2 −p⃗2

)
xq(1−xq)Q2+p⃗2

q̄2

×
∫

ddp2′⊥

∫
ddz⃗2F

∗(z⃗2)e
iz⃗2·
(

xq
2xh

p⃗h+
p⃗q̄
2 −p⃗2′

)
xq(1−xq)Q2+p⃗2

q̄2′

1
ϵ̂

(
z⃗ 2
12µ

2

16e−2γE

)−ϵ

. (5.15)

It is now necessary to isolate and remove the soft contribution. To do this, we perform
the following manipulation:∫ 1− α

xq

xh
xq

dβ
f(β)
(1−β) =

∫ 1

xh
xq

dβ
f(β)−f(1)
(1−β) +

∫ 1− α
xq

xh
xq

dβ
f(1)
(1−β)

=
∫ 1

xh
xq

dβ
f(β)−f(1)
(1−β) −

∫ xh
xq

0
dβ

f(1)
(1−β)+

∫ 1− α
xq

xh
xq

dβ
f(1)
(1−β)+

∫ xh
xq

0
dβ

f(1)
(1−β)

=
∫ 1

xh
xq

dβ
f(β)

(1−β)+
+
∫ 1− α

xq

xh
xq

dβ
f(1)
(1−β)+

∫ xh
xq

0
dβ

f(1)
(1−β) , (5.16)

where the +-prescription was introduced in (3.4). Among the three terms in the last
equality (5.16), the second is the soft contribution. Indeed, it contains the singularity
when β → 1 (xg → 0), regularized by the cut-off α.16 As mentioned previously, this term is
subtracted and added back when we extract the soft contribution that comes from the sum
of all diagrams. We return to this point in the section 5.2.3, where we demonstrate that the
term removed here coincides with the one considered later. The rest leads us to

dσq→h
LL

dxhddph⊥

∣∣∣∣
coll(qg), rest

= 2αemQ2

(2π)4dNc xd
h

∑
q

Q2
q

∫ 1

xh

dxq x1+d
q (1−xq)2

∫
ddpq̄⊥

∫
ddp2⊥

∫
ddp2′⊥

×
∫

ddz⃗1
e
−iz⃗1·

(
xq

2xh
p⃗h+ 1

2 p⃗q̄−p⃗2

)
F (z⃗1)

p⃗ 2
q̄2+xq(1−xq)Q2

∫
ddz⃗2

e
iz⃗2·
(

xq
2xh

p⃗h+ 1
2 p⃗q̄−p⃗2′

)
F ∗ (z⃗2)

p⃗ 2
q̄2′+xq(1−xq)Q2

αs

2π
CF

× 1
ϵ̂

(
z⃗ 2
12µ

2

16e−2γE

)−ϵ
∫ 1

xh
xq

dβ

β

1+β2

(1−β)+
Dh

q

(
xh

βxq
,µF

)
−2ln

(
1−xh

xq

)
Dh

q

(
xh

xq
,µF

) . (5.17)

16This term also includes the soft and collinear divergence, because this latter has been extracted regardless
of the value of β when integrating over the gluon transverse momenta.
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Figure 13. The IR-divergent contribution associated with the anti-quark → anti-quark + gluon
splitting, but with the spectator quark fragmenting into the identified hadronic state. The soft part
(right diagram with the tiny red gluon) is subtracted from the total contribution (left diagram).

Performing the expansion

1
ϵ̂

(
z⃗ 2
12µ

2

16e−2γE

)−ϵ

= 1
ϵ̂
−ln

(
z⃗ 2
12µ

2

16e−2γE

)
+o(ϵ) , (5.18)

we can further separate the contribution in eq. (5.17) into a divergent (div) and finite (fin)
part. Moreover, as before, it is simple to include corrective factors, δJI , in (4.6) to get
the general result valid also in the TL and TT case. Indeed, the divergent part associated
to this contribution reads

dσq→h
JI

dxhddph⊥

∣∣∣∣
coll(qg),div

= 2αemQ2

(2π)4dNc xd
h

∑
q

Q2
q

∫ 1

xh

dxq x1+d
q (1−xq)2fJI

× αs

2π

1
ϵ̂

∫ 1

xh
xq

dβ

β

1+β2

(1−β)+
CF Dh

q

(
xh

βxq
,µF

)
−2CF ln

(
1−xh

xq

)
Dh

q

(
xh

xq
,µF

) , (5.19)

while the second finite part is

dσq→h
JI

dxhddph⊥

∣∣∣∣
coll(qg),fin2

=− 2αemQ2

(2π)4dNc xd
h

∑
q

Q2
q

∫ 1

xh

dxq x1+d
q (1−xq)2

∫
ddpq̄⊥

∫
ddp2⊥

∫
ddp2′⊥

×
∫

ddz⃗1
e
−iz⃗1·

(
xq

2xh
p⃗h+ 1

2 p⃗q̄−p⃗2

)
F (z⃗1)

p⃗ 2
q̄2+xq(1−xq)Q2

∫
ddz⃗2

e
iz⃗2·
(

xq
2xh

p⃗h+ 1
2 p⃗q̄−p⃗2′

)
F ∗ (z⃗2)

p⃗ 2
q̄2′+xq(1−xq)Q2 δJI

αs

2π
CF

×ln
(

z⃗ 2
12µ

2

16e−2γE

)∫ 1

xh
xq

dβ

β

1+β2

(1−β)+
Dh

q

(
xh

βxq
,µF

)
−2ln

(
1−xh

xq

)
Dh

q

(
xh

xq
,µF

) . (5.20)

The corresponding contributions in the case of fragmentation from anti-quark are obtained
by including a minus sign in the argument of the function F(F ), extending the sum over q to
the five anti-quark flavor species and performing the (q ↔ q̄) relabelling.

5.2.2 Collinear contributions: q̄-g splitting

There is another divergent contribution to consider in the case of quark fragmentation, it is
shown in figure 13. This contribution arise from the fact that the right diagram in figure 13
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has a singular behaviour of the type

1
ϵ

∫ 1−xq

α

dxg

xg

(
4(1−xq−xg)2+4(1−xq−xg)xg+dx2

g

)
(1−xq−xg)2

. (5.21)

The term proportional to (1ϵ lnα) is the soft term that we subtract (represented by the red
gluon in figure 13). Despite this subtraction there is still a singularity of the type 1/ϵ (see
eq. (5.21)) that needs to be extracted. This singularity is not associated with a divergence of
the type lnα and does not combine naturally with the other four diagrams that we consider
when calculating the soft contribution. This divergence is of collinear nature.

From a technical point of view, the calculation is similar to the one of the previous section,
except for the fact that the fragmenting particle is not involved in the splitting, and it is
therefore convenient to integrate directly over xg without carrying out a transformation of the
type (5.8). We obtain two contributions, the first of which, containing the divergent part, reads

dσq→h
JI

dxhddph⊥

∣∣∣∣
coll(q̄g)

= 2αemQ2

(2π)4dNc xd
h

∑
q

Q2
q

∫ 1

xh

dxq x1+d
q (1−xq)2fJIDh

q

(
xh

xq
,µF

)

× αs

2π
CF

[
−3
2
1
ϵ̂
+3−4ζ(2)

]
≡ dσq→h

JI

dxhddph⊥

∣∣∣∣
coll(q̄g),div

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
coll(q̄g),fin1

, (5.22)

where the term labelled with “fin1” contains the terms without 1/ϵ. The second is

dσq→h
JI

dxhddph⊥

∣∣∣∣
coll(q̄g),fin2

= 2αemQ2

(2π)4dNc xd
h

∑
q

Q2
q

∫ 1

xh

dxq x1+d
q (1−xq)2

∫
ddpq̄⊥

∫
ddp2⊥

∫
ddp2′⊥

×
∫

ddz⃗1
e
−iz⃗1·

(
xq

2xh
p⃗h+ 1

2 p⃗q̄−p⃗2

)
F (z⃗1)

p⃗ 2
q̄2+xq(1−xq)Q2

∫
ddz⃗2

e
iz⃗2·
(

xq
2xh

p⃗h+ 1
2 p⃗q̄−p⃗2′

)
F ∗ (z⃗2)

p⃗ 2
q̄2′+xq(1−xq)Q2 δJI

αs

2π
CF

× 3
2 ln

(
z⃗ 2
12 µ2

16e−2γE

)
Dh

q

(
xh

xq
,µF

)
. (5.23)

The corresponding contributions in the case of fragmentation from anti-quark are obtained
by including a minus sign in the argument of the function F(F ), extending the sum over q to
the five anti-quark flavor species and performing the (q ↔ q̄) relabelling.

5.2.3 Soft contribution
In this section we deal with the associated soft divergences, working in a completely general
way with respect to the different cross sections.

The four soft-divergent diagrams are shown in figure 14. We start from eq. (5.1) and we
make the rescaling p⃗g =xgp⃗

′
g. This parameterization is important because in the soft limit

we want all components of the gluon momentum to vanish linearly. The aforementioned
rescaling allows us to work in terms of a new non-vanishing transverse component p⃗

′
g and xg

which becomes the only variable in terms of which the soft limit is defined. Relabelling p⃗
′
g as

p⃗g after the substitution and setting xg to zero where possible, we then find

dσ̂3JI

dxq ddpq⊥

∣∣∣∣
Soft

= αsCF

µ2ϵ

8αemQ2Q2
q

(2π)4dNc

∫
ddpq̄⊥

ddpg⊥
(2π)d

∫
ddp2⊥

F
(

x′
q

2xh
ph⊥+ 1

2pq̄⊥+ 1
2xgpg⊥−p2⊥

)
p⃗ 2

q̄2+x′
q(1−x′

q)Q2
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Figure 14. The full soft contribution of real corrections. The tiny red line denotes a soft gluon.

×
∫

ddp2′⊥
F∗
(

x′
q

2xh
ph⊥+ 1

2pq̄⊥+ 1
2xgpg⊥−p2′⊥

)
p⃗ 2

q̄2′+x′
q(1−x′

q)Q2 δJI

∫ 1−x′
q

α

dxg

x1−2ϵ
g

x′ 2
q (1−x′

q)2(
p⃗g− p⃗q

x′
q

)2(
p⃗g− p⃗q̄

1−x′
q

)2
×


(

p⃗g−
p⃗q

x′
q

)2

+
(

p⃗g−
p⃗q̄

1−x′
q

)2

−2
(

p⃗g−
p⃗q

x′
q

)(
p⃗g−

p⃗q̄

1−x′
q

) . (5.24)

In eq. (5.24), we kept the factor 1
2xgpg⊥, vanishing in the soft limit, in the argument of

F and F∗. The reason is that, before proceeding with the explicit computation, we want
to briefly come back to our discussion on the soft subtraction and explain why the second
term in eq. (5.16) coincides with the first term in the last line of eq. (5.24). Introducing the
Fourier transforms of F and F∗ as was done after eq. (5.10) and repeating all steps up to
eq. (5.12), the factor x−1+2ϵ

g generates an additional factor (1−β)2ϵ that then is compensated
by an analogous factor when the integral

µ−2ϵ
∫

ddp⃗g

(2π)d
e
−i(1−β)

(
z⃗1−z⃗2

2

)
·p⃗g 1

p⃗ 2
g

= 1
4π

1
ϵ̂

Γ(1+ϵ)
Γ(1−ϵ)

(
z⃗ 2
12µ

2(1−β)2

16

)−ϵ

(5.25)

is performed, leaving us with exactly the same contribution coming from the second term in
eq. (5.16).17 It is important to note that, to treat this single denominator term correctly and
simply, it is important to keep the factor xgpg⊥/2, in the argument of F and F∗, different from
zero. This problem is related to the UV-behavior of the tadpole integral that is generated by
taking the soft limit too naively in this single term. Nonetheless, this problem disappears in
the combination of the four contributions in figure 14, where the generated integral is

∫
ddpg⊥
(2π)d

(
p⃗q

x′
q
− p⃗q̄

1−x′
q

)2
(
p⃗g− p⃗q

x′
q

)2(
p⃗g− p⃗q̄

1−x′
q

)2 , (5.26)

17The exponential factor generated by the shift in p⃗g can be immediately set to one taking xg → 0.
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which contains the correct collinear singularities18 and it is well-behaving at large value pg⊥.
In this combination, we can conveniently set xg → 0 in the argument of F and F∗ and obtain

dσ̂3JI

dxq ddpq⊥

∣∣∣∣
Soft

= αsCF

µ2ϵ

8αemQ2Q2
q

(2π)4dNc

∫
ddpq̄⊥

∫
ddp2⊥

F
(

x′
q

2xh
ph⊥+ 1

2pq̄⊥−p2⊥
)

p⃗ 2
q̄2+x′

q(1−x′
q)Q2 x′ 2

q (1−x′
q)2

×
∫

ddp2′⊥
F∗
(

x′
q

2xh
ph⊥+ 1

2pq̄⊥−p2′⊥
)

p⃗ 2
q̄2′+x′

q(1−x′
q)Q2 δJI

∫ 1−x′
q

α

dxg

x1−2ϵ
g

∫
ddpg⊥
(2π)d

(
p⃗q

x′
q
− p⃗q̄

1−x′
q

)2
(
p⃗g− p⃗q

x′
q

)2(
p⃗g− p⃗q̄

1−x′
q

)2 .

(5.27)

The integration over the transverse momentum p⃗g is simple and gives

IT =
∫

ddpg⊥
(2π)d

(
p⃗q

x′
q
− p⃗q̄

1−x′
q

)2
(
p⃗g− p⃗q

x′
q

)2(
p⃗g− p⃗q̄

1−x′
q

)2 = Γ2(ϵ)Γ(1−ϵ)
(4π)1+ϵΓ(2ϵ)

( p⃗q

x′
q

− p⃗q̄

1−x′
q

)2
ϵ

. (5.28)

The next step is to perform the convolution between the hard cross section and the FF
as in eq. (2.19); this leads to

dσq→h
JI

dxhddph⊥

∣∣∣∣
Soft

= 8αemQ2

(2π)4dNcxd
h

∑
q

Q2
q

∫ 1

xh

dx′
q(x′

q)1+d(1−x′
q)2Dh

q

(
xh

x′
q

,µF

)∫
ddp2⊥

∫
ddp2′⊥

×αsCF

µ2ϵ

∫
ddpq̄⊥

F
(

x′
q

2xh
ph⊥+ 1

2pq̄⊥−p2⊥
)

p⃗ 2
q̄2+x′

q(1−x′
q)Q2

F∗
(

x′
q

2xh
ph⊥+ 1

2pq̄⊥−p2′⊥
)

p⃗ 2
q̄2′+x′

q(1−x′
q)Q2 δJI

∫ 1−x′
q

α

dxg

x1−2ϵ
g

IT .

(5.29)

Before proceeding with the longitudinal integration, an observation is necessary. During
the calculation we came across integrals in both variables x′

q and xg, which we treated slightly
differently. In particular, in the calculation of the virtual contributions (see section 4.1)
and in the collinear contribution due to the q̄g splitting (see section 5.2.2), we integrated
directly over xg, while, in the contribution due to the splitting qg we first carried out the
change of variables in eq. (5.8), to obtain a form of divergences similar to that present in
the counter-terms. Since the integration over the final variable xq is never done explicitly,
this can make it difficult to observe the cancellation at the integrand level. We clarify this
statement with a toy example. Suppose to have the integral

∫ 1

xh

dx′
q

∫ 1−x′
q

α
dxg

1
xg

. (5.30)

If we integrate over xg and then rename x′
q as xq, we get

I1=
∫ 1

xh

dxq ln
(1−xq

α

)
. (5.31)

18We remind that the superposition of soft and collinear singularities is included in this term that we added
and subtracted.
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From the other side, if we perform the change of variables in (5.8) and then integrate over
β, we get

I2=
∫ 1

xh

dxq ln
(

xq−xh

α

)
. (5.32)

The difference between I1 and I2 is obviously zero since they are the same integral, however,
the cancellation is only seen by integrating over xq,

I1−I2=
∫ 1

xh

dxq ln
(

1−xq

xq−xh

)
=0, (5.33)

i.e. not at the level of the integrand. This problem can be overcome by treating the soft
contribution in a symmetrical way with respect to the two different procedures. That is,
separating the soft cross-section into two equal parts and treating them according to the
two different ways explained before. We also observe that, in the contribution in which the
transformation (5.8) is carried out, since we are in the soft limit β can be set to 1 everywhere,
except in the term (1−β)−1+2ϵ, which is clearly singular.

Proceeding as described above, the final form of the soft contribution is

dσq→h
JI

dxhddph⊥

∣∣∣∣
Soft

= 2αemQ2

(2π)4dNc xd
h

∑
q

Q2
q

∫ 1

xh

dxq x1+d
q (1−xq)2

∫
ddpq̄⊥

∫
ddp2⊥

∫
ddp2′⊥

×
F
(

xq

2xh
ph⊥+ 1

2pq̄⊥−p2⊥
)

p⃗ 2
q̄2+xq(1−xq)Q2

F∗
(

xq

2xh
ph⊥+ 1

2pq̄⊥−p2′⊥
)

p⃗ 2
q̄2′+xq(1−xq)Q2 Dh

q

(
xh

xq
,µF

)
δJI

× αs

2π
CF

(1
ϵ̂

ASoft,div+ASoft,fin

)
≡ dσq→h

JI

dxhddph⊥

∣∣∣∣
Soft,div

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
Soft,fin

. (5.34)

where

ASoft,div =−4lnα+2lnxq(1−xq)+2ln
(
1−xh

xq

)

+4ϵ lnα ln
(

x2
h(1−xq)2µ2

(xhp⃗q̄−(1−xq)p⃗h)2

)
−ϵ ln2α2, (5.35)

ASoft,fin =−2ln
(

xq(1−xq)
(
1−xh

xq

))
ln
(

x2
h(1−xq)2µ2

(xhp⃗q̄−(1−xq)p⃗h)2

)

+2ln2(1−xq)+2ln2
(

xq

(
1−xh

xq

))
, (5.36)

and the functions δJI are defined in (4.6).
The corresponding contributions in the case of fragmentation from anti-quark are obtained

by including a minus sign in the argument of the function F, extending the sum over q

to the five anti-quark flavor species and performing the (q ↔ q̄) relabelling (also inside the
functions ASoft,div, ASoft,fin, δJI).
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Figure 15. The IR-divergent contribution associated with the quark → quark + gluon splitting, with
the gluon fragmenting into the identified hadronic state.

5.3 Cancellation of divergences in the quark fragmentation case

We can now show the cancellation of divergences in the quark fragmentation channel. First,
we combine the divergent virtual, eq. (4.3), and soft, eq. (5.34), contributions,

dσq→h
JI

dxhddph⊥

∣∣∣∣
SV ,div

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
Soft,div

= 2αemQ2

(2π)4dNc xd
h

×
∑

q

Q2
q

∫ 1

xh

dxq x1+d
q (1−xq)2fJIDh

q

(
xh

xq
,µF

)
αs

2π
CF

1
ϵ̂

[
3+2ln

(
1−xh

xq

)]
(5.37)

and we observe the full cancellation of α-divergent terms. Then, we sum the divergent term
proportional to the Pqq in eq. (3.5) (see also eq. (3.6)) with eq. (5.19) and the divergent
contributions in (5.22) and find

dσq→h
JI

dxhddph⊥

∣∣∣∣
ct, div, Pqq

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
coll(qg),div

+ dσq→h
JI

dxhddph⊥

∣∣∣∣
coll(q̄g),div

= 2αemQ2

(2π)4dNc xd
h

×
∑

q

Q2
q

∫ 1

xh

dxq x1+d
q (1−xq)2fJIDh

q

(
xh

xq
,µF

)
αs

2π
CF

1
ϵ̂

[
−3−2ln

(
1−xh

xq

)]
. (5.38)

The two contributions in eqs. (5.37), (5.38) cancel each other, giving a full cancellation in
the quark fragmentation case. The cancellation in the case of anti-quark fragmentation
takes place in the same way.

5.4 Fragmentation from gluon

Finally, we can have a contribution coming from the fragmentation of a gluon. As already
mentioned, the two divergent contributions are diagrams (1) and (3) of figure 6. The
contribution of the diagram (3) is easy to derive once that of the diagram (1) has been
calculated.

5.4.1 Collinear contributions: q-g splitting
The strategy of the computation is identical to that of section 5.2.1, but considerably much
simpler because there are no soft divergences involved. This time the correct change of
variables to make is

xg =βxq, x′
q =(1−β)xq. (5.39)
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The divergent part associated to this contribution reads

dσg→h
JI

dxhddph⊥

∣∣∣∣
coll(qg),div

= 2αemQ2

(2π)4dNc xd
h

∑
q

Q2
q

∫ 1

xh

dxq x1+d
q (1−xq)2fJI

× αs

2π

1
ϵ̂

∫ 1

xh
xq

dβ

β

1+(1−β)2

β
CF Dh

g

(
xh

βxq
,µF

)
, (5.40)

while the finite part reads

dσg→h
JI

dxhddph⊥

∣∣∣∣
coll(qg),fin

= 2αemQ2

(2π)4dNc xd
h

∑
q

Q2
q

∫ 1

xh

dxq x1+d
q (1−xq)2

∫
ddpq̄⊥

∫
ddp2⊥

∫
ddp2′⊥

×
∫

ddz⃗1
e
−iz⃗1·

(
xq

2xh
p⃗h+ 1

2 p⃗q̄−p⃗2

)
F (z⃗1)

p⃗ 2
q̄2+xq(1−xq)Q2

∫
ddz⃗2

e
iz⃗2·
(

xq
2xh

p⃗h+ 1
2 p⃗q̄−p⃗2′

)
F ∗ (z⃗2)

p⃗ 2
q̄2′+xq(1−xq)Q2 δJI

αs

2π
CF

×
∫ 1

xh
xq

dβ

[
1− 1+(1−β)2

β2 ln
(

z⃗ 2
12 µ2

16β2e−2γE

)]
Dh

g

(
xh

βxq
,µF

)
. (5.41)

The divergent contribution, eq. (5.40), exactly cancels the divergent term proportional to the
Pgq in eq. (3.5) (see also eq. (3.6)). This completes our proof of the cancellation of divergences.

The corresponding contributions in the case of gluon emission from anti-quark (see
diagram (3) in figure 6) are obtained by including a minus sign in the argument of the
function F(F ), extending the sum over q to the five anti-quark flavor species and performing
the (q ↔ q̄) relabelling. Obviously, the divergences that appear in this case cancel out that
proportional to the Pgq in the renormalization of the FF of the anti-quarks.

6 NLO cross-section: finite part of real corrections

The finite contributions to the real corrections are obtained by convolving the hard cross
sections (calculated from the squared impact factors in appendix D) with FFs as in eq. (2.19).

6.1 Fragmentation from quark

6.1.1 Finite remainder in the Φ̃α
3 Φ̃β∗

3 part
The subtraction of the soft contribution leave the finite remainder shown in figure 16. This
contribution is

dσq→h
JI

dxhd2ph⊥

∣∣∣∣
real, fin. sub.

= αem

(2π)8Nc x2
h

∑
q

Q2
q

∫ 1

xh

dxqDh
q

(
xh

xq
,µF

)∫
d2p⃗1 d2p⃗2 d2p⃗1′ d2p⃗2′

× 1
(p+γ )2

∫
d2p⃗q̄

∫
d2p⃗g

(2π)2
∫ 1−xq

0
dxg

xg

(1−xq−xg)
F
(

p⃗12
2

)
F∗
(

p⃗1′2′

2

)
εIαε∗Jβ

αs

4 CF

×
{[

Φ̂α
3 (p⃗1, p⃗2)Φ̂

β∗
3 (p⃗1′ , p⃗2′)δ

(
xq

xh
p⃗h−p⃗1+p⃗q̄2+p⃗g

)
δ

(
xq

xh
p⃗h−p⃗1′+p⃗q̄2′+p⃗g

)]
(p⃗g→xg p⃗g)

−
[
Φ̂α
3 (p⃗1, p⃗2)Φ̂

β∗
3 (p⃗1′ , p⃗2′)δ

(
xq

xh
p⃗h−p⃗1+p⃗q̄2+p⃗g

)
δ

(
xq

xh
p⃗h−p⃗1′+p⃗q̄2′+p⃗g

)](
p⃗g→xg p⃗g

xg∼0

)
 ,

(6.1)
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Figure 16. The finite remainder in the Φ̃α
3 Φ̃

β∗
3 part, in the case of quark fragmentation. It is basically

constituted by the two non-collinearly divergent contributions from which the soft part (diagrams
with the tiny red gluon) is subtracted.

where

Φ̂+
3 (p⃗1, p⃗2)Φ̂+∗

3 (p⃗1′ , p⃗2′)=
8xqxq̄(p+γ )4

(
dx2

g−2xg−4xqxq̄

)
(xqp⃗g−xgp⃗q)·(xq̄p⃗g−xgp⃗q̄)(

Q2+
p⃗ 2

q̄2′
xq̄(1−xq̄)

)(
Q2+ p⃗ 2

q1
xq(1−xq)

)
(xqp⃗g−xgp⃗q)2 (xq̄p⃗g−xgp⃗q̄)2

−
8xqxq̄(p+γ )4

(
2xg−dx2

g+4xqxq̄

)
(xqp⃗g−xgp⃗q)·(xq̄p⃗g−xgp⃗q̄)(

Q2+
p⃗ 2

q1′
xq(1−xq)

)(
Q2+ p⃗ 2

q̄2
xq̄(1−xq̄)

)
(xqp⃗g−xgp⃗q)2 (xq̄p⃗g−xgp⃗q̄)2

, (6.2)

Φ̂+
3 (p⃗1, p⃗2)Φ̂i∗

3 (p⃗1′ , p⃗2′)=
4xq

(
p+γ

)3
(xq+xg)

(
Q2+

p⃗2
q̄2′

xq̄(1−xq̄)

)(
Q2+ p⃗ 2

q1
xq(1−xq)

)
×
(
(xqpg⊥−xgpq⊥)µ (xq̄pg⊥−xgpq̄⊥)ν

(xqp⃗g−xgp⃗q)2 (xq̄p⃗g−xgp⃗q̄)2

)[
xg (4xq̄+xgd−2)

(
pµ

q̄2′⊥giν
⊥ −pν

q̄2′⊥gµi
⊥

)
−(2xq̄−1)(4xqxq̄+xg (2−xgd))gµν

⊥ pi
q̄2′⊥

]
+(q ↔ q̄), (6.3)

Φ̂i
3 (p⃗1, p⃗2)Φ̂k∗

3 (p⃗1′ , p⃗2′)=
−2
(
p+γ

)2
(xq+xg)(xq̄+xg)

(
Q2+ p⃗ 2

q̄2
xq̄(1−xq̄)

)(
Q2+

p⃗ 2
q1′

xq(1−xq)

)
×
(
(xqpg⊥−xgpq⊥)µ (xq̄pg⊥−xgpq̄⊥)ν

(xqp⃗g−xgp⃗q)2 (xq̄p⃗g−xgp⃗q̄)2

){
xg ((d−4))xg−2)

[
pν

q1′⊥

(
pµ

q̄2⊥gik
⊥ +pk

q̄2⊥gµi
⊥

)
+ gµν

⊥

((
p⃗q1′ ·p⃗q̄2

)
gik
⊥ +pi

q1′⊥pk
q̄2⊥

)
−gνk

⊥ pi
q1′⊥pµ

q̄2⊥−gµi
⊥ gνk

⊥
(
p⃗q1′ ·p⃗q̄2

)]
−gµν

⊥

×
[
(2xq−1)(2xq̄−1)pk

q1′⊥pi
q̄2⊥ (4xqxq̄+xg(2−xgd))+4xqxq̄((p⃗q1′ ·p⃗q̄2)gik

⊥ +pi
q1′⊥pk

q̄2⊥)
]

+
(
pµ

q1′⊥pν
q̄2⊥gik

⊥ −pµ
q1′⊥pk

q̄2⊥gνi
⊥ −pi

q1′⊥pν
q̄2⊥gµk

⊥ −gµk
⊥ gνi

⊥ (p⃗q1′ ·p⃗q̄2)
)

×xg((d−4)xg+2)+xg(2xq̄−1)(xgd+4xq−2)
(
gµk
⊥ pν

q1′⊥−gνk
⊥ pµ

q1′⊥

)
pi

q̄2⊥

+xg(2xq−1)pk
q1′⊥(4xq̄+xgd−2)

(
gνi
⊥ pµ

q̄2⊥−gµi
⊥ pν

q̄2⊥

)}
+(q ↔ q̄). (6.4)
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Here one has to fix xq̄ =1−xq−xg and p⃗q = xq

xh
p⃗h. Eqs. (6.2), (6.3), (6.4) contain the non-

collinearly divergent terms of the corresponding Φ̃α
3 Φ̃

β∗
3 in eqs. (5.3), (5.4), (5.5). In this case,

just for simplicity of notation, we presented these contributions without renaming the two
longitudinal fractions xq and xq̄ as done before (see text after eq. (5.2)) when calculating
the divergent contributions.

For clarity, the notation xg ∼ 0 in the second term of 6.1 indicates that, after extracting
the singularity 1/x2

g (i.e. after the rescaling p⃗g →xgp⃗g), throughout the remaining regular
part, xg can be set to zero. Then the subtraction between the two terms will make the
divergence of the type 1/xg and this will be fully compensated by the factor xg in the
numerator of the second line of the eq. (6.1).

The corresponding anti-quark contribution is easily obtained by exchanging xq and p⃗q̄

with xq̄ and p⃗q in eq. (6.1) and setting xq =1−xq̄−xg and p⃗q̄ = xq̄

xh
p⃗h in eqs. (6.2), (6.3), (6.4).

6.1.2 Additional finite part of the dipole × dipole contribution

It is important to note that the dipole × dipole contributions do not end with the diagrams
shown in figure 5. Indeed, the dipole part of the impact factor can be expressed as

Φα
3 =Φ̃α

3+Φα
4 |p⃗3=0, (6.5)

where the second term corresponds to a contribution in which the gluon is emitted before the
Shockwave, but passes through it without receiving any transverse kick (p⃗3=0) . In considering
the square of the impact factor we must also include all contributions involving Φα

4 |p⃗3=0.
Hence, we have a second finite dipole × dipole contribution, which reads

dσq→h
JI

dxhd2ph⊥

∣∣∣∣ real, finite
dip. × dip.

= αem

(2π)8Nc x2
h

∑
q

Q2
q

∫ 1

xh

dxqDh
q

(
xh

xq
,µF

) ∫
d2p⃗1 d2p⃗2 d2p⃗1′ d2p⃗2′

×
∫

d2p⃗q̄

∫
d2p⃗g

(2π)2
∫ 1−xq

0

dxg

xg

1
(1−xq−xg)

δ

(
xq

xh
p⃗h−p⃗1+p⃗q̄2+p⃗g

)
δ (p⃗11′+p⃗22′)

×F
(

p⃗12
2

)
F∗
(

p⃗1′2′

2

)
εIαε∗Jβ

αsCF

4(p+γ )2
[
Φα
3 (p⃗1, p⃗2)Φ

β∗
3 (p⃗1′ , p⃗2′)−Φ̃α

3 (p⃗1, p⃗2)Φ̃
β∗
3 (p⃗1′ , p⃗2′)

]
,

(6.6)

where, one has to fix xq̄ =1−xq−xg and p⃗q = xq

xh
p⃗h.19

6.1.3 Dipole × double dipole contribution

In the dipole × double dipole contribution, at cross section level, the gluon crosses at least
once the shockwave20 (see figure 17). The dipole × double dipole contribution is

dσq→h
JI

dxhd2ph⊥

∣∣∣∣
real, dip. × d. dip.

= αem

2(2π)8Nc x2
h

∑
q

Q2
q

∫ 1

xh

dxqDh
q

(
xh

xq
,µF

)∫
d2p⃗1d

2p⃗2d
2p⃗1′d

2p⃗2′

×
∫

d2p⃗3
d2p⃗3′

(2π)2
∫

d2p⃗q̄

∫
d2p⃗g

(2π)2
∫ 1−xq

0

dxg

xg

δ (p⃗11′+p⃗22′+p⃗33′)
(1−xq−xg)

δ

(
xq

xh
p⃗h−p⃗1+p⃗q̄2+p⃗g3

)
19In this case, in the term Φα

3 Φβ∗
3 in eqs. (5.3), (5.4), (5.5) one has to use xq and xq̄ instead of x′

q and x′
q̄.

20If it crosses twice, in one of the two cases it should not receive any transverse kick from the shockwave.
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Figure 17. An example of diagram contributing to the dipole × double dipole real part of the
cross-section.

Figure 18. An example of diagram contributing to the double dipole × double dipole real part of
the cross-section.

×εIαε∗Jβ

αs

4(p+γ )2

[
Φα
3 (p⃗1, p⃗2)Φ

β∗
4 (p⃗1′ , p⃗2′ , p⃗3′)F

(
p⃗12
2

)
F̃∗
(

p⃗1′2′

2 , p⃗3′

)
δ(p⃗3)

+Φα
4 (p⃗1, p⃗2, p⃗3)Φ

β∗
3 (p⃗1′ , p⃗2′)F̃

(
p⃗12
2 , p⃗3

)
F∗
(

p⃗1′2′

2

)
δ(p⃗3′)

]
. (6.7)

The expressions for the interferences Φα
3Φ

β∗
4 ,Φα

4Φ
β∗
3 , in the various cases, are given in ap-

pendix D. In those formulas one has to fix xq̄ =1−xq−xg and p⃗q = xq

xh
p⃗h.

6.1.4 Double dipole × double dipole contribution
In the double dipole × double dipole contribution, at cross section level, the gluon crosses
twice the shockwave (see figure 18). The double dipole × double dipole contribution is

dσq→h
JI

dxhd2ph⊥

∣∣∣∣ real,
d. dip. × d. dip.

= αem

2(2π)8(N2
c −1)x2

h

∑
q

Q2
q

∫ 1

xh

dxqDh
q

(
xh

xq
,µF

)∫
d2p⃗1d

2p⃗2d
2p⃗1′d

2p⃗2′

×
∫

d2p⃗3
(2π)2

d2p⃗3′

(2π)2
∫

d2p⃗q̄

∫
d2p⃗g

(2π)2
∫ 1−xq

0
dxg

δ (p⃗11′+p⃗22′+p⃗33′)
xg(1−xq−xg)

δ

(
xq

xh
p⃗h−p⃗1+p⃗q̄2+p⃗g3

)
×εIαε∗Jβ

αs

4(p+γ )2
Φα
4 (p⃗1, p⃗2, p⃗3)Φ

β∗
4 (p⃗1′ , p⃗2′ , p⃗3′)F̃

(
p⃗12
2 , p⃗3

)
F̃∗
(

p⃗1′2′

2 , p⃗3′

)
. (6.8)

The expressions for the interferences Φα
4Φ

β∗
4 , in the various cases, are given in appendix D.

In those formulas one has to fix xq̄ =1−xq−xg and p⃗q = xq

xh
p⃗h.

The corresponding anti-quark contributions, of subsections 6.1.2, 6.1.3, 6.1.4, are easily
obtained by exchanging xq and p⃗q̄ with xq̄ and p⃗q in eqs. (6.6), (6.7), (6.8) and setting
xq =1−xq̄ and p⃗q̄ = xq̄

xh
p⃗h in the various interferences of impact factors present in the formulas

of appendix D.
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+

Figure 19. The non IR-divergent contributions of the Φ̃3 part, in the case of gluon fragmentation.

6.2 Fragmentation from gluon

The finite contributions in the case of gluon fragmentation are obtained in a similar way
to what is shown in the case of quark fragmentation.

6.2.1 Finite remainder in the Φ̃3 part
First of all, we have to consider the two IR-finite diagrams in which the gluon does not cross
the shockwave (see figure 19). This contribution reads

dσg→h
JI

dxhd2ph⊥

∣∣∣∣
dip. × dip., 1

= αem

(2π)8Nc x2
h

∑
q

Q2
q

∫ 1

xh

dxgDh
g

(
xh

xg
,µF

)∫
d2p⃗1 d2p⃗2 d2p⃗1′ d2p⃗2′

×
∫

d2p⃗q̄

∫
d2p⃗q

(2π)2
∫ 1−xg

0
dxq

1
xq(1−xq−xg)

F
(

p⃗12
2

)
F∗
(

p⃗1′2′

2

)
εIαε∗Jβ

αsCF

4(p+γ )2

×δ

(
xg

xh
p⃗h+p⃗q1+p⃗q̄2

)
δ (p⃗11′+p⃗22′)Φ̂α

3 (p⃗1, p⃗2)Φ̂
β∗
3 (p⃗1′ , p⃗2′) . (6.9)

6.2.2 Additional finite part of the dipole × dipole contribution
In the dipole × dipole contribution, we also have a contribution analogous to the one presented
in the section 6.1.2. Therefore, the second finite dipole × dipole contribution is

dσg→h
JI

dxhd2ph⊥

∣∣∣∣
dip. × dip., 2

= αem

(2π)8Nc x2
h

∑
q

Q2
q

∫ 1

xh

dxgDh
g

(
xh

xg
,µF

)∫
d2p⃗1 d2p⃗2 d2p⃗1′ d2p⃗2′

×
∫

d2p⃗q̄

∫
d2p⃗q

(2π)2
∫ 1−xg

0
dxq

1
xq(1−xq−xg)

F
(

p⃗12
2

)
F∗
(

p⃗1′2′

2

)
εIαε∗Jβ

αsCF

4(p+γ )2

×δ

(
xg

xh
p⃗h+p⃗q1+p⃗q̄2

)
δ (p⃗11′+p⃗22′)

[
Φα
3 (p⃗1, p⃗2)Φ

β∗
3 (p⃗1′ , p⃗2′)−Φ̃α

3 (p⃗1, p⃗2)Φ̃
β∗
3 (p⃗1′ , p⃗2′)

]
.

(6.10)

6.2.3 Dipole × double dipole contribution
An example of dipole × double dipole contribution, in the gluon fragmentation case, is shown
in figure 20. The complete dipole × double dipole contribution to the cross-section is

dσg→h
JI

dxhd2ph⊥

∣∣∣∣
dip. × d. dip.

= αem

2(2π)8Nc x2
h

∑
q

Q2
q

∫ 1

xh

dxgDh
g

(
xh

xg
,µF

)∫
d2p⃗1 d2p⃗2 d2p⃗1′ d2p⃗2′

×
∫

d2p⃗3 d2p⃗3′
∫

d2p⃗q̄

∫
d2p⃗q

(2π)2
∫ 1−xg

0

dxq

xq

δ (p⃗11′+p⃗22′+p⃗33′)
(1−xq−xg)

δ

(
xg

xh
p⃗h+p⃗q1+p⃗q̄2−p⃗3

)
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Figure 20. An example of diagram which contributes to the dipole × double dipole part of real
contributions, in the gluon fragmentation case.

Figure 21. An example of diagram which contributes to the double dipole × double dipole part of
real contributions, in the gluon fragmentation case.

×εIαε∗Jβ

αs

4(p+γ )2

[
Φα
3 (p⃗1, p⃗2)Φ

β∗
4 (p⃗1′ , p⃗2′ , p⃗3′)F

(
p⃗12
2

)
F̃∗
(

p⃗1′2′

2 , p⃗3′

)
δ(p⃗3)

+Φα
4 (p⃗1, p⃗2, p⃗3)Φ

β∗
3 (p⃗1′ , p⃗2′)F̃

(
p⃗12
2 , p⃗3

)
F∗
(

p⃗1′2′

2

)
δ(p⃗3′)

]
. (6.11)

6.2.4 Double dipole × double dipole contribution

The last contribution to be taken into account is the double dipole × double dipole one
(see figure 21), which reads

dσg→h
JI

dxhd2ph⊥

∣∣∣∣
d. dip. × d. dip.

= αem

2(2π)8(N2
c −1)x2

h

∑
q

Q2
q

∫ 1

xh

dxgDh
g

(
xh

xg
,µF

)∫
d2p⃗1d

2p⃗2d
2p⃗1′d

2p⃗2′

×
∫

d2p⃗3
(2π)2

d2p⃗3′

(2π)2
∫

d2p⃗q̄

∫
d2p⃗q

(2π)2
∫ 1−xg

0
dxq

δ (p⃗11′+p⃗22′+p⃗33′)
xq(1−xq−xg)

δ

(
xg

xh
p⃗h+p⃗q1+p⃗q̄2−p⃗3

)
×εIαε∗Jβ

αs

4(p+γ )2
Φα
4 (p⃗1, p⃗2, p⃗3)Φ

β∗
4 (p⃗1′ , p⃗2′ , p⃗3′)F̃

(
p⃗12
2 , p⃗3

)
F̃∗
(

p⃗1′2′

2 , p⃗3′

)
. (6.12)
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7 Summary

For the reader’s convenience, in this section we give a brief summary in the form of a table
of the finite terms with reference to the corresponding equations.

Fragmenting parton Contribution Equation(s)
Quark†a LO Eq. (2.24)
Quark or gluon† NLO FFs counterterm Eq. (3.5)*b

Quark† Finite part of the singular virtual
dipole × dipole

Eq. (4.3)*

Quark† Non-singular virtual dipole ×
dipole

Eqs. (4.7), (4.8), (4.9)#c

Quark† Virtual double dipole × dipole Eqs. (4.10), (4.11), (4.12)#

Quark† Dipole × dipole real collinear: q-g Eqs. (5.14), (5.20)
Quark† Dipole × dipole real collinear: q̄-g Eqs. (5.22*, 5.23)
Quark† Real soft Eq. (5.34)*
Gluon† Dipole × dipole real collinear: q-g Eq. (5.41)
Quark† Finite remainder of the soft

subtraction
Eq. (6.1)

Quark† Additional finite part of the real
dipole × dipole

Eq. (6.6)

Quark† Real dipole × double dipole Eq. (6.7)
Quark† Real double dipole × double dipole Eq. (6.8)
Gluon First finite part of the dipole ×

dipole
Eq. (6.9)

Gluon Additional finite part of the dipole
× dipole

Eq. (6.10)

Gluon Dipole × double dipole Eq. (6.11)
Gluon Double dipole × double dipole Eq. (6.12)

aFor all contributions denoted with †, the corresponding contribution in which the quark is replaced by the
anti-quark should be produced accordingly to the explanation in the main text.

bFor all contributions denoted with *, the equation we are referring to also contains a singular piece that
cancels out and must be ignored here. Moreover, in the finite parts, the limit d → 2 is to be taken.

cFor all contributions denoted with #, the three equations refers to LL,T L,T T cases respectively.

8 Conclusion

In the present work, we have continued our study of diffractive processes in the saturation
framework relying on the shockwave approach. In particular, we computed the cross section
for the diffractive production of a hadron, at large pT , in γ(∗) nucleon/nucleus scattering, in
rather general kinematics, which includes both lepto- and photoproduction. Our main result
is the explicit proof of cancellation of any kind of divergences and the extraction of the finite
remainder.
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Diffractive productions are important channel to investigate the gluon tomography in
the nucleon (see [40–42]) and the achievement of an appropriate level of precision calls for
a full NLL description. This new class of processes provides an access to precision physics
of gluon saturation dynamics, with very promising future phenomenological studies both at
the LHC in UPC (in photoproduction) and at the future EIC (both in photoproduction and
leptoproduction). It adds a new piece in the list of processes which are very promising to probe
gluonic saturation in nucleons and nuclei at NLO, which includes inclusive DIS [43], inclusive
photoproduction of dijets [44, 45], photon-dijet production in DIS [46], dijets in DIS [47–49],
single hadron [50] and dihadrons production in DIS [51, 52], diffractive exclusive dijets [28–30]
and exclusive light meson production [31, 53], exclusive quarkonium production [54, 55],
inclusive DDIS [56], diffractive di-hadron production [32], forward production of a Drell-Yan
pair and a jet [57].
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A Virtual corrections to γ∗ → qq̄ impact factor

A.1 One-loop computation

Eight one-loop diagrams represented in figure 22 contribute to the virtual reduced matrix
element. Diagrams are of two kinds as the loop gluon may or may not cross the shockwave.
In both cases, the singlet projector is the same as for the LO case δln√

Nc
. Diagrams of the

same kind have the same colour factors and Wilson line operators. For diagrams where the
gluon does not cross the shockwave (top four diagrams in figure 22), the factor containing
color factors and Wilson line operators is

CF Nc U12, (A.1)

where U12 is the dipole operator in coordinate space and CF the Casimir of the fundamental
representation. For diagrams where the gluon crosses the shockwave, we have

−N2
c

2 (U13+U32−U12−U13U32)−CF Nc U12, (A.2)
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Figure 22. One loop diagrams for γ∗ → qq̄.

where U12U32 is the double dipole operator in coordinate space. From those colours factors,
the virtual reduced matrix element can be split into two terms associated to the dipole
or double dipole operator:

T α
1 =−αs

NcΓ(1−ϵ)
(4π)1+ϵ

∫
ddp⃗1d

dp⃗2

{
δ (p⃗q1+p⃗q̄2)

(
N2

c −1
Nc

)
Ũ12 (p⃗1, p⃗2)Φα

1 (p⃗1, p⃗2)

+Nc

∫
ddp⃗3
(2π)d

δ (p⃗q1+p⃗q̄2−p⃗3)
[
Ũ13+Ũ32−Ũ12−Ũ13U32

]
(p⃗1, p⃗2, p⃗3)Φα

2 (p⃗1, p⃗2, p⃗3)
}

,

(A.3)

where Ũ12 and Ũ13U32 denote the Fourier transforms of U12 and U13U32. The dipole impact
factor has contributions from both types of diagrams, while the double dipole impact factor
only gets contributions from diagrams where the gluon crosses the shockwave.

Five of the diagrams in figure 22 are independent, the computational steps are the
same for each of them:

• Write the S-matrix element of the diagram as an integral over the coordinate of every
vertex. Replace the building blocks by their expressions in mixed space representation,
as a function of x+ and p+, p⃗ ; e.g., for a free quark propagator,

G0(x)=
∫

dp+ddp⃗

2p+(2π)d+1 exp
[
−ix+ p⃗ 2−iε

2p+
−ip+x−+ip⃗·x⃗

]

×
{(

p+γ−+ p⃗ 2

2p+
γ++p⊥

)(
θ
(
p+
)

θ
(
x+
)
−θ
(
−p+

)
θ
(
−x+

))
+iδ

(
x+
)

γ+
}

.

(A.4)

• Integrate over the − and transverse components of the vertex coordinates. This gives
the explicit conservation of the longitudinal momenta, characteristic of the eikonal
interactions. It also gives a delta function of the transverse momentum components,
including the momentum kick p⃗1, p⃗2, p⃗3 from the t-channel shockwave to the q, q̄,g lines.

• With those delta functions, the integrals over the momenta of the intermediate particles
can be trivially done, apart from one momentum, which is always chosen to be the
momentum of the loop gluon.
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• One then integrates over the + component of the vertex coordinates, leading to an
expression with only an integral over l+ and l⃗.

• The last step is the integration over l⃗ and l+. Integration over l⃗ is regularized by
dimensional regularization and done using the Schwinger, or equivalently, the Feynman
parametrization. The longitudinal z = l/p+γ integral is regularized by an infrared cutoff
α. To extract the divergent part, the following + prescription has been introduced,
defined here as∫ z0

α
dz ϕ(z)=

∫ z0

α
dz ϕ0(z)+

∫ z0

α
dz [ϕ(z)−ϕ0(z)] =

∫ z0

α
dz ϕ0(z)+

∫ z0

α
dz [ϕ(z)]+ ,

(A.5)
where ϕ0(z) is the divergent part of ϕ(z) when z → 0.

IR-singular part of the dipole contribution: the divergences of soft and collinear
nature are entirely contained in the dipole part of the impact factor, that can be written as

Φα
1 (p⃗1, p⃗2)=

SV

2 Φα
0 (p⃗1, p⃗2)+Φα

1R(p⃗1, p⃗2), (A.6)

where Φα
0 (p⃗1, p⃗2) is the leading order impact factor (eqs. (3.7) and (3.8) of ref. [29]), Φα

1R(p⃗1, p⃗2)
the regular part of the one-loop dipole contribution (eqs. (3.43) and (3.44) of ref. [29]) and

SV

2 =
[
ln
(

xx̄

α2

)
− 3
2

][
ln
(

xx̄µ2

(xp⃗q̄−x̄p⃗q)2

)
− 1

ϵ

]
+iπ ln

(
xx̄

α2

)
+1
2 ln

2
(

xx̄

α2

)
−π2

6 +3. (A.7)

A.2 B-JIMWLK dipole evolution

The rapidity divergences are fully contained into the double dipole part of the impact factor,
Φα

2 . These rapidity singular contributions have been extracted (in the form of lnα) and
isolated in eqs. (3.18), (3.19), (3.20) and (3.21) of ref. [29]. They have to be re-absorbed into
the renormalized Wilson operators with the help of BK equation. Using eq. (2.30), we get

Ũα
12= Ũη

12−
∫ eη

α

dρ

ρ
2αsNc

(
µ2
)1− d

2
∫

ddq⃗1d
dq⃗2d

dq⃗3
(2π)2d

δ (p⃗1+p⃗2−q⃗1−q⃗2−q⃗3)

×
[
Ũη
13+Ũη

32−Ũη
12−Ũη

13U
η
32

]
(q⃗1, q⃗2, q⃗3) (A.8)

×


2(p⃗1−q⃗1)·(p⃗2−q⃗2)
(p⃗1−q⃗1)2 (p⃗2−q⃗2)2

+
π

d
2 Γ
(
1− d

2

)
Γ2
(

d
2

)
Γ(d−1)

 δ (p⃗1−q⃗1)[
(p⃗2−q⃗2)2

]1− d
2
+ δ (p⃗2−q⃗2)[

(p⃗1−q⃗1)2
]1− d

2


 .

Using the above equation in the leading order impact factor to pass from the cutoff α to
the rapidity divide eη, we produce the next-to-leading order term

T α
BK=−αsN2

c

Γ
(
2− d

2

)
(4π)1+ϵ

∫
ddp⃗1d

dp⃗2d
dp⃗3

(2π)d
δ (p⃗q1+p⃗q̄2−p⃗3)

×
[
Ũη
13+Ũη

32−Ũη
12−Ũη

13U
η
32

]
(p⃗1, p⃗2, p⃗3)Φα

BK (p⃗1, p⃗2, p⃗3) , (A.9)
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where

Φα
BK=2ln

(
eη

α

)2µ−2ϵ(4π)1+ϵ

Γ
(
2− d

2

) ∫
ddp⃗

(2π)d

p⃗·(p⃗−p⃗3)
p⃗ 2 (p⃗3−p⃗)2

Φα
0 (p⃗+p⃗1, p⃗2+p⃗3−p⃗)

+
(
1
ϵ
+ln

(
p⃗ 2
3

µ2

))
(Φα

0 (p⃗1, p⃗2+p⃗3)+Φα
0 (p⃗3+p⃗1, p⃗2))

}
. (A.10)

Φα
BK can be computed explicitly; the final expressions can be found in eqs. (3.25) and (3.26)

of ref. [29]. Comparing eq. (A.3) and eq. (A.9), we immediately realize that we can add
Φα

BK to the double dipole contribution to get

Φ′α
2 =Φα

2+Φα
BK, (A.11)

which is the rapidity-divergence free double-dipole contribution to the impact factor.21 The
final expressions of Φ′+

2 and Φ′i
2 can be found in eqs. (3.31) and (3.32) of ref. [29].

B LO impact factor squared

The impact factors in the LL, TL and TT cases are respectively given by

∑
λq ,λq̄

Φ+
0 (p⃗1, p⃗2)Φ

+∗
0 (p⃗1′ , p⃗2′)=

32(p+γ )4x3
qx3

q̄(
p⃗2q1+xqxq̄Q2

)(
p⃗2q1′+xqxq̄Q2

) , (B.1)

∑
λq ,λq̄

Φ+
0 (p⃗1, p⃗2)Φi∗

0 (p⃗1′ , p⃗2′)=
16(p+γ )3x2

qx2
q̄pi

q1⊥(1−2xq)(
p⃗2q1+xqxq̄Q2

)(
p⃗2q1′+xqxq̄Q2

) , (B.2)

∑
λq ,λq̄

Φi
0(p⃗1, p⃗2)Φk∗

0 (p⃗1′ , p⃗2′)=
8(p+γ )2xqxq̄

[
(1−2xq)2gri

⊥glk
⊥−grk

⊥ gli
⊥+grl

⊥grl
⊥gik

⊥

]
pq1⊥rpq1′⊥l(

p⃗2q1+xqxq̄Q2
)(

p⃗2q1′+xqxq̄Q2
) .

(B.3)

The LT case is immediately obtained from TL by complex conjugation and 1,2↔ 1′,2′

substitution.

C Finite parts of virtual corrections

C.1 Building blocks integrals

Ik
1 (q⃗1, q⃗2, ∆1, ∆2) ≡ 1

π

∫ dd l⃗
(
lk⊥

)
[
(⃗l−q⃗1)2+∆1

][
(⃗l−q⃗2)2+∆2

]
l⃗ 2

, (C.1)

21There is a small subtlety, adding Φα
BK to Φα

2 , it seems that some singular 1
ϵ

pieces survive. These
are artificial UV poles originate from the fact that when one transforms the Wilson line operator into its
momentum space representation straightforwardly, the property of vanishing when r3 = r2 or r3 = r1 is not
taken into account. This property reveals in the convolution of the impact factor killing all the artificial
singularities.
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I2(q⃗1, q⃗2, ∆1, ∆2) ≡ 1
π

∫
dd l⃗[

(⃗l−q⃗1)2+∆1
][
(⃗l−q⃗2)2+∆2

] , (C.2)

Ik
3 (q⃗1, q⃗2, ∆1, ∆2) ≡ 1

π

∫ dd l⃗
(
lk⊥

)
[
(⃗l−q⃗1)2+∆1

][
(⃗l−q⃗2)2+∆2

] , (C.3)

Ijk(q⃗1, q⃗2, ∆1, ∆2) ≡ 1
π

∫ dd l⃗
(
lj⊥lk⊥

)
[
(⃗l−q⃗1)2+∆1

][
(⃗l−q⃗2)2+∆2

]
l⃗ 2

. (C.4)

The arguments of these integrals will be different for each diagram so we will write them
explicitly before giving the expression of each diagram, but we will omit them in the equations
for the reader’s convenience.

Explicit results for the first 3 integrals in (C.1)–(C.4) are obtained by a straightforward
Feynman parameter integration. We will express them using the following variables:

ρ1 ≡
(
q⃗ 2
12+∆12

)
−
√(

q⃗ 2
12+∆12

)2+4q⃗ 2
12∆2

2q⃗ 2
12

, (C.5)

ρ2 ≡
(
q⃗ 2
12+∆12

)
+
√(

q⃗ 2
12+∆12

)2+4q⃗ 2
12∆2

2q⃗ 2
12

, (C.6)

where ∆ij =∆i−∆j .
One gets:

Ik
1 = qk

1⊥
2
[
q⃗ 2
12
(
q⃗ 2
1 +∆1

)(
q⃗ 2
2 +∆2

)
−
(
q⃗ 2
1 −q⃗ 2

2 +∆12
)(

q⃗ 2
1 ∆2−q⃗ 2

2 ∆1
)] (C.7)

×
{(

q⃗ 2
2 +∆2

)
q⃗ 2
12+q⃗ 2

2 (∆1+∆2)+∆2
(
∆21−2q⃗ 2

1
)

(ρ1−ρ2) q⃗ 2
12

ln
[( −ρ1

1−ρ1

)(1−ρ2
−ρ2

)]

×
(
q⃗ 2
2 +∆2

)
ln
[
∆2
(
q⃗ 2
1 +∆1

)2
∆1
(
q⃗ 2
2 +∆2

)2
]
+(1↔ 2)

}
,

I2 = 1
q⃗ 2
12 (ρ1−ρ2)

ln
[( −ρ1

1−ρ1

)(1−ρ2
−ρ2

)]
, (C.8)

and
Ik
3 =

(
q⃗ 2
12+∆12

)
qk
1+
(
q⃗ 2
21+∆21

)
qk
2

2(ρ1−ρ2)(q⃗ 2
12)2

ln
[( −ρ1

1−ρ1

)(1−ρ2
−ρ2

)]
− qk

12
2q⃗ 2

12
ln
(∆1
∆2

)
. (C.9)

Please note that in some cases the real part of ∆1 or ∆2 will be negative so the previous
results can acquire an imaginary part from the imaginary part ± i0 of the arguments.

The last integral in (C.4) can be expressed in terms of the other ones by writing

Ijk = I11
(
qj
1⊥qk

1⊥

)
+I12

(
qj
1⊥qk

2⊥+qj
2⊥qk

1⊥

)
+I22

(
qj
2⊥qk

2⊥

)
, (C.10)

with

I11=− 1
2

[
q⃗ 2
2 q1⊥k−(q⃗1 ·q⃗2)q2⊥k

][
q⃗ 2
1 q⃗ 2

2 −(q⃗1 ·q⃗2)2
]2 (C.11)

×
[(

q⃗1 ·q⃗2
q⃗ 2
1

)
ln
(

q⃗ 2
1 +∆1
∆1

)
qk
1⊥+(q⃗2 ·q⃗21)Ik

3+
{

q⃗ 2
2 (q⃗1 ·q⃗12)+∆1q⃗

2
2 −∆2 (q⃗1 ·q⃗2)

}
Ik
1

]
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I12=
−1

4
[
q⃗ 2
1 q⃗ 2

2 −(q⃗1 ·q⃗2)2
] ln( q⃗ 2

1 +∆1
∆1

)

+ q⃗ 2
2 (q⃗1 ·q⃗2)

2
[
q⃗ 2
1 q⃗ 2

2 −(q⃗1 ·q⃗2)2
]2 [(q⃗ 2

1 +∆1
)(

q1⊥kIk
1

)
+
(
q1⊥kIk

3

)]

−
(
q⃗ 2
1 q⃗ 2

2
)
+(q⃗1 ·q⃗2)2

4
[
q⃗ 2
1 q⃗ 2

2 −(q⃗1 ·q⃗2)2
]2 [(q⃗ 2

2 +∆2
)(

q1⊥kIk
1

)
+
(
q1⊥kIk

3

)]
+(1↔ 2), (C.12)

I22=I11|1↔2. (C.13)

In what follows, for the ϕ function, x=xq, x̄=xq̄.

C.2 ϕ4

The arguments in the integrals of C.1 are

q⃗1= p⃗1−
(

x−z

x

)
p⃗q, q⃗2=

(
x−z

x

)
(xp⃗q̄−x̄p⃗q) , (C.14)

∆1=(x−z)(x̄+z)Q2, ∆2=−x(x̄+z)
x̄(x−z) q⃗2−i0 . (C.15)

Let us write the impact factors in terms of these variables.
They read:

(longitudinal NLO) × (longitudinal LO) contribution:

(ϕ4)LL =−4(x−z)(x̄+z)
z

[−x̄(x−z)(z+1)I2+q2⊥k(2x2−(2x−z)(z+1))Ik
1 ], (C.16)

(longitudinal NLO) × (transverse LO) contribution:

(ϕ4)j
LT =(1−2x)pq1′

j
⊥ (ϕ4)LL−4(x−z)(x̄+z)(1−2x+z)[(q⃗ ·p⃗q1′)gj

⊥k+qj
2⊥pq1′⊥k]Ik

1 , (C.17)

(transverse NLO) × (longitudinal LO) contribution:

(ϕ4)i
T L =2{[(x−x̄−z)qi

2⊥q1⊥k+(−8xx̄−6xz+2z2+3z+1)qi
1⊥q2⊥k]Ik

1

−2[4x2−x(3z+5)+(z+1)2]q2⊥kIik+(x−x̄−z)(q⃗2 ·q⃗1)Ii

+I2[(x−x̄−z)qi
2⊥+x̄(2(x−z)2−5x+3z+1)qi

1⊥]
−x̄[2(x−z)2−5x+3z+1]Ii

3

+xx̄(1−2x)
z

[2q2⊥kIik+Ii
3−qi

1⊥(2q2⊥kIk
1+I2)]}, (C.18)

(transverse NLO) × (transverse LO) contribution:

(ϕ4)ij
T T =

[
(x−x̄−2z)(x−x̄−z)(q⃗2 ·p⃗q1′)qi

1⊥+(z+1)((q⃗1 ·q⃗2)pi
q1′⊥−(q⃗1 ·p⃗q1′)qi

2⊥)
]
Ij
1

+2x̄[q2⊥k−(x−z)q1⊥k](pi
q1′⊥Ijk−gij

⊥pq1′⊥lI
kl)

+2(x−z)[(2x̄+z)(q⃗2 ·p⃗q1′)−x̄(q⃗1 ·p⃗q1′)]Iij

+[(1−z)((q⃗1 ·p⃗q1′)qj
2⊥−(q⃗2 ·p⃗q1′)qj

1⊥)−(1−2x)(x̄−x+z)(q⃗1 ·q⃗2)pj
q1′⊥]I

i
1
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−2
[
(x−z)(x̄qj

1⊥−(2x̄+z)qj
2⊥)pq1′⊥k

+ (1−2x)
(
4x2−(3z+5)x+(z+1)2

)
q2⊥kpq1′

j
⊥

]
Iik

−x̄(x̄−x)
(
2(x−z)2−5x+3z+1

)
pj

q1′⊥Ii
3

+x̄(x̄+z)(pi
q1′⊥Ij

3−gij
⊥pq1′⊥kIk

3 )

+I2
[
gij
⊥
(
(1−z)(q⃗2 ·p⃗q1′)−x̄(1+x−z)(q⃗1 ·p⃗q1′)

)
+ ((1−z)qj

2⊥−x̄(1+x−z)qj
1⊥)pq1′

i
⊥

− (x̄−x)
(
(x̄−x+z)qi

2⊥−x̄
(
2(x−z)2−5x+3z+1

)
qi
1⊥

)
pq1′

j
⊥

]
+Ik

1

[
gij
⊥
(
(x−x̄+z)(q⃗1 ·p⃗q1′)q2⊥k+(1−z)(q⃗2 ·p⃗q1′)q1⊥k−(z+1)(q⃗1 ·q⃗2)pq1′⊥k

)
+qj

1⊥((x−x̄+z)q2⊥kpi
q1′⊥−(z+1)qi

2⊥pq1′⊥k)
+qj

2⊥((x−x̄−2z)(x−x̄−z)qi
1⊥pq1′⊥k+(1−z)q1⊥kpq1′

i
⊥)

− (1−2x)((1−2x+z)qi
2⊥q1⊥k−(2z2+3z−x(8x̄+6z)+1)qi

1⊥q2⊥k)pq1′
j
⊥

]
+xx̄

z

[
(x−x̄)2pj

q1′⊥(2q2⊥kIik+Ii
3−qi

1⊥(I2+2q2⊥kIk
1 ))

+pi
q1′⊥(q

j
1⊥(I2+2q2⊥kIk

1 )−2q2⊥kIjk−Ij
3)

+ gij
⊥((q⃗1 ·p⃗q1′)(I2+2q2⊥kIk

1 )+pq1′⊥k(2q2⊥lI
kl+Ik

3 ))
]
. (C.19)

C.3 ϕ5

Here the integrals from C.1 will have the following arguments:

q⃗1=
(

x−z

x

)
p⃗3−

z

x
p⃗1, q⃗2= p⃗q1−

z

x
p⃗q, (C.20)

∆1=
z(x−z)

x2x̄
(p⃗ 2

q̄2+xx̄Q2), ∆2=(x−z)(x̄+z)Q2, (C.21)

With such variables, it is easy to see that the argument in the square roots in (C.6) are full
squares. In terms of the variables in (C.20), the impact factors read:

(longitudinal NLO) × (longitudinal LO):

(ϕ5)LL = 4(x−z)(−2x(x̄+z)+z2+z)
xz

[
x̄(x−z)I2−(zq1⊥k−x(x̄+z)q2⊥k)Ik

1

]
, (C.22)

(longitudinal NLO) × (transverse LO):

(ϕ5)j
LT =(x̄−x)pj

q1′⊥ (ϕ5)LL+
4(x−z)(x−x̄−z)

x

(
zqk

1⊥−x(x̄+z)qk
2⊥

)
pq1′⊥l

(
gj
⊥kI l

1+−gl
⊥kIj

1

)
,

(C.23)

(transverse NLO) × (longitudinal LO):

(ϕ5)i
T L =2

[
(x−x̄−z)(q⃗1 ·q⃗2)−x̄(x−z)2Q2+( z

x
−x)q⃗ 2

1

]
Ii
1

+ 2
x

[
xq2⊥k(−8xx̄−6xz+2z2+3z+1)+2q1⊥k(2xz−2x2+x−z2)

]
qi
1⊥Ik

1
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+2qi
2⊥q1⊥k(x−x̄−z)Ik

1+2 x̄

x
(x(8x−3)−6xz+2z2+z)Ii

1

+ 2
x

[
xqi

2⊥(x−x̄−z)+qi
1⊥(8x3−6x2(z+2)+x(z+3)(2z+1)−2z2)

]
I2

− 4
x

[
(x−z)(x̄+z)q1⊥k+x(4x2−x(3z+5)+(z+1)2)q2⊥k

]
Iik

− 4
z

xx̄(x−x̄)
[
q2⊥kIik+Ii

3−qi
1⊥

(
q2⊥kIk

1+I2
)]

, (C.24)

(transverse NLO) × (transverse LO):

(ϕ5)ij
T T =−2(x−z)

[
z

x
(q⃗1 ·p⃗q1′)−(2x̄+z)(q⃗2 ·p⃗q1′)

]
Iij

+
[
−x̄(x−z)2Q2pi

q1′⊥+(x̄−x+2z)(x̄−x+z)(q⃗2 ·p⃗q1′)qi
1⊥

− (q⃗1 ·p⃗q1′)((z+1)qi
2⊥−2 z

x
(2x−z)qi

1⊥)

+ ((z+1)(q⃗1 ·q⃗2)−
(

x+ z

x

)
r⃗ 2)pi

q1′⊥

]
Ij
1

−2 x̄

x
(xq2⊥k+(x−z)q1⊥k)

(
gij
⊥pq1′⊥lI

kl−pq1′
i
⊥Ijk

)
+
[
x̄(x−x̄)(x−z)2Q2pj

q1′⊥−(z−1)(q⃗1 ·p⃗q1′)qj
2⊥

+(z−1)(q⃗2 ·p⃗q1′)qj
1⊥+

x−x̄

x

(
(x2−z)q⃗ 2

1 +x(x̄−x+z)(q⃗1 ·q⃗2)
)

pj
q1′⊥

]
Ii
1

+2
[

x−x̄

x

(
x(4x2−(3z+5)x+(z+1)2)q2⊥k+(x−z)(x̄+z)q1⊥k

)
pj

q1′⊥

− x−z

x

(
x(2x−z−2)qj

2⊥+zqj
1⊥

)
pq1′⊥k

]
Iik

+ x̄(x̄−x)
x

(
2z2−6xz+z+x(8x−3)

)
pj

q1′⊥Ii
3

+
[
(x−x̄)

(
(x̄−x+z)qi

2⊥+
(
6(z+2)x−8x2−(z+3)(2z+1)+2z2

x

)
qi
1⊥ri

⊥

)
q1⊥k

+(1−z)(gij
⊥(q⃗2 ·p⃗q1′)+qj

2⊥pi
q1′⊥)+(2x+z−3)(gij

⊥(q⃗1 ·p⃗q1′)+qj
1⊥pi

q1′⊥)
]
I2

+
(
3x̄+z− z

x

)
pi

q1′⊥Ij
3−

x̄

x
(3x−z)gij

⊥pq1′⊥kIk
3

+
[
(x−x̄)pj

q1′⊥

{
(x̄−x+z)qi

2⊥q1⊥k−(2z2−6xz+3z−8xx̄+1)q2⊥kqi
1⊥

− 2(x̄−x+2z− z2

x
)q1⊥kqi

1⊥

}
+x̄(x−z)2Q2gij

⊥pq1′⊥k

+(1−z)q1⊥k(gij
⊥(q⃗2 ·p⃗q1′)+qj

2⊥pi
q1′⊥)

+((x−x̄+z)q2⊥k−2q1⊥k)(gij
⊥(q⃗1 ·p⃗q1′)+qj

1⊥pi
q1′⊥)

+gij
⊥

((
x+ z

x

)
q⃗ 2
1 −(z+1)(q⃗1 ·q⃗2)

)
pq1′⊥k

+
(
(x−x̄−2z)(x−x̄−z)qi

1⊥qj
2⊥−(z+1)qi

2⊥qj
1⊥+2(2x−z) z

x
qi
1⊥qj

1⊥

)
pq1′⊥k

]
Ik
1
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+2xx̄

z

[
(x−x̄)2pj

q1′⊥(q2⊥kIik+Ii
3)−pi

q1′⊥(q2⊥kIjk+Ik
3 )+gij

⊥pq1′⊥k(q2⊥lI
kl+Ij

3)

+ (I2+q2⊥kIk
1 )
(
gij
⊥(q⃗1 ·p⃗q1′)+qj

1⊥pi
q1′⊥−(1−2x)2qi

1⊥pj
q1′⊥

)]
. (C.25)

C.4 ϕ6

We will use the variable

q⃗ =
(

x−z

x

)
p⃗3−

z

x
p⃗1. (C.26)

(longitudinal NLO) × (longitudinal NLO):

(ϕ6)LL =−4xx̄2J0, (C.27)

(longitudinal NLO) × (transverse NLO):

(ϕ6)j
LT =(1−2x)pj

q1′⊥(ϕ6)LL, (C.28)

(transverse NLO) × (longitudinal NLO):

(ϕ6)i
T L =2x̄

[
(1−2x)pi

q̄2⊥J0−J i
1⊥

]
, (C.29)

(transverse NLO) × (transverse NLO):

(ϕ6)ij
T T = x̄

[
(x−x̄)2pi

q̄2⊥pj
q1′⊥−gij

⊥(p⃗q̄2 ·p⃗q1′)−pi
q1′⊥pj

q̄2⊥

]
J0

+x̄
[
(x−x̄)pj

q1′⊥gi
⊥k−pq1′⊥kgij

⊥+pi
q1′⊥gj

⊥k

]
Jk
1⊥. (C.30)

We introduced

Jk
1⊥= (x−z)2

x2
qk
⊥

q⃗ 2 ln

 p⃗ 2
q̄2+xx̄Q2

p⃗ 2
q̄2+xx̄Q2+ x2x̄

z(x−z) q⃗
2

 , (C.31)

and

J0=
z

x(p⃗ 2
q̄2+xx̄Q2)

− 2x(x−z)+z2

xz(p⃗ 2
q̄2+xx̄Q2)

ln
(

x2x̄µ2

z(x−z)(p⃗ 2
q̄2+xx̄Q2)+x2x̄q⃗ 2

)
. (C.32)

D Finite part of the squared impact factors for real corrections

D.1 LL transition

The double dipole × double dipole contribution is

Φ+
4 (p1⊥,p2⊥,p3⊥)Φ+∗

4 (p′1⊥,p′2⊥,p′3⊥)=
8p+γ

4

z2
(

p⃗ 2
q̄2′

xq̄(1−xq̄)+Q2
)(

Q2+
p⃗ 2

q1′
xq

+
p⃗ 2

q̄2′
xq̄

+
p⃗ 2

g3′
z

)

×

 xq̄
(
dz2+4xq (xq+z)

)(
xqp⃗g3−zp⃗q1)(xqp⃗g3′−zp⃗q1′

)
xq (xq+z)2

(
(p⃗g3+p⃗q1)2

xq̄(xq+z) +Q2
)(

(p⃗g3+p⃗q1)2

xq̄
+ p⃗ 2

g3
z + p⃗ 2

q1
xq

+Q2
)

– 47 –



J
H
E
P
0
2
(
2
0
2
4
)
1
6
5

−
(4xqxq̄+2z−dz2)(xq̄p⃗g3−zp⃗q̄2)(xqp⃗g3′−zp⃗q1′)

(xq̄+z)(xq+z)
(
(p⃗q̄2+p⃗g3)2

xq(xq̄+z) +Q2
)(

(p⃗q̄2+p⃗g3)2

xq
+ p⃗ 2

g3
z + p⃗ 2

q̄2
xq̄

+Q2
)
+(q ↔ q̄). (D.1)

The interference term in the dipole × dipole contribution reads(
Φ̃+
3 (p⃗1, p⃗2)Φ

+∗
4 (p⃗1′ , p⃗2′ , 0⃗)+Φ+

4 (p⃗1, p⃗2, 0⃗)Φ̃
+∗
3 (p⃗1′ , p⃗2′)

)

=

 8p+γ
4

z (xq+z)
(

p⃗ 2
q̄2′

xq̄(xq+z)+Q2
)(

p⃗ 2
q1′
xq

+
p⃗ 2

q̄2′
xq̄

+ p⃗g
2

z +Q2
)

×


(4xqxq̄+z(2−dz))(p⃗g− z

xq̄
p⃗q̄)(xqp⃗g−zp⃗q1′)

(p⃗g− zp⃗q̄

xq̄
)2
(

p⃗ 2
q1′

xq(xq̄+z)+Q2
)

−
xq̄
(
dz2+4xq (xq+z)

)
(p⃗g− z

xq
p⃗q)(p⃗g− z

xq
p⃗q1′)

(p⃗g− zp⃗q

xq
)2
(

p⃗ 2
q̄2

xq̄(xq+z)+Q2
)

+(q ↔ q̄)

+(1↔ 1′,2↔ 2′). (D.2)

The double dipole × dipole contribution has the form

Φ+
4 (p⃗1, p⃗2, p⃗3)Φ

+∗
3 (p⃗1′ , p⃗2′)=Φ+

4 (p⃗1, p⃗2, p⃗3)Φ
+∗
4 (p⃗1′ , p⃗2′ , 0⃗)+Φ+

4 (p⃗1, p⃗2, p⃗3)Φ̃
+∗
3 (p⃗1′ , p⃗2′), (D.3)

where

Φ+
4 (p⃗1, p⃗2, p⃗3)Φ̃

+∗
3 (p⃗1′ , p⃗2′)=

8p+γ
4

z (xq+z)
(

p⃗ 2
q̄2

xq̄(xq+z)+Q2
)(

p⃗ 2
q1

xq
+ p⃗ 2

q̄2
xq̄

+ p⃗ 2
g3
z +Q2

)

×


(4xqxq̄+z(2−dz))(p⃗g− z

xq̄
p⃗q̄)(xqp⃗g3−zp⃗q1)

(p⃗g− zp⃗q̄

xq̄
)2
(

p⃗ 2
q1′

xq(xq̄+z)+Q2
)

−
xq̄
(
dz2+4xq (xq+z)

)
(p⃗g− z

xq
p⃗q)(p⃗g3− z

xq
p⃗q1)

(p⃗g− zp⃗q

xq
)2
(

p⃗ 2
q̄2′

xq̄(xq+z)+Q2
)

+(q ↔ q̄).

(D.4)

For the dipole × double dipole contribution, one just has to complex conjugate (D.4) and
also invert the name of the momenta i.e. 1′,2′↔ 1,2.

D.2 LT/TL transition

The double dipole × double dipole contribution is

Φi
4(p1⊥,p2⊥,p3⊥)Φ+∗

4 (p′1⊥,p′2⊥,p′3⊥)

=
−4p+γ

3(
Q2+ p⃗ 2

g3
z + p⃗ 2

q1
xq

+ p⃗ 2
q̄2

xq̄

)(
Q2+

p⃗ 2
g3′
z +

p⃗ 2
q1′
xq

+
p⃗ 2

q̄2′
xq̄

)
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×

z
(
(P⃗ ·p⃗q1)Gi

⊥−(G⃗·p⃗q1)P i
⊥

)
(dz+4xq−4)−(G⃗·P⃗ )pi

q1⊥ (2xq−1)
(
4(xq−1)xq̄−dz2

)
z2xq̄ (z+xq̄)3

(
Q2+ p⃗ 2

q1
xq(z+xq̄)

)(
Q2+

p⃗ 2
q1′

xq(z+xq̄)

)

+
z
(
(P⃗ ·p⃗q1)H i

⊥−(H⃗ ·p⃗q1)P i
⊥

)
(dz+4xq−2)−(H⃗ ·P⃗ )pi

q1⊥ (2xq−1)(z(2−dz)+4xqxq̄)

z2xq (z+xq)(z+xq̄)2
(

Q2+
p⃗ 2

q̄2′
(z+xq)xq̄

)(
Q2+ p⃗ 2

q1
xq(z+xq̄)

)

+ H i
⊥ (z(zd+d−2)+xq (2−4xq̄))xq̄

z (z+xq)2 (z+xq̄)
(

Q2+
p⃗ 2

q̄2′
(z+xq)xq̄

)
+(q ↔ q̄). (D.5)

Here,

Gi
⊥=xq̄pi

g3′⊥−zpi
q̄2′⊥, H i

⊥=xqpi
g3′⊥−zpi

q1′⊥, P i
⊥=xq̄pi

g3⊥−zpi
q̄2⊥. (D.6)

The interference term in the dipole × dipole contribution reads(
Φi
4(p⃗1, p⃗2, 0⃗)Φ̃+∗

3 (p⃗1′ , p⃗2′)+Φ̃i
3(p⃗1, p⃗2)Φ+∗

4 (p⃗1′ , p⃗2′ , 0⃗)
)

=4p+γ
3

 ∆q
i
⊥xqxq̄

(
dz2+dz−2z+2xq−4xqxq̄

)
∆⃗2

q (z+xq)2 (z+xq̄)
(

Q2+ p⃗ 2
g

z + p⃗ 2
q1

xq
+ p⃗ 2

q̄2
xq̄

)(
Q2+

p⃗ 2
q̄2′

(z+xq)xq̄

)

−
(J⃗ ·∆⃗q)pi

q̄2⊥
(
dz2+4xq (z+xq)

)
(1−2xq̄)+z

(
(J⃗ ·p⃗q̄2)∆i

q⊥−(p⃗q̄2 ·∆⃗q)J i
⊥

)
(dz+4xq̄−4)

z (z+xq)3∆⃗2
q

(
Q2+ p⃗ 2

g

z +
p⃗ 2

q1′
xq

+
p⃗ 2

q̄2′
xq̄

)(
Q2+ p⃗ 2

q̄2
(z+xq)xq̄

)(
Q2+

p⃗ 2
q̄2′

(z+xq)xq̄

)

−
xq

(
z
(
(K⃗ ·p⃗q̄2)∆i

q⊥−(p⃗q̄2 ·∆⃗q)Ki
⊥

)
(dz+4xq̄−2)+(K⃗ ·∆⃗q)pi

q̄2⊥ (1−2xq̄)(z(dz−2)−4xqxq̄)
)

z (z+xq)2xq̄ (z+xq̄)∆⃗2
q

(
Q2+ p⃗ 2

g

z +
p⃗ 2

q1′
xq

+
p⃗ 2

q̄2′
xq̄

)(
Q2+ p⃗ 2

q̄2
(z+xq)xq̄

)(
Q2+

p⃗ 2
q1′

xq(z+xq̄)

)

−
z
(
(p⃗q1 ·∆⃗q)Xi

⊥−(X⃗ ·p⃗q1)∆i
q⊥
)
(dz+4xq−2)+(X⃗ ·∆⃗q)pi

q1⊥ (1−2xq)(z(dz−2)−4xqxq̄)

z∆⃗2
q (z+xq)(z+xq̄)2

(
Q2+ p⃗ 2

g

z + p⃗ 2
q1

xq
+ p⃗ 2

q̄2
xq̄

)(
Q2+

p⃗ 2
q̄2′

(z+xq)xq̄

)(
Q2+ p⃗ 2

q1
xq(z+xq̄)

)

+
z
(
(X⃗ ·p⃗q1)∆i

q̄⊥−(p⃗q1 ·∆⃗q̄)Xi
⊥

)
(dz+4xq−4)−(X⃗ ·∆⃗q̄)pi

q1⊥ (2xq−1)
(
4(xq−1)xq̄−dz2

)
z (z+xq̄)3∆⃗2

q̄

(
Q2+ p⃗ 2

g

z + p⃗ 2
q1

xq
+ p⃗ 2

q̄2
xq̄

)(
Q2+ p⃗ 2

q1
xq(z+xq̄)

)(
Q2+

p⃗ 2
q1′

xq(z+xq̄)

)


+(q ↔ q̄), (D.7)

where

∆⃗q =
xqp⃗g−xgp⃗q

xq+xg
, ∆⃗q̄ =

xq̄p⃗g−xgp⃗q̄

xq+xg
(D.8)

Xi
⊥=xq̄pi

g⊥−zpi
q̄2⊥=P i

⊥|p3=0, J i
⊥=xqpi

g⊥−zpi
q1′⊥=H i

⊥|p′3=0,

Ki
⊥=xq̄pi

g⊥−zpi
q̄2′⊥=Gi

⊥|p′3=0. (D.9)

The TL transition is obtained from above by complex conjugation and inverting the naming
of the different momenta in (D.7) and (D.5).
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The double dipole × dipole have, respectively, the form

Φi
4(p⃗1, p⃗2, p⃗3)Φ+∗

3 (p⃗1′ , p⃗2′)=Φi
4(p⃗1, p⃗2, p⃗3)Φ+∗

4 (p⃗1′ , p⃗2′ ,0)+Φi
4(p⃗1, p⃗2, p⃗3)Φ̃+∗

3 (p⃗1′ , p⃗2′), (D.10)
Φ+
4 (p⃗1, p⃗2, p⃗3)Φi∗

3 (p⃗1′ , p⃗2′)=Φ+
4 (p⃗1, p⃗2, p⃗3)Φi∗

4 (p⃗1′ , p⃗2′ , 0⃗)+Φ+
4 (p⃗1, p⃗2, p⃗3)Φ̃i∗

3 (p⃗1′ , p⃗2′), (D.11)

where

Φi
4(p⃗1, p⃗2, p⃗3)Φ̃+∗

3 (p⃗1′ , p⃗2′)=
4p+γ

3

(xq+z)∆⃗2
q

(
p⃗ 2

q̄2′
xq̄(xq+z)+Q2

)(
p⃗ 2

q1
xq

+ p⃗ 2
q̄2

xq̄
+ p⃗ 2

g3
z +Q2

)

×


xqxq̄∆i

q (dz(z+1)−2(1−2xq)(xq+z))
(xq+z) (xq̄+z) +

(dz+4xq−2)
(
∆i

qP⃗ ·p⃗q1−P ip⃗q1 ·∆⃗q

)
(xq̄+z)2

(
p⃗ 2

q1
xq(xq̄+z)+Q2

)

+
(2xq−1)pi

q1P⃗ ·∆⃗q (z(dz−2)−4xqxq̄)

z (xq̄+z)2
(

p⃗ 2
q1

xq(xq̄+z)+Q2
) −

((d−4)z−4xq)
(
W ip⃗q̄2 ·∆⃗q−∆i

qW⃗ ·p⃗q̄2
)

(xq+z)2
(

p⃗ 2
q̄2

xq̄(xq+z)+Q2
)

+
(2xq̄−1)

(
dz2+4xq (xq+z)

)
pi

q̄2W⃗ ·∆⃗q

z (xq+z)2
(

p⃗ 2
q̄2

xq̄(xq+z)+Q2
)

+(q ↔ q̄), (D.12)

and

Φ+
4 (p⃗1, p⃗2, p⃗3)Φ̃i∗

3 (p⃗1′ , p⃗2′)=
4p+γ

3

z∆⃗2
q (xq+z)2

(
Q2+ p⃗ 2

g3
z + p⃗ 2

q1
xq

+ p⃗ 2
q̄2

xq̄

)(
Q2+

p⃗ 2
q̄2′

(z+xq)xq̄

)

×

xqz ((d−4)z−4xq+2)
(
P i
(
p⃗q̄2′ ·∆⃗q

)
−∆i

q

(
P⃗ ·p⃗q̄2′

))
xq̄ (xq̄+z)

(
p⃗ 2

q1
xq(xq̄+z)+Q2

)

−
xq (xq−xq̄+z)pi

q̄2′
(
P⃗ ·∆⃗q

)
(z(dz−2)−4xqxq̄)

xq̄ (xq̄+z)
(

p⃗ 2
q1

xq(xq̄+z)+Q2
)

−
(xq−xq̄+z)

(
dz2+4xq (xq+z)

)
pi

q̄2′
(
W⃗ ·∆⃗q

)
(xq+z)

(
p⃗ 2

q̄2
xq̄(xq+z)+Q2

)

−
z ((d−4)z−4xq)

(
∆i

q

(
W⃗ ·p⃗q̄2′

)
−W i

(
p⃗q̄2′ ·∆⃗q

))
(xq+z)

(
p⃗ 2

q̄2
xq̄(xq+z)+Q2

)
+(q ↔ q̄).

(D.13)

Here, we introduced

W i
⊥=xqpi

g3⊥−zpi
q1⊥. (D.14)
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D.3 TT transition

The double dipole × double dipole contribution is

Φi
4(p1⊥,p2⊥,p3⊥)Φk

4(p′1⊥,p′2⊥,p′3⊥)∗=

 p+γ
2(

Q2+ p⃗ 2
g3
z + p⃗ 2

q1
xq

+ p⃗ 2
q̄2

xq̄

)(
Q2+

p⃗ 2
g3′
z +

p⃗ 2
q1′
xq

+
p⃗ 2

q̄2′
xq̄

)

×

−gik
⊥ xqxq̄ (zd+d−2+2xq̄)

(z+xq)2 (z+xq̄)
−

2P k
⊥pi

q1⊥ (1−2xq)

z (z+xq̄)2
(

Q2+ p⃗ 2
q1

xq(z+xq̄)

) ((d−2)z−2xq̄

z+xq̄
+ dz+2xq̄

z+xq

)

−
2
(
gik
⊥ (P⃗ ·p⃗q1)+P i

⊥pq1⊥
k
)

z (z+xq̄)2
(

Q2+ p⃗ 2
q1

xq(z+xq̄)

) ((d−4)z−2xq̄

z+xq
+(d−2)z−2xq̄

z+xq̄

)

− 1

z2xq (z+xq)2xq̄ (z+xq̄)2
(

Q2+
p⃗ 2

q̄2′
(z+xq)xq̄

)(
Q2+ p⃗ 2

q1
xq(z+xq̄)

) {(H⃗ ·P⃗ )
[
pi

q1⊥pk
q̄2′⊥ (1−2xq)

× (1−2xq̄)(z(2−dz)+4xqxq̄)+(gik
⊥ (p⃗q1 ·p⃗q̄2′)+pk

q1⊥pi
q̄2′⊥)(z(2−(d−4)z)+4xqxq̄)

]
+((d−4)z−2)

[
z(H⃗ ·p⃗q̄2′)(gik

⊥ (P⃗ ·p⃗q1)+P i
⊥pk

q1⊥)+zHk
⊥

(
(P⃗ ·p⃗q1)pi

q̄2′⊥−(p⃗q1 ·p⃗q̄2′)P i
⊥

)]
+((d−4)z+2)

[
zH i

(
(P⃗ ·p⃗q̄2′)pk

q1⊥−(p⃗q1 ·p⃗q̄2′)P k
⊥

)
+z(H⃗ ·p⃗q1)(gik

⊥ (P⃗ ·p⃗q̄2′)+P k
⊥pi

q̄2′⊥)
]

+2z
(
(H⃗ ·p⃗q̄2′)P k

⊥−(P⃗ ·p⃗q̄2′)Hk
⊥

)
pq1⊥

i (1−2xq)(dz+4xq̄−2)
}

− 1

z2xqxq̄ (z+xq̄)4
(

Q2+ p⃗ 2
q1

xq(z+xq̄)

)(
Q2+

p⃗ 2
q1′

xq(z+xq̄)

) {z ((d−4)z−4xq̄)

×
[
gik
⊥

(
(G⃗·p⃗q1′)(P⃗ ·p⃗q1)−(G⃗·p⃗q1)(P⃗ ·p⃗q1′)

)
+(p⃗q1 ·p⃗q1′)

(
Gi

⊥P k
⊥−Gk

⊥P i
⊥

)
+2(G⃗·p⃗q1′)

(
P i
⊥pk

q1⊥+P k
⊥pi

q1⊥ (1−2xq)
)
−2(G⃗·p⃗q1)

(
P k
⊥pi

q1′⊥+P i
⊥pk

q1′⊥ (1−2xq)
)]

+ (G⃗·P⃗ )
[
pk

q1⊥pi
q1′⊥−pi

q1⊥pk
q1′⊥ (1−2xq)2+gik

⊥
(
p⃗q1 ·p⃗q1′

)](
dz2+4xq̄ (z+xq̄)

)}]
+ (1↔ 1′,2↔ 2′,3↔ 3′, i↔ k)

)
+(q ↔ q̄). (D.15)

The interference term in the dipole × dipole contribution reads(
Φ̃i
3(p⃗1, p⃗2)Φk∗

4 (p⃗1′ , p⃗2′ , 0⃗)+Φi
4(p⃗1, p⃗2, 0⃗)Φ̃k∗

3 (p⃗1′ , p⃗2′)
)

=

 2p+γ
2

∆⃗2
q

(
Q2+ p⃗ 2

g

z + p⃗ 2
q1

xq
+ p⃗ 2

q̄2
xq̄

)(
Q2+

p⃗ 2
q̄2′

(z+xq)xq̄

)
×
[
((d−2)z−2xq)xq

(z+xq)3
(
gik
⊥ (p⃗q̄2′ ·∆⃗q)+pq̄2′

i
⊥∆k

q⊥+pk
q̄2′⊥∆i

q⊥ (1−2xq̄)
)

+
xq

(
((d−4)z−2xq)

(
gik
⊥ (p⃗q̄2′ ·∆⃗q)+pi

q̄2′⊥∆k
q⊥

)
+pk

q̄2′⊥∆i
q⊥ (dz+2xq)(1−2xq̄)

)
(z+xq)2 (z+xq̄)
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− 1

z (z+xq)2xq̄ (z+xq̄)2
(

Q2+ p⃗ 2
q1

xq(z+xq̄)

) {z((d−4)z+2)

×
[
pq1

i
⊥

(
(p⃗q̄2′ ·∆⃗q)Xk

⊥−(X⃗ ·p⃗q̄2′)∆k
q⊥

)
(2xq−1)−(X⃗ ·p⃗q̄2′)

(
gik
⊥ (p⃗q1 ·∆⃗q)+pk

q1⊥∆i
q⊥

)
−Xk

⊥

(
(p⃗q1 ·∆⃗q)pi

q̄2′⊥−(p⃗q1 ·p⃗q̄2′)∆q
i
⊥

)]
+4xqz (1−2xq)pi

q1⊥

(
(p⃗q̄2′ ·∆⃗q)Xk

⊥−(X⃗ ·p⃗q̄2′)∆k
q⊥

)
+z (1−2xq̄)(dz+4xq−2)pk

q̄2′⊥

(
(p⃗q1 ·∆⃗q)Xi

⊥−(X⃗ ·p⃗q1)∆i
q⊥

)
−z((d−4)z−2)

×
[(

gik
⊥ (X⃗ ·p⃗q1)+Xi

⊥pk
q1⊥

)
(p⃗q̄2′ ·∆⃗q)+

(
(X⃗p⃗q1)pq̄2′

i
⊥−(p⃗q1p⃗q̄2′)Xi

⊥

)
∆k

q⊥

]
+(X⃗ ·∆⃗q)pi

q1⊥pk
q̄2′⊥ (1−2xq)(1−2xq̄)(z(dz−2)−4xqxq̄)

− (X⃗ ·∆⃗q)
(
gik
⊥ (p⃗q1 ·p⃗q̄2′)+pk

q1⊥pi
q̄2′⊥

)
(z(2−(d−4)z)+4xqxq̄)

}
− 1

z (z+xq)4
(

Q2+ p⃗ 2
q̄2

(z+xq)xq̄

)
xq̄

{
z (dz+4xq̄−4)

[
(1−2xq̄)

×
(
pk

q̄2′⊥

(
(p⃗q̄2 ·∆⃗q)V i

⊥−(V⃗ ·p⃗q̄2)∆i
q⊥

)
+pi

q̄2⊥

(
(V⃗ p⃗q̄2′)∆k

q⊥−(p⃗q̄2′ ·∆⃗q)V k
⊥

))
+V k

⊥

(
(p⃗q̄2 ·∆⃗q)pi

q̄2′⊥−(p⃗q̄2 ·p⃗q̄2′)∆i
q⊥

)
+
(
(p⃗q̄2 ·p⃗q̄2′)V i

⊥−(V⃗ ·p⃗q̄2)pi
q̄2′⊥

)
∆k

q⊥

+ gik
⊥

(
(V⃗ ·p⃗q̄2′)(p⃗q̄2 ·∆⃗q)−(V⃗ ·p⃗q̄2)(p⃗q̄2′ ·∆⃗q)

)
+pk

q̄2⊥

(
(V⃗ ·p⃗q̄2′)∆i

q⊥−(p⃗q̄2′ ·∆⃗q)V i
⊥

)]
+ (V⃗ ·∆⃗q)

(
pi

q̄2⊥pk
q̄2′⊥ (1−2xq̄)2−gik

⊥ (p⃗q̄2 ·p⃗q̄2′)−pk
q̄2⊥pi

q̄2′⊥

)(
dz2−4xq (xq̄−1)

)} ]
+ (1↔ 1′,2↔ 2′, i↔ k)

)
+(q ↔ q̄). (D.16)

Here,
V i
⊥=xqpi

g⊥−zpi
q1⊥. (D.17)

The double dipole × dipole contribution has the form

Φi
4(p⃗1, p⃗2, p⃗3)Φk∗

3 (p⃗1′ , p⃗2′)=Φi
4(p⃗1, p⃗2, p⃗3)Φk∗

4 (p⃗1′ , p⃗2′ , 0⃗)+Φi
4(p⃗1, p⃗2, p⃗3)Φ̃k∗

3 (p⃗1′ , p⃗2′), (D.18)

where

Φi
4(p⃗1, p⃗2, p⃗3)Φ̃k∗

3 (p⃗1′ , p⃗2′)

=
2p+γ

2

∆⃗2
q

(
Q2+ p⃗ 2

g3
z + p⃗ 2

q1
xq

+ p⃗ 2
q̄2

xq̄

)(
Q2+

p⃗ 2
q̄2′

(z+xq)xq̄

)
×
[
((d−2)z−2xq)xq

(z+xq)3
(
gik
⊥ (p⃗q̄2′∆⃗q)+pq̄2′

i
⊥∆q⊥

k+pq̄2′⊥
k∆q⊥

i (1−2xq̄)
)

+
xq

(
((d−4)z−2xq)

(
gik
⊥ (p⃗q̄2′∆⃗q)+pi

q̄2′⊥∆k
q⊥

)
+pk

q̄2′⊥∆i
q⊥ (dz+2xq)(1−2xq̄)

)
(z+xq)2 (z+xq̄)

− 1

z (z+xq)2xq̄ (z+xq̄)2
(

Q2+ p⃗ 2
q1

xq(z+xq̄)

) {z((d−4)z+2)

×
[
pq1

i
⊥

(
(p⃗q̄2′∆⃗q)P k

⊥−(P⃗ p⃗q̄2′)∆q
k
⊥

)
(2xq−1)−(P⃗ p⃗q̄2′)

(
gik
⊥ (p⃗q1∆⃗q)+pq1

k
⊥∆q

i
⊥

)
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−P k
⊥

(
(p⃗q1∆⃗q)pq̄2′

i
⊥−(p⃗q1p⃗q̄2′)∆q

i
⊥

)]
+4xqz (1−2xq)pq1

i
⊥

(
(p⃗q̄2′∆⃗q)P k

⊥−(P⃗ p⃗q̄2′)∆q
k
⊥

)
+z (1−2xq̄)(dz+4xq−2)pq̄2′

k
⊥

(
(p⃗q1∆⃗q)P i

⊥−(P⃗ p⃗q1)∆q
i
⊥

)
−z((d−4)z−2)

×
[(

gik
⊥ (P⃗ p⃗q1)+P i

⊥pq1
k
⊥

)
(p⃗q̄2′∆⃗q)+

(
(P⃗ p⃗q1)pq̄2′

i
⊥−(p⃗q1p⃗q̄2′)P i

⊥

)
∆q

k
⊥

]
+(P⃗ ∆⃗q)pq1

i
⊥pq̄2′

k
⊥ (1−2xq)(1−2xq̄)(z(dz−2)−4xqxq̄)

− (P⃗ ∆⃗q)
(
gik
⊥ (p⃗q1p⃗q̄2′)+pq1

k
⊥pq̄2′

i
⊥

)
(z(2−(d−4)z)+4xqxq̄)

}
. (D.19)

As above, the dipole × double dipole contribution is obtained by complex conjugation and
changing the momenta.
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