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1 Introduction

Suppose we are interested in the quark current

j
(5)
0 = q̄

(5)
0 Γb

(5)
0 = Z

(5)
j (α(5)

s (µ))j(5)(µ) (1.1)

in QCD(5) (QCD with nf = 5), where q is a light-quark field, and Γ is a Dirac matrix.
For example, we want to obtain the matrix element ⟨0|j(5)(µ)|B̄⟩ (pB̄ = mBv). Instead of
the vacuum we can have, e. g., a light meson with a momentum p ≪ mB. This problem is
difficult because it contains a large scale mb plus several smaller scales. We can eliminate
this large scale by using Heavy Quark Effective Theory (HQET, see, e. g., [1–3]). We do
the following steps:

Running Express j(5)(µ) via j(5)(mb) (mb is the on-shell mass). The vector currents q̄γαb

doesn’t depend on the renormalization scale µ: γ
(5)
j (α(5)

s ) = d logZj(α(5)
s )/d logµ = 0;

moreover, it is the same for all nf , so that we can omit the upper index (5). The
scalar current (q̄b)(nf )

µ has γ
(nf )
j = −γ

(nf )
m ; the mass anomalous dimension γ

(nf )
m (α(nf )

s ) =
d logZ

(nf )
m (α(nf )

s )/d logµ (m(nf )
0 = Z

(nf )
m (α(nf )

s (µ))m(nf )(µ)) is known up to five loops [4–
6]. Multiplying Γ by γAC

5 (the anticommuting γ5) does not change the current’s anoma-
lous dimension. We have (q̄γAC

5 b)(nf )
µ = Z

(nf )
P (α(nf )

s (µ))(q̄γHV
5 b)(nf )

µ , (q̄γAC
5 γαb)(nf )

µ =
Z

(nf )
A (α(nf )

s (µ))(q̄γHV
5 γαb)(nf )

µ , (q̄γAC
5 σαβb)(nf )

µ = (q̄γHV
5 σαβb)(nf )

µ (where γHV
5 is the

’t Hooft-Veltman γ5); the finite renormalization constants Z
(nf )
P,A (α(nf )

s ) are known up
to three loops [7, 8]. The renormalized currents (q̄γHV

5 b)(nf )
µ , (q̄γHV

5 γαb)(nf )
µ are related

to (q̄γ[αγβγγγδ]b)(nf )
µ , (q̄γ[αγβγγ]b)(nf )

µ by the ordinary four-dimensional formulas with
εαβγδ (square brackets mean antisymmetrization). Hence the anomalous dimensions of
the currents j with Γ = γ[αγβγγγδ] and Γ = γ[αγβγγ] are known up to four loops. Finally,
the anomalous dimension of the tensor current (Γ = γ[αγβ]) is also known up to four
loops [9, 10]. In addition to the anomalous dimensions, one also needs the β function for
solving the renormalization group equations; it is known up to five loops [11–13].
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Matching Express j(5)(mb) via HQET(4) operators:

j(5)(mb) = C
(4)
Γ (mb)ȷ̃(4)(mb) +

1
2mb

∑
i

B
(4)
Γi (mb)O(4)

i (mb) +O
( 1

m2
b

)
, (1.2)

ȷ̃
(4)
0 = q̄

(4)
0 Γb̃

(4)
0 = Z̃

(4)
j (α(4)

s (µ))ȷ̃(4)(µ) ,

where b̃ is the HQET static field with the velocity v (we consider parts of Γ commuting
and anticommuting with /v separately in order to have a single leading-power term
in (1.2)). Here Oi are the dimension four HQET(4) operators with appropriate quantum
numbers [14–16]. The QCD/HQET matching coefficients C

(nf )
Γ are known at one [17],

two [18, 19] and three [20] loops.

Running Express ȷ̃(4)(mb) via ȷ̃(4)(µ) using γ̃
(4)
j (α(4)

s ) = d log Z̃
(4)
j (α(4)

s )/ logµ. This anoma-
lous dimension does not depend on Γ, and is known at one [21–23], two [24–26] and
three [27] loops. We can stop running at some µ ∈ [mc, mb] and find ⟨0|ȷ̃(4)(µ)|B̄⟩ using,
e. g., lattice simulations or QCD sum rules. But this problem still contains a large scale
mc. So, we can run down to mc and then eliminate this scale.

Matching Express ȷ̃(4)(mc) via HQET(3) operators:

ȷ̃(4)(mc) = C̃(3)(mc)ȷ̃(3)(mc) +
1

2mc

∑
i

B̃
(3)
i (mc)O(3)

i (mc) +O
( 1

m2
c

)
, (1.3)

where O
(3)
i are the dimension four HQET(3) operators with appropriate quantum numbers.

The matching coefficient C̃(3)(mc) (which does not depend on Γ) is known at two [19]
and three [28] loops. The matching coefficients B̃

(3)
i (mc) (as well as C̃(3)(mc)− 1) come

from diagrams with a c-quark loop, and hence start from two loops (α2
s).

Running Express ȷ̃(3)(mc) via ȷ̃(3)(µ) at some low µ. The anomalous dimension γ̃
(3)
j (α(3)

s )
in HQET(3) is given by the same formula as in HQET(4), just nf differs. Now we have
only low scales µ and Λ(3)

MS, and can use lattice simulations or QCD sum rules to find
matrix elements.

So, all matching coefficients are known up to three loops. For consistency, they should
be used with the four-loop anomalous dimension (see section 4). In this article we obtain
this previously unknown four-loop term. As an application, we consider fB/fD in section 4.

2 Calculation

In this section and the next one we’ll live in a single HQET(nf ) theory (with nf dynamic
flavors), and hence we’ll omit all upper indices (nf ). Due to superflavor symmetry [29], we can
use a spin 0 static field Q̃ with velocity v. We assume that all light quarks are massless — this
assumption does not influence the anomalous dimension γ̃j . Let’s define the vertex function
Γ̃(ω, p) as the sum of all one-particle-irreducible diagrams with an insertion of the current
ȷ̃0 = q̄0Q̃0, the incoming HQET line with residual energy ω and the outgoing light-quark
line with momentum p. Each diagram has an even number of γ matrices on the external
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fermion line, and hence the only possible Dirac structures of Γ̃(ω, p) are 1 and [/v, /p]. For
our purpose we can consider Γ̃(ω) ≡ Γ̃(ω, 0), because ω < 0 is sufficient to ensure infrared
finiteness. So, Γ̃(ω) is a scalar function; it contains a single scale ω.

We use dimensional regularization (d = 4 − 2ε) and MS renormalization. Our aim is
to obtain Z̃j(αs) = Z̃

1/2
Q (αs, a)Z1/2

q (αs, a)Z̃Γ(αs, a), where Z̃Γ(αs, a) is defined as following.
If we re-express Γ̃(ω) via the renormalized quantities αs(µ) and a(µ) instead of the bare
quantities g20 and a0 (where a0 = ZA(αs(µ), a(µ))a(µ) is the gauge parameter, ZA(αs, a)
is the gluon field renormalization constant), it becomes Z̃Γ(αs(µ), a(µ))Γ̃(ω;µ), where the
renormalized vertex function Γ̃(ω;µ) is finite at ε → 0. In other words,

log Γ̃(ω) = log Z̃Γ(αs(µ), a(µ)) +O(ε0) . (2.1)

Note that log Z̃Γ(αs(µ), a(µ)) must not depend on ω, while terms with non-negative powers
of ε, of course, do depend on ω. So, the anomalous dimension is

γ̃j(αs) = γ̃Γ(αs, a) + 1
2
[
γ̃Q(αs, a) + γq(αs, a)

]
, (2.2)

where γ̃Γ = d log Z̃Γ/d logµ, γ̃Q = d log Z̃Q/d logµ, γq = d logZq/d logµ. Note that γ̃Γ, γ̃Q,
γq taken separately are not gauge invariant (they depend on a); however, γ̃j is gauge invariant,
because ȷ̃ is a colorless local operator, so that all terms with a must cancel in (2.2). The
anomalous dimension γ̃Q is known up to four loops [30]; we need γq up to four loops (ξ0
and ξ1 terms), and these terms have been obtained in [31] (see [4–6, 13] for five-loop results
and the four-loop result exact in ξ).

We use the Mathematica package LiteRed [32, 33] for reduction of diagrams to master
integrals. More exactly, we use its new version LiteRed2 (https://github.com/rnlg/LiteRed2);
new features of this version are crucial for the calculation. A large portion of HQET diagrams
for Γ̃(ω) contain linearly dependent denominators. The package LiteRed2 allows the user to
define a set of scalar Feynman integrals with (possibly) dependent denominators. Families of
scalar integrals with linearly independent denominators are called bases (in physical literature
they are often called generic topologies). LiteRed2 can find external symmetries of sectors of
a set and sectors of several bases, and provides the mappings of the integration momenta
which implement these symmetries. It also implements the A. Pak’s partial-fractioning
algorithm [34].

After eliminating linearly dependent denominators, there are 19 families (bases) of scalar
integrals. Using integration by parts, they can be reduced to 54 master integrals [35]. Of
these master integrals, 13 are recursively one-loop (hence simple combinations of Γ functions);
10 can be expressed via 3F2 hypergeometric functions of unit argument using formulas
from [36–38] (in one case the 3F2 happens to be expressible via Γ functions, nobody knows
why); for 2 master integrals, a few terms of their ε expansions can be obtained from [39].
Expansions of all 54 master integrals in ε up to high orders (up to weight 12 terms) have
been obtained in [35], using DRA method [40].

We use the variant of the QCD Feynman rules without the four-gluon vertex, but
with an auxiliary antisymmetric tensor field ta

µν whose propagator does not depend on its
momentum; it interacts with gluons via a tAA vertex [41]. Then each diagram factorizes
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into a color factor and a loop integral; its integrand consists of the Lorentz factors of all
its vertices and propagators.

We use the covariant gauge: the gluon propagator is (1/k2)(gµν − ξkµkν/k2), ξ = 1− a0.
Up to three loops, we keep all powers of ξ; at four loops, we keep only ξ0 and ξ1. Higher
powers of ξ would produce many more terms in the loop integrands and higher degrees of
gluon denominators, thus making IBP reduction more difficult. In principle, we could do
the whole calculation in Feynman gauge ξ = 0, because the result γ̃j is gauge invariant.
But keeping ξ1 terms provides a good check: we keep ξ0 and ξ1 in all terms in (2.2) and
check that ξ1 terms have canceled.

We use qgraf [42] to generate all L-loop diagrams (L ≤ 4) for Γ̃(ω) (at four loops there
are 7632 diagrams). For each diagram qgraf produces three form [43, 44] sources.

• The first one contains the product of the color factors of all the vertices and propagators
in the diagram. Using the form package color [45] we obtain the color factors of all
diagrams (at four loops 445 diagrams having zero color factors are eliminated).

• The second one contains the product of the denominators of all the propagators expressed
via the loop momenta chosen by qgraf. Diagrams having identical sets of denominators
are combined to groups (at four loops there are 3063 such groups). For each group, we
use LiteRed2 to define the corresponding set; LiteRed2 also provides extra factors which
can appear only in numerators so that all scalar products of the vectors can be written
as linear combinations of the denominators and these numerator factors. Groups of
diagrams whose set contains only trivial (zero) sectors are eliminated (at four loops
1661 groups remain). For each non-zero group the Mathematica program produces
the “multiplication table” of the vectors (the loop momenta k1,...,4 and v) — a list of
substitutions replacing scalar products of the vectors by linear combinations of the
denominators (and the extra numerator factors). Of course, when the denominators are
linearly dependent, such expressions are not unique. The program chooses one possible
set of substitutions (using some systematic algorithm). LiteRed2 obtains mappings of
all non-zero sectors of each set to sectors of the 19 families of scalar integrals with
linearly-independent denominators.

• The third one contains the product of the Lorentz structures of all the vertices and
propagators in the diagram. The form program finds HQET loops (if at least one is
found, the diagram vanishes and is discarded); finds all quark loops (and calculates the
corresponding Dirac traces); contracts all Lorentz indices, thus producing the integrand
expressed via scalar products. Using the corresponding “multiplication table” from the
previous step, the integrand is expressed via the denominators only.

Then LiteRed2 transforms expressions for each diagram via scalar integrals belonging to
1661 sets (possibly with linear dependent denominators) to combinations of scalar integrals
belonging to 19 bases (with linearly independent denominators) by partial fractioning. All
unique scalar integrals for each basis are collected into a list, and LiteRed2 reduces them
to the master integrals (there are 183647 unique four-loop scalar integrals). The global
substitution list replacing all the scalar integrals by the corresponding linear combinations
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of the master integrals is produced. Each diagram is expressed via the master integrals.
Finally, Γ̃(ω) is calculated via the color factors and the master integrals, and ε expansions
of the master integrals [35] are substituted.

In order to have a good check, we have calculated γ̃Q by the same set of programs. Up
to three loops, the result agrees with [27, 46]. At four loops, we obtain only ξ0 and ξ1 terms,
and they agree with the corresponding terms in [30].

All pieces of the calculation are glued together by ad hoc python scripts orchestrated
by a Makefile. All calculations were done on a normal notebook, no supercomputer was
used. The total CPU time was about several days.

3 Result

The color factors are expressed via

Tr ta
Rtb

R = TRδab , ta
Rta

R = CR1R , NR = Tr1R ,

dRR′ = dabcd
R dabcd

R′

NR
, dabcd

R = Tr t
(a
R t

b
Rt

c
Rt

d)
R , (3.1)

where R = F , A are representations, and brackets mean symmetrization. For SU(Nc) gauge
group with the standard normalization TF = 1

2 they are

CF = N2
c − 1
2Nc

, CA = Nc ,

dF F = (N2
c − 1)(N4

c − 6N2
c + 18)

96N3
c

, dF A = (N2
c − 1)(N2

c + 6)
48 . (3.2)

The anomalous dimension of the HQET heavy-light current is

γ̃j(αs)=−3CF
αs

4π
+CF

(
αs

4π

)2[
−CF

(8
3π2− 5

2

)
+CA

3

(
2π2− 49

2

)
+10

3 TF nf

]
+CF

(
αs

4π

)3[
−C2

F

(
36ζ3+

8
9π4− 32

3 π2+37
2

)
+CF CA

3

(
142ζ3−

8
15π4− 592

9 π2− 655
12

)
−C2

A

3

(
22ζ3+

4
5π4− 130

9 π2− 1451
36

)
− 2
3CF TF nf

(
88ζ3−

112
9 π2− 235

3

)
+8
3CATF nf

(
19ζ3−

7
9π2− 64

9

)
+140

27 (TF nf )2
]

+
(

αs

4π

)4[
C4

F

(
1200ζ5−168ζ2

3 −
896
3 π2ζ3+394ζ3+

3884
2835π6− 4

15π4+136
3 π2− 691

8

)
−C3

F CA

(5660
3 ζ5−192ζ2

3 −
4576
9 π2ζ3+1275ζ3+

2659
2835π6− 119

45 π4+2398
9 π2− 3991

12

)
+C2

F C2
A

(434
3 ζ5−42ζ2

3 −
1916
9 π2ζ3+

39047
27 ζ3+

2087
1890π6− 2663

90 π4+41026
243 π2− 189671

324

)
+CF C3

A

(
492ζ5+30ζ2

3 +
352
9 π2ζ3−

14666
27 ζ3−

1439
8505π6+23

90π4− 7246
243 π2+179089

648

)
+8dF A

(
30ζ5+

106
3 π2ζ3−16ζ3−

452
567π6+29

9 π4+46
3 π2−8

)
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+4C3
F TF nf

(580
3 ζ5−

224
9 π2ζ3−24ζ3−

29
45π4+68

3 π2− 119
3

)
−C2

F CATF nf

3

(
1096ζ5−

736
3 π2ζ3+

18980
9 ζ3−

1138
45 π4− 9404

81 π2− 32093
27

)
−CF C2

ATF nf

(
308ζ5+24ζ2

3 +
128
9 π2ζ3−

20792
27 ζ3−

874
8505π6+56

27π4+5240
243 π2+27269

162

)
−32dF F nf

(
15ζ5+

8
3π2ζ3−8ζ3−

437
2835π6+4

9π4+20
3 π2−4

)
+16
27C2

F (TF nf )2
(
326ζ3−

11
5 π4+16

9 π2− 206
3

)
− 2
27CF CA(TF nf )2

(
2272ζ3−

76
5 π4+32

9 π2− 761
3

)
− 8
9CF (TF nf )3

(
16ζ3−

83
9

)]
+O(α5

s) (3.3)

Up to three loops, it agrees with [27]. Terms with the highest degrees of nf are known to all
orders in αs [18]; the CF (TF nf )3α4

s term in (3.3) agrees with this result. All the remaining
four-loop terms are new. The highest weight at L loops is 2(L − 1), at least up to L = 4.

The anomalous dimension (3.3) in the Mathematica syntax as the file gammaj.m is
attached to this article as supplementary material. The notations used are explained in
comments at the top of this file.

For the physical SU(3) color group, the numerical result is

γ̃j = − αs

π
+ (0.138889nf − 3.043282)

(
αs

π

)2
+ (0.027006n2

f + 1.554061nf − 12.941040)
(

αs

π

)3
+ (−0.005793n3

f − 0.168484n2
f + 12.158867nf − 59.446998)

(
αs

π

)4
. (3.4)

At nf = 4,

γ̃j = −αs

π
− 2.487726

(
αs

π

)2
− 6.292698

(
αs

π

)3
− 13.878042

(
αs

π

)4
. (3.5)

At the leading large β0 order (b = β0αs/(4π) ∼ 1, 1/β0 ≪ 1, see, e. g., chapter 8
in [3]) we have [18]

γ̃j =−CF
b

β0

(
1+ 2

3b
)
Γ(4+2b)

Γ2(2+b)Γ(3+b)Γ(1−b)+O
( 1

β2
0

)
(3.6)

=−3CF
b

β0

[
1+5

6b− 35
36b2−

(
2ζ3−

83
72

)
b3−

(
5ζ3−

π4

10+
65
16

)
b4

3 +O(b5)
]
+O

( 1
β2
0

)
.

At nf = 4,

γ̃j = −αs

π
− 1.736111

(
αs

π

)2
+ 4.219715

(
αs

π

)3
+ 11.314887

(
αs

π

)4
+ 2.083958

(
αs

π

)5
+ · · · .

(3.7)
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This approximation usually works rather well for matching coefficients and other renormalized
matrix elements (which usually contain renormalons), but absolutely does not work for
anomalous dimensions.

4 The ratio fB/fD

The decay constant fB is defined by ⟨0|j(5)|B̄⟩ = mBfB, where the current j has Dirac
structure Γ = γAC

5 /v. In HQET we need to use non-relativistic normalization of states
|B̄⟩ =

√
2mB|B̄⟩nr: ⟨0|ȷ̃(4)(µ)|B̄⟩nr = F (4)(µ), and

fB =
√

2
mB

C
(4)
/v (mb)F (4)(mb)

×
[
1 + 1

2mb

(
C

(4)
/v,Λ

(mb)Λ̄ + G
(4)
k (mb) + C(4)

m (mb)G(4)
m (mb)

)
+O

( 1
m2

b

)]
, (4.1)

where Λ̄ = mB − mb,

⟨0|O(4)
j,k (µ)|B̄⟩nr = F (4)(µ)G(4)

k (µ) , O
(4)
j,k0 =

∫
dx T{ȷ̃

(4)
0 (0), O

(4)
k0 (x)} ,

G
(4)
m (µ) is defined similarly, Ok,m are the kinetic energy operator and the chromomagnetic

interaction operator in the HQET Lagrangian

L = ¯̃Q0iD · vQ̃0 +
Ok0 + Cm0Om0

2mQ
+O

( 1
m2

Q

)
(see, e. g., (3.17) in [16]). The formula for fD is similar. Running of F (nf )(µ) is given by
the solution of the renormalization group equation:

F (nf )(µ) = F̂ (nf )
(

α
(nf )
s (µ)
4π

)̃γj0/(2β
(nf )
0 )

K(nf )(α(nf )
s (µ)) , (4.2)

K(nf )(αs) = exp
∫ αs

0

dαs

αs

(
γ̃
(nf )
j (αs)

2β(nf )(αs)
− γ̃j0

2β
(nf )
0

)
.

Here

β(nf )(α(nf )
s ) = −1

2
d logα

(nf )
s

d logµ
=

∞∑
L=1

β
(nf )
L−1

(
α
(nf )
s

4π

)L

, β
(nf )
0 = 11

3 CA − 4
3TF nf ,

γ̃
(nf )
j (αs) = γ̃j0

αs

4π
+

∞∑
L=2

γ̃
(nf )
j,L−1

(
αs

4π

)L

.

So, the ratio fB/fD is

fB

fD
=

√
mD

mB

C
(4)
/v (mb)

C
(3)
/v (mc)

C̃(3)(mc)
(

α
(4)
s (mb)

α
(4)
s (mc)

)̃γj0/(2β
(4)
0 )K(4)(α(4)

s (mb))
K(4)(α(4)

s (mc))

×
[
1 + A

( 1
mc

− 1
mb

)
+O

( 1
m2

c,b

)]
. (4.3)
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The nonperturbative parameters Gk,m were estimated from HQET sum rules [47, 48], their
precision is not high. Therefore we use the tree-level values C/v,Λ = −1, Cm = 1, neglect
running of Gk,m and their differences between nf = 4 and 3, and neglect the α2

s/mc corrections
in (1.3):

A = 1
2
(
Λ̄− Gk − Gm

)
. (4.4)

We obtain

fB

fD
=

√
mD

mB
x−γ̃j0/(2β

(4)
0 )

{
1 + r1(x − 1)as +

[
r20 + r21(x2 − 1) + r21

2 (x − 1)2
]
a2

s

+
[
r30 + r31(x3 − 1) + r31

6 (x − 1)3 + r1r20(x − 1) + r1r21(x − 1)(x2 − 1)
]
a3

s

+ A

( 1
mc

− 1
mb

)
+O

(
α4

s,
1

m2
c,b

)}
, (4.5)

where as = α
(4)
s (mb)/(4π), x = α

(4)
s (mc)/α

(4)
s (mb),

r1 =−c1−
γ̃j0

2β
(4)
0

(
γ̃

(4)
j1

γ̃j0
− β

(4)
1

β
(4)
0

)
, r20 = c

(4)
2 −c

(3)
2 +z2 ,

r21 =−c
(3)
2 + c2

1
2 +z2+

γ̃j0

4β
(4)
0

[
−

γ̃
(4)
j2

γ̃j0
+ β

(4)
1

β
(4)
0

γ̃
(4)
j1

γ̃j0
+ β

(4)
2

β
(4)
0

−
(

β
(4)
1

β
(4)
0

)2]
,

r30 = c
(4)
3 −c

(3)
3 −c1

(
c

(4)
2 −c

(3)
2 +d2

)
+z3 ,

r31 =−c
(3)
3 +c1(c(3)

2 −d2)−
c3

1
3 +z3

+ γ̃j0

6β
(4)
0

[
−

γ̃
(4)
j3

γ̃j0
+ β

(4)
1

β
(4)
0

γ̃
(4)
j2

γ̃j0
+ β

(4)
2

β
(4)
0

γ̃
(4)
j1

γ̃j0
−
(

β
(4)
1

β
(4)
0

)2 γ̃
(4)
j1

γ̃j0
+ β

(4)
3

β
(4)
0

−2β
(4)
1

β
(4)
0

β
(4)
2

β
(4)
0

+
(

β
(4)
1

β
(4)
0

)3]
,

C
(nf )
/v (mQ)= 1+c1

α
(nf )
s (mQ)

4π
+

∞∑
L=2

c
(nf )
L

(
α

(nf )
s (mQ)

4π

)L

,

C̃(nf )(mQ)= 1+z2

(
α

(nf +1)
s (mQ)

4π

)2
+

∞∑
L=3

z
(nf )
L

(
α

(nf +1)
s (mQ)

4π

)L

,

α
(3)
s (mc)
4π

= α
(4)
s (mc)
4π

[
1+

∞∑
L=2

dL

(
α

(4)
s (mc)
4π

)L]

(where mQ = mb for nf = 4 and mc for nf = 3), cf. (43–44) in [49]. The terms up to a2
s

were obtained in [27], the a3
s term is new. The result [20] (https://www.ttp.kit.edu/Pr

ogdata/ttp09/ttp09-41/) for C
(nf )
/v (mQ) is expressed via α

(nf )
s (mQ), and the result [28]

(https://www.ttp.kit.edu/Progdata/ttp06/ttp06-25/) for C̃(nf )(mQ) via α
(nf+1)
s (mQ). It

would be more logical to express both results either via α
(nf )
s (mQ) or via α

(nf+1)
s (mQ). But

up to our accuracy level we may simply replace α
(nf+1)
s (mQ) → α

(nf )
s (mQ) in the formula for

C̃(nf )(mQ) [28]. The coefficients β
(nf )
L−1 for L ≤ 4 have been obtained in [31, 50] (see [11–13] for

the five-loop result); the two-loop decoupling coefficient d2 =
(
−15CF + 32

3 CA

)
TF is from [51].
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Terms in C
(4)
Γ with c-quark loops are non-trivial functions of mc/mb; for them, at two loops

we use the exact formula [18], and at four loops — the expansion up to (mc/mb)8 [20]. For the
coupling constants we used RunDec [52, 53] version 3.1 and got α

(4)
s (mb) = 0.215, x = 1.63.

Numerically (the sum rules result [48] is A ∼ 1GeV with large errors)

fB

fD
= 0.669 ·

[
1 + 0.566α

(4)
s (mb)

π
+ 6.176

(
α
(4)
s (mb)

π

)2
+ 99.170

(
α
(4)
s (mb)

π

)3
+ [∼ 1GeV] ·

( 1
mc

− 1
mb

)]
= 0.669 · (1 + 0.039 + 0.029 + 0.032 + [∼ 0.46]) (4.6)

(an estimate of the first 1/mc,b correction is in square brackets). Convergence of the per-
turbative series is questionable, though each perturbative correction is small. If we omit
the power correction, the result is fB/fD = 0.669 · 1.100 = 0.736; with the estimate of the
power correction included, it is 0.669 · 1.56 = 1.04.

At the leading large β0 order we have [18] (see also chapter 8 in [3])

K(αs(mb))C/v(mb) = 1 + 1
β0

∫ ∞

0
du e−u/bS(u) +O

( 1
β2
0

)
, (4.7)

S(u) = −3CF

[
e

5
3 uΓ(u)Γ(1− 2u)

Γ(3− u) (1− u − u2)− 1
2u

]
,

where b = β0as. At this accuracy level differences of various quantities for nf = 4 and 3
can be neglected, and C̃(mc) = 1. We obtain

fB

fD
=

√
mD

mB
x−γ̃j0/(2β0)

[
1 + 1

β0

∫ ∞

0
du

(
e−u/b − e−u/(xb))S(u) +O

( 1
β2
0

)]
×

[
1 + A

( 1
mc

− 1
mb

)
+O

( 1
m2

c,b

)]
. (4.8)

Expanding S(u) in u we find the first square bracket in (4.8) as

1 + CF
b

β0

[13
4 (x − 1) + 1

2

(
π2 + 53

12

)
(x2 − 1)b +

(
6ζ3 +

13
6 π2 − 751

216

)
(x3 − 1)b2

+
(
39ζ3 +

9
10π4 + 53

12π2 − 16771
432

)
(x4 − 1)b3 +O(b4)

]
+O

( 1
β2
0

)
. (4.9)

This expression reproduces all terms with the largest degrees of nf at each order in αs

in (4.5). Numerically, (4.9) gives

1 + 0.686α
(4)
s (mb)

π
+ 8.271

(
α
(4)
s (mb)

π

)2
+ 121.97

(
α
(4)
s (mb)

π

)3
+ 2567.6

(
α
(4)
s (mb)

π

)4
+ · · ·

= 1 + 0.047 + 0.039 + 0.039 + 0.056 + · · · (4.10)

Comparing this series with (4.6) we see that naive nonabelianization [18] works rather well
up to the N3LL level.

– 9 –
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Of course, the integral (4.7) is ill defined due to IR renormalon poles at positive u. We can
use, e. g., the principal value prescription. Other prescriptions would produce different results;
the residue at the leading renormalon pole u = 1

2 is a measure of theoretical uncertainty [18]:

∆C/v(µ) =
1
4
∆Λ̄
mQ

, where ∆Λ̄ = −2CF
e5/6ΛMS

β0

is the leading UV renormalon ambiguity of Λ̄. Using also the UV renormalon ambiguities
∆Gk = −3

2∆Λ̄, ∆Gm = 2∆Λ̄ [54] (see also [18] and chapter 8 in [3]) we see that the
renormalon ambiguities in fB/fD cancel [54]. Each prescription for summing the divergent
series (4.7) corresponds to some values of Λ̄, Gk, Gm; when we change the prescription,
these values change accordingly. The sum of the divergent perturbative series (4.10) (the
first square bracket in (4.8)) is, according to the principal value prescription, 1.077± 0.025.
Here the theoretical uncertainty is

CF

2
e5/6Λ(4)

MS

β
(4)
0

( 1
mc

− 1
mb

)
,

and Λ(4)
MS = 292MeV, according to RunDec 3.1. In other words, the all-orders leading large

β0 result (without power corrections) is fB/fD = 0.721 ± 0.016.
We can also try to estimate the sum of the divergent perturbative series (4.6) without

resorting to the large β0 limit. This series can be written as

1 + cαs

(
1 +

∞∑
n=1

cnαn
s

)
= 1 + c

∫ ∞

0
du e−u/αsS(u) , S(u) = 1 +

∞∑
n=1

cn
un

n! (4.11)

(αs ≡ α
(4)
s (mb)). Then we replace the series S(u) by the Padé approximant (1+p1u)/(1+p2u),

where p1,2 are obtained from the known coefficients c1,2: S(u) = (1 + 0.917u)/(1− 2.555u).
This rational function has a pole at u0 = 0.391; the radius of convergence of the series S(u)
is u0. Expanding the approximant we get

1 + 0.566αs

π
+ 6.176

(
αs

π

)2
+ 99.17

(
αs

π

)3
+ 2388

(
αs

π

)4
+ 76699

(
αs

π

)5
+ · · ·

(the first 3 corrections coincide with (4.6) by construction, the next ones are an extrapolation
due to the Padé approximant). All corrections are positive, the coefficients grow fast. We
define the sum of this series as the principal value of the integral in u. The estimate of the
theoretical uncertainty is given by the residue at the pole u = u0. The sum of the perturbative
series, estimated using this method, is 1.053 ± 0.016. In other words, the all-orders result
(without power corrections) is fB/fD = 0.705 ± 0.010.

The effect of the (poorly known) 1/mc,b correction is large. It would be interesting to
extract Gk,m from HQET lattice simulations. The 1/m2

c,b corrections (see [55, 56]) also can
be substantial and deserve further investigation.

The lattice results [57] fB = (190.0 ± 1.3)MeV and fD = (212.0 ± 0.7)MeV lead to
fB/fD = 0.896± 0.009 (the errors of fB and fD may be correlated, so, we have added the
relative errors linearly; if we believe that they are uncorrelated, the errors can be added
quadratically, producing ±0.007).

– 10 –
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5 Conclusion

The anomalous dimension of the heavy-light quark current in HQET is now known up to
four loops (3.3). The perturbative corrections to the ratio fB/fD are now known up to
the N3LL level (4.5).
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