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In the present paper, we consider processes involving the emission of soft photons in the presence of a
strong laser field. We demonstrate that the matrix element S for a process i → f þ γ, with a soft photon γ,
can be expressed in terms of the matrix element S0 for the process i → f through a simple multiplicative
factor in the integrand over ϕ. This approximation enables a result that is exact in the phase and
approximate in the prefactor to order Oðω=εcharÞ, where ω is the frequency of the soft photon and εchar is
the characteristic energy of the i → f process. We demonstrate several important applications of this
soft photon approximation. First, under soft photon approximation we compute the probabilities of
nonlinear Compton scattering and photon emission in the superposition of a laser and atomic fields and
compare obtained result with the exact one. Second, we demonstrate that the amplitude of n soft photons
emission has factorization, which corresponds to the independence of the emission of n soft photons.
Third, we use the discussed approximation to prove cancellation of real and virtual infrared divergences
for nonlinear Compton scattering and derive the finite radiative corrections. The soft photon
approximation is a useful tool for investigation of different QED processes in the presence of a strong
laser field. Also, it can be widely used for computation of infrared part of radiative correction for some
processes.

DOI: 10.1103/PhysRevD.109.076002

I. INTRODUCTION

High-intensity laser pulses, enabled by chirped pulse
amplification [1], have great potential as a tool to probe
quantum electrodynamics (QED) in intense background
fields. The presence of intense background electromagnetic
fields open up new opportunities for experimental and
theoretical studies of QED in the nonlinear strong-field
regime, where background fields strongly affect the physi-
cal processes and dynamics of charged particles.
The theoretical description of basic strong-field QED

processes like nonlinear Compton scattering [2–12] and
nonlinear Breit-Wheeler pair production [2,5,13–21] was
studied in detail by approximating the laser field as a plane
wave; see reviews [5,22–26]. The results of computations are
muchmore difficult structure than the corresponding result in
the vacuum case, even for these 1 → 2 processes (nonlinear
Compton scattering andBreit-Wheeler pair production). The
processes 1 → 3 and 2 → 2, such as double nonlinear
Compton scattering, electron trident production, electron-

positron annihilation into two photons, etc., have a much
more complex structure of theoretical results compared to the
1 → 2 processes in the presence of intense laser fields.
The complexity of the results increases exponentially

with the number of particles in the initial and final states.
Thus, developing approximate methods is critical. They
allow for deriving new results and analyzing and verifying
the exact results. There currently exist several approximate
methods for QED processes in intense laser fields, such as
the local constant field approximation [5,23,27], the qua-
siclassical approximation [23,28], see also reviews [25,26].
It is well known that the lower the photon emission energy,
the higher the emission probability. Therefore, studying
processes involving soft photon emission is essential.
The present work is devoted to studying this problem. We

demonstrate that the matrix element S for the process
i → f þ γ involving a soft photon γ can be expressed in
terms of the matrix element S0 of the process i → f, where i
and f denote the set of initial and final particles. This
approximation is an analogue of the soft photon approxi-
mation for studying QED processes in the absence of strong
external fields. This substantially simplifies the matrix
element, making it an approximation of the prefactor while
retaining an exact phase. We discuss several simple appli-
cations of the soft photon approximation. We also examine
the factorization of n-photon emission amplitudes and the
cancellation between real and virtual infrared divergences.
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II. AMPLITUDE OF SOFT PHOTON EMISSION

Let dW0 be the probability (cross section) for a given
“hard” process i → f of charged particles in the presence of
a strong laser field, which may be accompanied by the
emission of a certain number of photons. Where i and f
denote the set of initial and final particles. Together with
this process, we will consider another that differs from it
only in that one extra photon is emitted. If the frequency ω
of this photon is sufficiently small (the necessary conditions
will be formulated below), the probability dW for the second
process (i → f þ γ) is related in a simple manner to dW0. In
this case, we can neglect the influence of the emission of this
quantum on the i → f process. The probability dW can
therefore be simply represented through dW0 and the
probability dI of single photon emission in the collision
in the presence of a strong laser field.
The diagrams for the process involving an additional

photon are obtained from those for the original process by
adding an external photon line that “branches off” for an
(external or internal) electron line. It is easily seen that the
most important diagrams will be those in which this change
is made in external electron lines. If p and k are the
momenta of an external electron line and soft photon, the
Green’s function Gðp� kÞ added to the diagram is near
the pole for small ω ¼ k0. That is, when a photon is emitted
from an initial or final electron, it has a large formation
length [5,29]. However, for photon emission from an
internal electron line, the formation length is restricted
by the hard sub-processes in the diagram. In other words,
the matrix element with the photon emission from the
internal line will be suppressed in comparison to the matrix

element with the photon emission from the external line by
the factors

ffiffiffiffiffi
q2

p
=ω, where q2 is a virtuality of the

intermediate electron.
Resonances exist in many QED processes in the pres-

ence of a long laser pulse. These resonances relate to the
electron in the intermediate state being near the mass
surface, which leads to a cascade. The radiation in the
intermediate state will not be suppressed in this cascade.
However, the emission of soft photons in these cascade
processes falls outside the scope of this article and will not
be considered.
The matrix element of the “hard” processes S0 can be

represented in the following manner:

S0 ¼
Z

d4xŪðoutÞ
p0 ðxÞÔðP;XÞUðinÞ

p ðxÞ; ð1Þ

where Ô is an operator, which depends on the type of a
process, P and X are operators, and UpðxÞ is an electron
wave function in the presence of a laser field (Volkov’s
solution) with an asymptotically four-momentum p, see
Eq. (A3). See also Sec. VI for definition and useful
formulas. Here, for simplicity, we assume that in the
process there is one initial and one final electron. The
results will be summarized below for the case of several
charged particles in the initial and final states. Matrix
element S can be represented as a sum S ¼ S1 þ S2, where
S1 and S2 correspond to photon emission from initial and
final states, respectively. We neglect the contribution of
diagrams related to radiation in intermediate states. Matrix
elements S1;2 have the following form:

S1 ¼ e
Z

d4xŪðoutÞ
p0 ðxÞÔðP; XÞ 1

½Π̂ðΦÞ�2 −m2 þ i0
½Π̂ðΦÞ þm�eikXê�UðinÞ

p ðxÞ;

S2 ¼ e
Z

d4xŪðoutÞ
p0 ðxÞeikXê�½Π̂ðΦÞ þm� 1

½Π̂ðΦÞ�2 −m2 þ i0
ÔðP;XÞUðinÞ

p; ðxÞ; ð2Þ

where operator Ô is the same as in Eq. (1), e is the electron charge, eμ and kμ are photon polarization and momentum vector,
and ΠμðΦÞ ¼ Pμ − eAμðΦÞ with Pμ ¼ i∂μ.
In order to simplify the expression for S1 under the soft photon assumption, let us consider the quantity,

τ ¼ 1

½Π̂ðΦÞ�2 −m2 þ i0
½Π̂ðΦÞ þm�eikXê�UðinÞ

p ðxÞ ¼ eikX
1

½Π̂ðΦÞ − k̂�2 −m2 þ i0
½Π̂ðΦÞ − k̂þm�ê�UðinÞ

p ðxÞ

¼ eikX
1

½Π̂ðΦÞ − k̂�2 −m2 þ i0

�
2πp;λðϕÞ þ i

en̂Â0ðϕÞ
p−

nλ − k̂γλ

�
e�λUðinÞ

p ðxÞ: ð3Þ

Here we commute operators Π̂ and ê� and use Dirac equation and the following identities:

ΠλðϕÞUðinÞ
p ðxÞ ¼

�
πλpðϕÞ þ i

en̂Â0ðϕÞ
2p−

nλ
�
UðinÞ

p ðxÞ; ð4Þ
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where

πλpðϕÞ ¼ pλ − eAλðϕÞ þ eðpAðϕÞÞ
p−

nλ −
e2A2ðϕÞ
2p−

nλ; ð5Þ

is the classical kinetic four-momentum of an electron in the plane wave AμðϕÞ, with limϕ→�∞π
λ
pðϕÞ ¼ pλ. Note that

πpðϕÞ2 ¼ p2 and πp−ðϕÞ ¼ p−.
Using the integral representation of the squared electron propagator Eq. (A6) and identities Eqs. (A1) and (A2), we obtain

the following result:

τ ¼ −ieikx−iðp−T−x⊥·p⊥Þ
Z

∞

0

due−im
2u

�
1 −

en̂½ÂðϕuÞ − ÂðϕÞ�
2ðp− − k−Þ

�
e−i

R
u

0
du0½p⊥−k⊥−eA⊥ðϕu0 Þ�2

× e−2iuðp−−k−ÞðPϕþkþÞ
�
2πp;λðϕÞ þ i

en̂Â0ðϕÞ
p−

nλ − k̂γλ

�
e�λUðinÞ

p ðϕÞ

¼ −ieikx−iðp−T−x⊥·p⊥Þ
Z

∞

0

due−im
2u

�
1 −

en̂½ÂðϕuÞ − ÂðϕÞ�
2ðp− − k−Þ

�
e−i

R
u

0
du0½p⊥−k⊥−eA⊥ðϕu0 Þ�2

× e−2iuðp−−k−Þkþ
�
2πp;λðϕuÞ þ i

en̂Â0ðϕuÞ
p−

nλ − k̂γλ

�
e�λUðinÞ

p ðϕuÞ; ð6Þ

where ϕu ¼ ϕ − 2uðp− − k−Þ and the function UðinÞ
p ðϕÞ ¼ UðinÞ

p ðxÞeiðp−T−x⊥·p⊥Þ depends only on ϕ. The quantity UðinÞ
p ðϕuÞ

can be expressed through UðinÞ
p ðϕÞ by the identity

UðinÞ
p ðϕuÞ ¼

�
1þ en̂½ÂðϕuÞ − ÂðϕÞ�

2p−

�
e
i

�
−pþðϕu−ϕÞ−

R
ϕu
ϕ

dϕ0

�
−ep⊥ ·A⊥ðϕ0Þ

p−
þe2A2⊥ðϕ0Þ

2p−

��
UðinÞ

p ðϕÞ:

The final result has the following form:

τ ¼ −ieikX
Z

∞

0

due−im
2uei

R
u

0
du0½πpðϕu

0Þ−k�2
�
1 −

en̂½ÂðϕuÞ − ÂðϕÞ�
2ðp− − k−Þ

�

×

�
2πp;λðϕuÞ þ i

en̂Â0ðϕuÞ
p−

nλ − k̂γλ

�
e�λ

�
1þ en̂½ÂðϕuÞ − ÂðϕÞ�

2p−

�
UðinÞ

p ðxÞ

¼ −ieikX
Z

∞

0

due−2i
R

u

0
du0ðπpðϕu

0ÞkÞ
�
1 −

en̂½ÂðϕuÞ − ÂðϕÞ�
2ðp− − k−Þ

�

×

�
2πp;λðϕuÞ þ i

en̂Â0ðϕuÞ
p−

nλ − k̂γλ

�
e�λ

�
1þ en̂½ÂðϕuÞ − ÂðϕÞ�

2p−

�
UðinÞ

p ðxÞ: ð7Þ

Here we use a method similar to [30]. This is an accurate result because, up to this point, we have not yet used the smallness
of ω. To obtain the result for k ≪ p, we can neglect a term proportional to kμ in the preexponential factor. It should be noted

that the quantity dAμðϕuÞ
dϕu

can be expressed in the form,

dAμðϕuÞ
dϕu

¼ −1
2ðp− − k−Þ

dðAμðϕuÞ − AμðϕÞÞ
du

;

and that following integration by parts, this term will be proportional to k and can also be neglected. Thus, the final result
has the following form:
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τ ¼ −2ieikX
Z

∞

0

due−2i
R

u

0
du0ðπp0 ðϕu0 ÞkÞðπp0 ðϕuÞe�ÞUðinÞ

p ðxÞ:

ð8Þ

The amplitudes, which correspond to the photon emis-
sion by the final electron and the initial (final) positron, are
obtained in a similar way. The final result for all four cases
has the following form:

1

½Π̂ðΦÞ� −mþ i0
ê�eikXUðinÞ

p ðxÞ ¼ Fð−Þ
p ðϕÞeikXUðinÞ

p ðxÞ;

ŪðoutÞ
p ðxÞeikXê� 1

½Π̂ðΦÞ� −mþ i0
¼ FðþÞ

p ðϕÞeikXŪðoutÞ
p ðxÞ;

1

½Π̂ðΦÞ� −mþ i0
ê�eikXVðoutÞ

p ðxÞ ¼ GðþÞ
p ðϕÞeikXVðoutÞ

p ðxÞ;

V̄ðinÞ
p ðxÞeikXê� 1

½Π̂ðΦÞ� −mþ i0
¼ Gð−Þ

p ðϕÞeikXV̄ðinÞ
p ðxÞ;

ð9Þ

where

Fð−Þ
p ðϕÞ ¼ −i

Z
ϕ

−∞

dφ
p−

e
−i
R

ϕ

φ

dφ0
p−−k−

ðπpðφ0ÞkÞðπpðφÞe�Þ;

FðþÞ
p ðϕÞ ¼ −i

Z þ∞

ϕ

dφ
p−

e
i
R

φ

ϕ

dφ0
p−þk−

ðπpðφ0ÞkÞðπpðφÞe�Þ;

Gð−Þ
p ðϕÞ ¼ −i

Z
ϕ

−∞

dφ
p−

e
i
R

ϕ

φ

dφ0
p−−k−

ðπ−pðφ0ÞkÞðπ−pðφÞe�Þ;

GðþÞ
p ðϕÞ ¼ −i

Z þ∞

ϕ

dφ
p−

e
−i
R

φ

ϕ

dφ0
p−þk−

ðπ−pðφ0ÞkÞðπ−pðφÞe�Þ:

ð10Þ

Note that the quantity π−pðφÞ that occurs in the positron
factor (10) can be represented as −πpðφÞ with the sub-
stitution e → −e, where e is an electron charge.
The matrix elements S1;2 have the following form

S1 ¼
Z

d4xŪðoutÞ
p0 ðxÞÔðP;XÞUðinÞ

p ðxÞFð−Þ
p ðϕÞ;

S2 ¼
Z

d4xFðþÞ
p ðϕÞŪðoutÞ

p0 ðxÞÔðP; XÞUðinÞ
p ðxÞ;

S ¼ S1 þ S2 ¼
Z

dϕS̃0ðϕÞðFð−Þ
p ðϕÞ þ FðþÞ

p0 ðϕÞÞ; ð11Þ

where S0 ¼
R
dϕS̃0ðϕÞ. Here we assume that S̃0 depends

on one phase. In the general case, S̃0 should depend on
several different phases ϕi. For example, for double
Compton scattering, the integrand S0 depends on two
phases. In such a case, different factors will depend on
different phases. The characteristic phase difference is
ϕi − ϕj ≪ φchar, where φchar is the formation length of

soft photon emission. Thus,we can use the same phase for all
factors. The same reasoning holds if we consider the
probability of some given processes. After partial integration
over the phase space of the “hard” process, the phase
difference between the integrands S0 and S�0 became
ϕ − ϕ0 ≪ φchar.
The recipe for using the soft photon approximation is as

follows. To obtain the amplitude S from the amplitude of
the “hard” process S0, we should multiply the integrand S0
with respect to the variable ϕ by the sum of the factors.
Where each factor corresponds to the photon emission from
a given external charged particle.
Note that the final result is a gauge invariant with the

required accuracy since, when replacing eμ with kμ in the
integrand of F�

p we get the full derivative.
The conditions for the applicability of soft photon

radiation are as follows. First, we assume that ω ≪ ε
and k− ≪ p−. Another condition is that we can neglect
the photon momenta in the amplitude S0. This condition
depends on the process and cannot be described in a
general way.
It is interesting to compare the obtained results with the

classical photon emission [31]. If we neglect k− in
comparison with p− in the phase, the result in (10) will
coincide with the classical one [31], obtained by discon-
tinuously changing current density four-vector. Note that in
the approximation under consideration, we neglect terms
proportional to kμ only in the preexponential factors. We
calculate the phase multiplier exactly. The exact account of
k in a phase is very important even in the case of ω ≪ ε due
to the integration of a laser pulse length in phase. The
difference in phase in the order of unity significantly
changes the probability. Factors (10) are independent of
the spin of a particle and valid also for particles with
arbitrary spin.

A. Special cases

(i) For the absence of the laser field, factors Fð�Þ
p have

the following form

Fð�Þ
p ðϕÞ ¼ �pe�

pk
;

which coincides with the ordinary soft photon
approximation factor [31];

(ii) In the case of p−ω0 ≪ πpk, where ω0 is a laser field
frequency, the result is significantly simplified to

FpðϕÞð�Þ ¼ � πpðϕÞe�
πpðϕÞk

; ð12Þ

which corresponds to the local constant field
approximation. Note that in the case under consid-
eration, the process S0 should also be considered in
the local constant field approximation.
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(iii) For the high-energy particles counterpropagating to the laser field, we have

kπp ¼ ω

2ε
ðm2 þ ðεθpk − AÞ2Þ; πpe ¼ −ðεθpk − eAÞ · e;

where θpk ¼ p⊥=ε − k⊥=ω. Here, we assume that the soft photon direction almost coincides with the charge particle
direction. This assumption is obvious because the character angle between an emitted photon and a charged particle
is θchar ∼m=ε. For such a case, we have

FðþÞ
p ðTÞ ¼ i

Z
∞

T

dT 0

ε
ei

ω
2ε2

R
T0
T

dT 00ðm2þðεθpk−eAðT 00ÞÞ2Þðεθpk − eAðT 0ÞÞ · e;

Fð−Þ
p ðTÞ ¼ i

Z
T

−∞

dT 0

ε
ei

ω
2ε2

R
T0
T

dT 00ðm2þðεθpk−eAðT 00ÞÞ2Þðεθpk − eAðT 0ÞÞ · e; ð13Þ

where we use the notations that are often used under these conditions. They differ from ours by replacing ϕ ↔ T;

(iv) In the case of a plane wave field with frequency ω0

and conditions p−ω0 ≫ pk, the result is simplified.
In this case we can use the average in the period
value. Thus, the πμp ¼ pμ þ m2ξ2

2p−
nμ does not depend

on ϕ, and we can use Eq. (12) with πp discussed
above. Where ξ ¼ jejE0=mω0, E0, and ω0 are
the laser electric field amplitude and its angular
frequency;

(v) If the direction of the emitted photon coincides with
the laser propagation direction of a laser field n, the
quantity kπpðϕÞ ¼ p−ω does not depend on ϕ and
πpðϕÞe� ¼ ðp − eAðϕÞÞe�, we have

Fð−Þ
p ðϕÞ¼−i

Z
ϕ

−∞

dφ
p−

eiðφ−ϕÞωðp−eAðϕÞÞe�;

FðþÞ
p ðϕÞ¼−i

Z þ∞

ϕ

dφ
p−

eiðφ−ϕÞωðp−eAðϕÞÞe�; ð14Þ

This result is consistent with [32], where the
emission of photons collinear with the laser field
direction is discussed.

III. EXAMPLES

Here we present several examples of soft photon
approximation. The goal of this section is to show how
to use the obtained approximation and compare the
approximate result with the previously known exact results.

A. Nonlinear Compton scattering

The nonlinear Compton scattering has been extensively
studied, see Refs. [2–12]. The matrix element has the form

S ¼
Z

d4xŪðoutÞ
p0 ðxÞeikXê�UðinÞ

p ðxÞ;

where p, p0, and k are the momentum of the initial electron,
final electron, and emitted photon, respectively. eμ is a
photon polarization vector.
At first glance, it seems that the soft photon approxi-

mation is not applicable for this process. There is no “hard
part” of the process. Nevertheless, we can apply this
approximation in the following way

S ¼ 1

2

Z
d4xŪðoutÞ

p0 ðxÞ½Π̂ðΦÞ −m� 1

½Π̂ðΦÞ�2 −m2 þ i0
½Π̂ðΦÞ þm�eikXê�UðinÞ

p ðxÞ

þ 1

2

Z
d4xŪðoutÞ

p0 ðxÞeikXê�½Π̂ðΦÞ þm� 1

½Π̂ðΦÞ�2 −m2 þ i0
½Π̂ðΦÞ −m�UðinÞ

p ðxÞ

¼ 1

2

Z
d4xŪðoutÞ

p0 ðxÞ
�
½ ⃗Π̂ðΦÞ −m�eikXFð−Þ

p ðϕÞ þ FðþÞ
p ðϕÞeikX½ ⃖Π̂ðΦÞ −m�

�
UðinÞ

p ðxÞ

¼ ð2πÞ3δðp⊥ − p0⊥ − k⊥Þδðp− − p0
− − k−Þ

Z þ∞

−∞
dϕðπpðϕÞe�Þei

R
ϕ

−∞
dφ0
p0−

ðπpðφ0ÞkÞ
: ð15Þ

Here we use the symmetric form of the matrix element in order to retain a gauge invariant. We also use the fact that Fð−Þ
p and

FðþÞ
p0 have exactly the same phase in the integrand.
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The electron-emission energy spectrum dE
d3k has the

following form:

dE
d3k

¼ αm2

4π2ω2
0p

2
−
½ξ2ðjf1j2 − Ref0f�2Þ − jf0j2�;

fi ¼
Z þ∞

−∞
dϕ

�
eAðϕÞ
mξ

�
i
e
−i
R

ϕ

0

dϕ0
p0−

πpðϕ0Þk
; ð16Þ

where ξ ¼ jejE0=mω0, E0, andω0 are the laser electric field
amplitude and its angular frequency. The obtained energy
spectrum for nonlinear Compton scattering (16) coincides
with the classical result [5] if we replace p0

− → p− in the
phase of fi. On the other hand, the result (16) coincides with
the exact energy spectrum for nonlinear Compton scattering
[10], with the leading order of the parameter ω=ε in the
preexponent and exactly in the phase factor.
In order to show the importance of an exact in phase

result, we plot the energy spectrum in Fig. 1. For numerical
evaluations, we consider electrons with initial electron
energy ε ¼ 104m in head-on collisions with the linear
polarized laser pulse. Calculations have been performed for
a ξ ¼ 1 and a pulse shape AðϕÞ ¼ cos½ω0ϕ�gðϕÞex, with
the envelope function gðϕÞ ¼ cos2ðπω0ϕ=2τÞ for −τ ≥
ϕ ≥ τ and a zero otherwise, such that is the dimensionless
full width at half maximum (FWHM) pulse length with
τ ¼ 20 corresponding to 9 fs FWHM for ω0 ¼ 1.55 eV.
We see from Fig. 1 that the classical result coincides with

the exact one only in the narrow region ω=ε≲ 0.01, while
the soft photon well fits the exact result in a wider
range. The reason for the significant discrepancy between
classical and exact quantum results can be simply explained
as follows. Although the integrand in the phase differs
slightly in the classical and quantum results, the integral in
a wide range for a long laser pulse leads to a difference in
the phases of the order of unity. The difference in the phases
by the order of unity leads to a significant difference in the
spectrum. The phase in the soft photon approximation is
exactly the same as in the exact result, resulting in
significantly better accuracy compared to the classical
result.

Note that Fig. 1 has a logarithmic scale, so the difference
between the exact and the soft photon results seems small. As
can be seen from Fig. 2 the relative difference between the
exact and the soft photon results reaches 46% at ωε ¼ 0.2. The
presence of peaks in Fig. 2 is due to the fact that the functions
fi have a different resonant frequencies ω.

B. High-energy photon emission in the
superposition of a laser and atomic fields

This process was considered in the different regimes in
[33–36]. We consider the special case where high-energy
electrons are counterpropagated by a laser field. In such a
case, there is an electron wave function in the superposition
of a laser and atomic fields [37]. The “hard process” is the
elastic scattering of electrons in the presence of a laser and
an atomic field. The amplitude of the elastic scattering can
be obtained by the asymptotic wave function at a large
distance [31]. The cross section of an elastic scattering dσ0
has the form

0.00 0.05 0.10 0.15 0.20

100

105

FIG. 1. The energy spectrum for nonlinear Compton scattering dE
dωdΩ as a function of ω=ε, the photon angles are θx ¼ m

ε , θy ¼ m
2ε, the

detail of numerical computation discussed in text. Black line correspond to the exact result, dashed line correspond to the soft photon
approximation result, dot-dashed line correspond to the classical result.

0.00 0.05 0.10 0.15 0.20
0.0

0.1

0.2

0.3

0.4

0.5

FIG. 2. The the relative difference δ between the exact and the
soft photon energy spectra for nonlinear Compton scattering as a
function of ω=ε, the photon angles are θx ¼ m

ε , θy ¼ m
2ε, the detail

of numerical computation discussed in text.
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dσ0 ¼ RðΔ⊥Þ
dp0⊥
ð2πÞ2 ;

RðΔ⊥Þ ¼
Z

dρ1dρ2e−iΔ⊥·ðρ1−ρ2Þ½eiVðρ1Þ−iVðρ2Þ − 1�;

VðρÞ ¼
Z

∞

−∞
Vðρ; zÞdz; ð17Þ

where Δ ¼ p0 − p is a momentum transfer, p and p0 are the
momentum of the initial and final electrons, respectively, and
Vðρ; zÞ is an atomic potential. Note that this cross section is
independent of the laser field and coincides with the cross
section of the elastic scattering in the atomic field [38].
Using Eqs. (13) and (17) one can straightforwardly

obtain the differential cross section of high-energy photon
emission in the superposition of a laser and atomic fields

dσ ¼ α

ð2πÞ4 RðΔ⊥Þjf 1 þ g1j2
dp0⊥dk⊥dω

ω
;

f 1 ¼
Z

∞

T
dT 0ei

ω
2εðε−ωÞ

R
T0
T

dT 00ðm2þðεθp0k−eAðT 00ÞÞ2Þðεθp0k − eAðT 0ÞÞ;

g1 ¼
Z

T

−∞
dT 0ei

ω
2εðε−ωÞ

R
T0
T

dT 00ðm2þðεθpk−eAðT 00ÞÞ2Þðεθpk − eAðT 0ÞÞ: ð18Þ

The conditions of applicability in such a case are the
following: ω ≪ ε and k⊥ ≪ Δ⊥. Under this assumption,
this result is in agreement with [39] [see Eq. (10)].

IV. FACTORIZATION OF n SOFT PHOTON
EMISSION AMPLITUDE

As mentioned above, the soft photon approximation
result coincides with the classical one if we neglect k− in
comparison with p− in phase. It means that we neglect
retardation. Thus, the emission of several photons should
occur independently.

First, we show that the emission of two photons occurs
independently. There are three possibilities. Firstly, one
photon is emitted from the initial electron line, while a
second photon is emitted from the final electron. In this
case, factorization is obvious. The second and third cases
correspond to situations where both photons are emitted
from the initial and final electron, respectively.
The factor Fð−Þ

2 ðϕÞ corresponding to the second case
(both photons are emitted from the initial electron) can be
found as follows:

Fð−Þ
2 ðϕÞUðinÞ

p ðxÞ ¼ 1

½Π̂ðΦÞ� −mþ i0
be2�eik2X 1

½Π̂ðΦÞ� −mþ i0
be1�eik1XUðinÞ

p ðxÞ þ ðk1 ↔ k2; e1 ↔ e2Þ

¼ 1

½Π̂ðΦÞ� −mþ i0
be2�eiðk1þk2ÞXFð−Þ

p;k1
ðϕÞUðinÞ

p ðxÞ þ ðk1 ↔ k2; e1 ↔ e2Þ; ð19Þ

where ki and ei are the momentum and polarization vectors of the emitted photon. To distinguish different photon factors,

we use the notation Fð�Þ
p;k1

ðϕÞ, which corresponds to the Fð�Þ
p ðϕÞ from Eq. (10) with the replacement k → ki; eμ → eμi . Note

that the operator Π̂ in the last line of Eq. (19) acts not only atUðinÞ
p ðxÞ but also at Fð−Þ

p;k1
ðϕÞ. The result has the following form:

Fð−Þ
2 ðϕÞ ¼ −

Z
ϕ

−∞

dφ2

p−
e
−i
R

ϕ

φ2

dφ0
2

p−
ðπpðφ0

2
Þðk1þk2ÞÞðπpðφ2Þe�2Þ

Z
φ2

−∞

dφ1

p−
e
−i
R

φ2
φ1

dφ0
1

p−
ðπpðφ0

1
Þk1Þðπpðφ1Þe�1Þ þ ðk1 ↔ k2; e1 ↔ e2Þ

¼ −
Z

ϕ

−∞

dφ2

p−
e
−i
R

ϕ

φ2

dφ0
2

p−
ðπpðφ0

2
Þk2Þðπpðφ2Þe�2Þ

Z
φ2

−∞

dφ1

p−
e
−i
R

ϕ

φ1

dφ0
1

p−
ðπpðφ0

1
Þk1Þðπpðφ1Þe�1Þ þ ðk1 ↔ k2; e1 ↔ e2Þ; ð20Þ

By changing the order of integration in the second term, we obtain that factorization takes place,

Fð−Þ
2 ðϕÞ ¼ −

Z
ϕ

−∞

dφ2

p−
e
−i
R

ϕ

φ2

dφ0
2

p−
ðπpðφ0

2
Þk2Þðπpðφ2Þe�2Þ

Z
ϕ

−∞

dφ1

p−
e
−i
R

ϕ

φ1

dφ0
1

p−
ðπpðφ0

1
Þk1Þðπpðφ1Þe�1Þ: ð21Þ
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Factor FðþÞ
2 ðϕÞ, which corresponds to the case where both photons are emitted by the final electron, possesses the analogous

factorization. The final result has the following form:

S ¼
Z

dϕS̃0ðϕÞ
�
Fð−Þ
p;k1

ðϕÞ þ FðþÞ
p0;k1

ðϕÞ
��

Fð−Þ
p;k2

ðϕÞ þ FðþÞ
p0;k2

ðϕÞ
�
;

Note that here we neglected ki;− in comparison with p− in the phase denominator, which corresponds to the classical
result. Without this simplification, there is no factorization. Thus, the emission of two soft photons occurs independently.
This method is trivially generalized by the case of n photon emission, where the same factorization takes place. For the
n-photon emission factor of the initial electron, we have

Fð−Þλ1::;λn
n ðϕÞ ¼

X
σ ∈Sn

Z
� � �

Z
ϕ>φσð1Þ>…φσðnÞ>−∞

Πi¼n
i¼1dφif

ð−Þ
i ðφiÞ

¼ Πi¼n
i¼1

Z
ϕ

∞
dφif

ð−Þ
i ðφiÞ

X
σ ∈Sn

Hðϕ − φσð1ÞÞHðφσð1Þ − φσð2ÞÞ…Hðφσðn−1Þ − φσðnÞÞ

¼ Πi¼n
i¼1

�Z
ϕ

∞
dφif

ð−Þ
i ðφiÞ

�
; ð22Þ

where the sum is over all permutations σ of n elements,

HðxÞ is a Heaviside step function, and fð−Þi ðφÞ ¼
−i ðπpðφÞe

�
i Þ

p−
e
−i
R

ϕ

φ

dφ0
p−

ðπpðφ0ÞkiÞ is an integrand of Fð−Þ
p;ki

ðϕÞ.
Thus, factorization takes place, and the emission of n soft
photons occurs independently. The matrix element for
process S with n additional photons has the form

S ¼
Z

dϕS̃0ðϕÞΠi¼n
i¼1

�
Fð−Þ
p;ki

ðϕÞ þ FðþÞ
p0;ki

ðϕÞ
�
:

V. CANCELLATIONS OF INFRARED
DIVERGENCES IN THE PRESENCE OF A PLANE

WAVE LASER FIELD

As is well-known [40], the infrared divergence term from
the virtual radiative corrections for arbitrary processes must
be canceled by the processes with additional soft photon in
QED. In this chapter, we will show that this statement holds
true for QED with the plane wave laser field background.
The infrared divergence in the laser field was previously
discussed in [41–44].
We consider the soft part of radiative correction for

nonlinear Compton scattering. The Feynman diagrams of a
virtual and real radiative correction are depicted in Fig. 3.
We will show that total probability is infrared finite, i.e. the
interference between Born and virtual radiative correction
matrix element [see Fig. 3(a)] cancels the infrared diver-
gence of real radiative correction [see Fig. 3(b)].
We start our computation with the vertex correction. For

the plane wave field background, it was discussed in [30].

We consider the soft part of the radiative corrections and
restrict the integral over k in the following way:
λ < jkj < Λ. The infrared cutoff Λ is some convenient
dividing point chosen low enough to satisfy the approx-
imations made above in Sec. II. In addition, we will also
impose a cutoff λ in order to display the logarithmic
divergences as powers of log λ. We take λ very small in
particular, λ ≪ Λ so this cutoff only affects the infrared
lines because it is only these that give infrared divergences
for λ ¼ 0.
The soft part of the one loop vertex correction matrix

element for nonlinear Compton scattering can be computed
by soft photon approximation. The matrix element

FIG. 3. Feynman diagrams corresponding to the one-loop
radiative corrections to the nonlinear Compton scattering. (a) Vir-
tual radiative correction diagrams. (b) Real radiative correction
diagrams.
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integrand over k corresponds to the emission of soft photon from the initial electron line with momentum k and absorption
of this photon from the final electron line, which corresponds to the emission of soft photon from the final electron line with
momentum −k. It has the following form:

Svertex ¼ ie2
Z

dϕð2πÞ3δðp⊥ − p0⊥ − q⊥Þδðp− − p0
− − q−ÞM0ðϕÞ

Z
Λ

λ

d4k
ð2πÞ4

1

k2 þ i0

×
Z

ϕ

−∞

dφ1

p−
e
−i
R

ϕ

φ1

dφ0
1

p−−k−
ðπpðφ0

1
Þk−i0Þ

πνpðφ1Þ
Z þ∞

ϕ

dφ2

p0
−
e
−i
R

φ2
ϕ

dφ0
2

p0−−k−
ðπp0 ðφ0

2
Þk−i0Þ

πp0;νðφ2Þ; ð23Þ

where M0ðϕÞ is an integrand over ϕ of the matrix element of single nonlinear Compton scattering,

e
Z

d4xUðoutÞ
p0 ðxÞeiqXê�UðinÞ

p ðxÞ ¼
Z

dϕð2πÞ3δðp⊥ − p0⊥ − q⊥Þδðp− − p0
− − q−ÞM0ðϕÞ: ð24Þ

The limits on the integral in (23) refer to jkj. The integrand of (23) is analytic in k0 except at the four poles. Only one pole
k0 ¼ jkj − i0 is in the lower half-plane. We close the k0 contour with a large semicircle in the lower half-planes and compute
this integral by residue,

Svertex ¼ e2
Z

dϕð2πÞ3δðp⊥ − p0⊥ − q⊥Þδðp− − p0
− − q−ÞM0ðϕÞ

Z
Λ

λ

d3k
ð2πÞ32jkj

×
Z

ϕ

−∞

dφ1

p−
e
−i
R

ϕ

φ1

dφ0
1

p−−k−
ðπpðφ0

1
ÞkÞ
πνpðφ1Þ

Z þ∞

ϕ

dφ2

p0
−
e
−i
R

φ2
ϕ

dφ0
2

p0−−k−
ðπp0 ðφ0

2
ÞkÞ
πp0;νðφ2Þ: ð25Þ

In the following, we omit k− compared to p−; p0
− in phase. Without this simplification, there is no factorization of matrix

element and no cancellation between real and virtual radiative corrections.
Another matrix element depicted in Fig. 3(a) can be obtained in a similar way. For example, the matrix element, which

corresponds to the second diagram in Fig. 3(a) can be obtained by Fð−Þ
2 ðϕÞ, see Eq. (21) by replacing k1 → k; k2 → −k with

the additional factor 1
2
. The factor 1

2
is required because in Fð−Þ

2 ðϕÞ computation, we took into account the sum of two
diagrams, whereas in this case there is only one diagram.
Matrix element of virtual radiative correction Svirt has the following form:

Svirt ¼
e2

2

Z
dϕð2πÞ3δðp⊥ − p0⊥ − q⊥Þδðp− − p0

− − q−ÞM0ðϕÞ
Z

Λ

λ

d3k
ð2πÞ32jkj

×

				
Z

ϕ

−∞

dφ1

p−
e
−i
R

ϕ

φ1

dφ0
1

p−
ðπpðφ0

1
ÞkÞ
πνpðφ1Þ þ

Z þ∞

ϕ

dφ2

p0
−
e
i
R

φ2
ϕ

dφ0
2

p0−
ðπp0 ðφ0

2
ÞkÞ
πνp0 ðφ2Þ

				2; ð26Þ

where we neglect k− in comparison with p− in the phase denominator. The cancellation of infrared divergences takes a place
only under this assumption.
The contribution to the probability dWvirt from virtual radiative correction has the following form:

dWvirt ¼ e2Re
Z

Λ

λ

d3k
ð2πÞ32jkj

Z
dϕdϕ0M0ðϕÞM�

0ðϕ0Þdρf

×

				
Z

ϕ

−∞

dφ1

p−
e
−i
R

ϕ

φ1

dφ0
1

p−
ðπpðφ0

1
ÞkÞ
πνpðφ1Þ þ

Z þ∞

ϕ

dφ2

p0
−
e
i
R

φ2
ϕ

dφ0
2

p0−
ðπp0 ðφ0

2
ÞkÞ
πνp0 ðφ2Þ

				2; ð27Þ

where dρf is element of the final particle phase space for nonlinear Compton scattering, including δ-functions.
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The real radiative correction, which corresponds to the double Compton scattering, has the following form:

dWreal ¼ −e2
Z

E

λ

d3k
ð2πÞ32jkj

Z
dϕdϕ0M0ðϕÞM�

0ðϕ0Þdρf

×

�Z
ϕ

−∞

dφ1

p−
e
−i
R

ϕ

φ1

dφ0
1

p−
ðπpðφ0

1
ÞkÞ
πνpðφ1Þ þ

Z þ∞

ϕ

dφ2

p0
−
e
i
R

φ2
ϕ

dφ0
2

p0−
ðπp0 ðφ0

2
ÞkÞ
πνp0 ðφ2Þ

�

×

�Z
ϕ0

−∞

dφ1

p−
e
−i
R

ϕ0
φ1

dφ0
1

p−
ðπpðφ0

1
ÞkÞ
πνpðφ1Þ þ

Z þ∞

ϕ0

dφ2

p0
−
e
i
R

φ2
ϕ0

dφ0
2

p0−
ðπp0 ðφ0

2
ÞkÞ
πνp0 ðφ2Þ

��
; ð28Þ

here we assume that the energy of the soft photon less than the detector’s efficiency E and greater than the infrared cutoff λ.

Note that for values of small k the integral over φ1;2
converges at large distance jϕ − φ1;2j ∼ φchar, where φchar is
the formation length of soft photon emission, while
ϕ − ϕ0 ∼ lf, where lf is the formation length of nonlinear
Compton scattering [5,29]. For small ω the formation

length of a nonlinear Compton scattering is much smaller
than the formation length of soft photon emission. For this
reason, we can change ϕ0 → ϕ in the last line of Eq. (28).
Then the sum of the real and virtual corrections becomes
finite and has the following form:

dWvirt þ dWreal ¼ e2
Z

Λ

E

d3k
ð2πÞ32jkj

Z
dϕdϕ0M0ðϕÞM�

0ðϕ0Þdρf

×

				
Z

ϕ

−∞

dφ1

p−
e
−i
R

ϕ

φ1

dφ0
1

p−
ðπpðφ0

1
ÞkÞ
πνpðφ1Þ þ

Z þ∞

ϕ

dφ2

p0
−
e
i
R

φ2
ϕ

dφ0
2

p0−
ðπp0 ðφ0

2
ÞkÞ
πνp0 ðφ2Þ

				2: ð29Þ

Note that the last line in Eq. (29) is a −
P

λ jFð−Þ
p ðϕÞ þ FðþÞ

p0 ðϕÞj2, where the sum is taken by the photon polarization.
Thus, this answer can be trivially generalized by the arbitrary processes,

dWrad ¼
Z

dϕ
dWB

dϕ
ð−e2Þ

Z
Λ

E

d3k
ð2πÞ32jkj

X
λ

				Xi
Fð−Þ
pi ðϕÞ þ

X
f
FðþÞ
pf ðϕÞ

				2; ð30Þ

where dWB is probabilities in the Born approximation and i, f is a set of charged initial and final particles. Note that in the
case of antiparticles, we should use G instead of F.

VI. CONCLUSION

In the present paper, we consider the processes involving
the emission of soft photons in the presence of a strong
laser field. We show that the matrix element S of the
process i → f þ γ with a soft photon γ can be expressed in
terms of the matrix element S0 of the process i → f. The
recipe for using the soft photon approximation is as
follows. To obtain the amplitude S from the amplitude
S0, we should multiply the integrand S0 with respect to the
variable ϕ by the sum of the factors (10), one for each
outgoing or incoming charged particle. These factors are
universal for a generic plane wave laser field background
and do not depend on the spin of the particle. This
approximation allows us to obtain a result that is exact
in the phase and approximate in the prefactor to order

Oðω=εcharÞ, where ω is the frequency of the soft photon and
εchar is the characteristic energy of the i → f process.
We present several important applications of this soft

photon approximation. We compute the probabilities of
nonlinear Compton scattering and photon emission in the
superposition of a laser and atomic fields by soft photon
approximation and compare obtained result with the exact
one. We demonstrate that the amplitude of n soft photons
emission has factorization, which corresponds to the inde-
pendence of the emission ofn soft photons. Third, we use the
discussed approximation to prove cancellation of real and
virtual infrared divergences for nonlinear Compton scatter-
ing and derive the finite radiative corrections.
The soft photon approximation is a useful tool for QED

studies in the presence of a strong laser field. For example,
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it can be used for nonlinear double Compton scattering in the
case of one or both photon are soft. Itmay helps also to obtain
the result for eþe− → γγ, in the case of one photon is soft.
Besides, soft photon approximation may be widely used for
computation of infrared part of radiative correction.

APPENDIX

This appendix provides additional details on the for-
mulas and notation used in the paper.
Let vector n define the propagation direction of the

plane wave. Vector potential AμðϕÞ depends only on
ϕ ¼ t − n · x. We introduce four four-dimensional quan-
tities: nμ ¼ ð1; nÞ, ñμ ¼ ð1;−nÞ=2, and aμj ¼ ð0; ajÞ, where
j ¼ 1; 2. The four-dimensional quantities nμ, ñμ, and aμj
fulfill the completeness relation

ημν ¼ nμñν þ ñμnν − aμ1a
ν
1 − aμ2a

ν
2:

Note that ðnñÞ ¼ 1, ðnajÞ ¼ ðñajÞ ¼ ñ2 ¼ n2 ¼ 0,
aiaj ¼ −δi;j. In what follows, we refer to the longitudinal
(n) direction as the direction along n and to the transverse
(⊥) plane as the plane spanned by the two perpendicular
unit vectors aj. The coordinates are

ϕ ¼ ðnxÞ ¼ t − xn; T ¼ ðñxÞ ¼ ðtþ xnÞ=2;
xi⊥ ¼ −ðaixÞ;

where xn ¼ n · x. For an arbitrary four-vector p, we
introduce p−¼ðnpÞ¼p0−pn, pþ¼ðñpÞ¼ðp0þpnÞ=2,
and p⊥¼ðp⊥;1;p⊥;2Þ¼−ððpa1Þ;ðpa2ÞÞ¼ ðp ·a1;p ·a2Þ.
Thus,

px ¼ pμxνημν ¼ ðxnÞðpñÞ þ ðpnÞðxñÞ − x⊥ · p⊥
¼ p−T þ pþϕ − x⊥ · p⊥:

The momenta operators on this basis have the form,

Pϕ ¼ −i∂ϕ ¼ −ðñPÞ ¼ −ði∂t − i∂xnÞ=2
PT ¼ −i∂T ¼ −ðnPÞ ¼ −ði∂t þ i∂xnÞ;
P⊥ ¼ ðP⊥;1; P⊥;2Þ ¼ −iða1 · ∇; a2 · ∇Þ:

They satisfy the following commutation relation:

½ϕ; Pϕ� ¼ ½T; PT � ¼ i; ½X⊥;j; P⊥;k� ¼ iδjk;

which are equivalent to the commutation relations
½Xμ; Pν� ¼ −iημν, with Pμ ¼ i∂μ.
We will need the following identities:

expðiðXqÞÞgðPÞ expð−iðXqÞÞ ¼ gðPþ qÞ;
expðiðPyÞÞfðXÞ expð−iðPyÞÞ ¼ fðX − yÞ; ðA1Þ

where qμ and yμ are constant four-vectors.
In addition, the commutation relations ½ϕ; Pϕ� ¼

½T; PT � ¼ i imply, in particular, the identities

expðiaϕÞg̃ðPϕÞ expð−iaϕÞ ¼ g̃ðPϕ − aÞ;
expðibPϕÞf̃ðϕÞ expð−ibPϕÞ ¼ f̃ðϕþ bÞ; ðA2Þ

with a and b being two constants and f̃ðϕÞ and g̃ðPϕÞ being
two arbitrary functions. ForT; PT, the identities are the same.
The Volkov states UpðxÞ and VpðxÞ can be classified by

means of the asymptotic momentum quantum numbers p
(and then the energy ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
) and of the asymptotic

spin quantum number s in the remote past, i.e., for t → −∞
for (in)-state and for remote future for (out)-state.
Following the general notation in Ref. [31], these states
can be written as

UðinÞ
p ðxÞ ¼

�
1þ en̂ ÂðϕÞ

2p−

�
upe

i

�
−ðpxÞ−

R
ϕ

−∞
dφ

�
eðpAðφÞÞ

p−
−e2A2ðφÞ

2p−

��
;

ŪðoutÞ
p ðp; xÞ ¼ ūp

�
1 −

en̂ ÂðϕÞ
2p−

�
e
i

�
ðpxÞ−

R þ∞
ϕ

dφ

�
eðpAðφÞÞ

p−
−e2A2ðφÞ

2p−

��
;

VðoutÞ
p ðxÞ ¼

�
1 −

en̂ ÂðϕÞ
2p−

�
vpe

i

�
ðpxÞþ

R þ∞
ϕ

dφ

�
eðpAðφÞÞ

p−
þe2A2ðφÞ

2p−

��
;

V̄ðinÞ
p ðxÞ ¼ v̄p

�
1þ en̂ ÂðϕÞ

2p−

�
e
i

�
−ðpxÞþ

R
ϕ

−∞
dφ

�
eðpAðφÞÞ

p−
þe2A2ðφÞ

2p−

��
; ðA3Þ
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where up and vp are the free spinors. Here we have
introduced the notation v̂ ¼ γμvμ for a generic four-vector
vμ, with γμ being the Dirac matrices.
The electron Green’s function Gðx; x0Þ in the general

plane-wave background electromagnetic field described
by the four-vector potential AμðϕÞ is defined by the
equation,

fγμ½i∂μ − eAμðϕÞ� −mgGðx; x0Þ ¼ δð4Þðx − x0Þ: ðA4Þ

Here, we always assume the Feynman prescription corre-
sponding to the shift m → m − i0 [31]. Within the operator
technique, the operator G corresponding to the Green’s
function Gðx; x0Þ is defined via the equation Gðx; x0Þ ¼
hxjGjx0i, i.e., as

G ¼ 1

Π̂ −mþ i0
¼ ðΠ̂þmÞ 1

Π̂2 −m2 þ i0
¼ 1

Π̂2 −m2 þ i0
ðΠ̂þmÞ; ðA5Þ

where Πμ ¼ Pμ − eAμðΦÞ. In [15] was shown that squared Green’s function can be written in the form,

1

Π̂2 −m2 þ i0
¼ ð−iÞ

Z
∞

0

dse−im
2se2isPTPϕe−i

R
s

0
ds0½P⊥−eA⊥ðΦ−2s0PTÞ�2

�
1 −

e
2PT

n̂½ÂðΦ − 2sPTÞ − ÂðΦÞ�
�

¼ ð−iÞ
Z

∞

0

due−im
2u

�
1þ e

2PT
n̂½ÂðΦþ 2uPTÞ − ÂðΦÞ�

�
e−i

R
u

0
du0½P⊥−eA⊥ðΦþ2u0PT Þ�2e2iuPTPϕ ; ðA6Þ

where the prescription m2 → m2 − i0 is understood.
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