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Observation of Significant Flavor-SU(3) Breaking in the Kaon Wave Function at
12 < 0* < 25 GeV? and Discovery of the Charmless Decay y(3770) — K2K?
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We present cross sections for the reaction e"e~ — K%K9 at center-of-mass energies ranging from 3.51
to 4.95 GeV using data samples collected in the BESIII experiment, corresponding to a total integrated

luminosity of 26.5 fb~!. The ratio of neutral-to-charged kaon form factors at large momentum transfers
(12 < Q% < 25 GeV?) is determined to be 0.21 £ 0.01, which indicates a small but significant effect of
flavor-SU(3) breaking in the kaon wave function, and, consequently, excludes the possibility that flavor-SU
(3) breaking is the primary reason for the strong experimental violation of the pQCD prediction
|F(z)|/|F(K*)| = f2/f%, where F(z%) and F(K*) are the form factors, and f, and fx are the decay
constants of charged pions and kaons, respectively. We also observe a significant signal for the charmless
decay y(3770) - K9K? for the first time. Within a 1o contour of the likelihood value, the branching
fraction for y(3770) — KK is determined to be B = (2.6374)) x 107>, and the relative phase between
the continuum and y(3770) amplitudes is ¢ = (—0.3970%)z. The branching fraction is in good agreement
with the S- and D-wave charmonia mixing scheme proposed in the interpretation of the “pz puzzle”

between J/y and y(3686) decays.

DOI: 10.1103/PhysRevLett.132.131901

Understanding the internal quark-gluon structure of
hadrons based on quantum chromodynamics (QCD) has
been one of the fundamental aims of nuclear and particle
physics. An important tool to achieve such a goal is to
measure the electromagnetic form factors of hadrons at
large momentum transfers (Q?), where a photon acts as a
probe that allows us to see the electric charges of the quarks
and gluons inside of the hadron, rather than just the
composite hadron [1,2]. Kaons are of great interest because
their constituent quarks differ in mass by more than 1 order
of magnitude, which leads to a broken flavor-SU(3)
symmetry in the wave function and thus the form factor
of neutral kaons develops an asymmetric component and
deviates from zero [3]. The measurements of the electro-
magnetic form factors of kaons at large momentum trans-
fers provide a sensitive measure of flavor-SU(3) breaking
effects, estimated by the ratio of the form factors
|Frogo (Q%)|/|F+k-(Q%)]. A value close to 1 indicates

that the flavor-SU(3) breaking has a significant influence
on the kaon’s wave function, while a value close to 0
indicates a minor effect [3]. Furthermore, this measurement
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also provides valuable insights into the hypothesis [3] that
flavor-SU(3) breaking may be the primary factor respon-
sible for the large deviation between the perturbative QCD
(pQCD) prediction |F(z*)|/|F(K*)| = f2/f% [4,5] and
the experimental results |F(z*)|/|F(K*)| = 1.09 £ 0.04
at |Q% =174 GeV? [6] and f2/f% = 0.84 £0.01 [7].
Here F(z*) and F(K*) are the form factors, and f,, and fx
are the decay constants of charged pions and kaons,
respectively.

The KK? final state of vector charmonium decays is
particularly interesting to understand the violation of
the “12% rule” [8-11], where Q,={B[y(3686)—
h)l/B(J/w—h)}=(13.340.3)% according to pQCD [7].
However, Qgogo is found to be (27.2 +£3.6)% which
deviates from the 12% rule by more than 3¢ [12,13].
Here we focus on an explanation proposed by Rosner using
S- and D-wave charmonia mixing [14], where the y(3686)
and y(3770) are considered to be mixtures of the y(235,)
and y(1°D,) states. In this scenario, the branching fraction
of y(3770) - K%K? is predicted to be within [0.07 &
0.05,3.7 £ 1.6] x 1073 [15].

Theoretical studies on the form factors at large momen-
tum transfers based on different models have so far yielded
conflicting results on the flavor-SU(3) breaking effects of
kaons [16-20], while experimental measurements are
limited to small momentum transfers (|Q?| < 9.49 GeV?)
[21,22]. No significant signal was observed at the y(3770)
peak before [23,24], and only 4 events are observed with an
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expectation of 0.3 background events at /s = 4.17 GeV in
the CLEO-c data [25], corresponding to a statistical
significance of 3.6¢.

In this Letter, we report the electromagnetic form factors
of neutral kaons measured with 26.5 fb~! of data taken at
center-of-mass (c.m.) energies (1/s) from 3.51 to 4.95 GeV
(.e., 12 < 0% < 25 GeV?) [26-30]. We also report the first
observation of the charmless decay y(3770) — K9K? and
discuss its impact on our understanding of charmonium
decay dynamics. The data was recorded with the BESIII
detector, which is described in detail in Ref. [31].
Simulated data samples produced with a GEANT4-based
[32] Monte Carlo (MC) package, which includes the
geometric description of the BESIII detector and the
detector response, are used to determine detection efficien-
cies and to estimate backgrounds. The simulation models
the beam energy spread and initial state radiation (ISR) in
the e*e™ annihilations with the generator KKkMC [33,34].
Signal Monte Carlo samples of e*e™ — K3KY are gen-
erated at each energy point with the vector-scalar-scalar
(vss) model in which a vector particle decays into two
scalars in EVTGEN [35,36], and the subsequent decay K —
#tn~ is generated uniformly in phase space. To estimate
the possible background, two kinds of exclusive MC
samples are generated, which are ete™ — yRy/(3686)
with y(3686) — K9KY, and eTe™ - K**(892)K" + c.c.
with K*0(892) — 2°K§,,, n° — yy and K° — K7 5. The
inclusive MC samples generated at /s = 3.774 GeV are
used to study potential background. These samples include
the production of DD pairs, the non-DD decays
of the y(3770), the ISR production of the J/y and
w(3686) states, and the continuum processes incorporated
in KKMC.

Signal events contain a single K9 reconstructed with
K% — ztz~. The K? is identified from the momentum
difference between the K g and e™ e, assuming momentum
conservation. We retain signal events which have two
charged tracks and either have no neutral clusters, in the
case that the KV passes through the detector without
interaction, or has special neutral clusters found in the
expected K9 direction, in the case that the K9 interacts with
the detector material. Neutral clusters reconstructed in the
detector but not in the expected K¢ direction are used to
suppress background.

For each good charged track detected in the multilayer
drift chamber (MDC), the polar angle () is required to be
within a range of | cos 8| < 0.93, where € is defined with
respect to the z axis, which is the symmetric axis of the
MDC. Exactly two good charged tracks with zero net
charge are required. The deposited energy of each track in
the electromagnetic calorimeter (EMC) is required to be
less than 1.2 GeV to suppress Bhabha events. Particle
identification is applied where the specific ionization
energy loss dE/dx measured by the MDC and the flight

time measured by the time-of-flight (TOF) detector form
likelihoods L(h)(h = e, ) for each particle hypothesis.
Both tracks are required to be identified as pions with
L(z) > 0.001 and L(x) > L(e).

If two charged tracks fulfill these criteria they are assigned
as a w7~ pair. They are constrained to originate from a
secondary vertex of a K decay. The decay length of the K{
candidates starting from the interaction point (IP) is required
to be greater than 2 cm and greater than twice the vertex
resolution to suppress ygrpp and yrp’(p° = 2t77).
The y° of the secondary vertex fit is required to be less
than 15, which is optimized using the figure of merit
FOM = (S/+/S + B). Here, S is the normalized number
of events from the signal MC sample and B is the normalized
number of background events estimated from the inclusive
MC sample, which only contains the background without K¥.
The invariant mass of the K% candidate is required to be
within 0.478 GeV/c? < m,+,- < 0.518 GeV/c%. To fur-
ther improve the resolution, a one-constraint (1C) kinematic
fit is performed on the K mass, and y?. < 12 is further
required.

Neutral clusters are identified using showers in the EMC.
The deposited energy of each shower must be more than
25 MeV in the barrel region (| cos 8] < 0.80) and more than
50 MeV in the end cap region (0.86 < |cos 8| < 0.92). To
suppress showers that originate from charged tracks, the
angle subtended by the EMC shower and the position of the
closest charged track at the EMC must be greater than 20°
as measured from the IP. To suppress electronic noise and
showers unrelated to the event, the difference between the
EMC time and the event start time is required to be within
[0, 700] ns.

Pure eTe” — KUK (K% — n'z~) events do not contain
photons, so we keep events without neutral clusters in a K
cone defined as an area with an opening angle of 20°
relative to the opposite direction of the K g inthe eTe™ c.m.
frame. However, K9 mesons may interact with the detector
material and produce neutral clusters in the EMC. In this
case, we examine K9 candidates within the K9 cone and
require at least one neutral cluster satisfying a second
moment [37] [Z;(E;r?)/Z;(E;)] greater than 20 cm?, where
E; is the deposited energy in the ith crystal and r; refers to
the radial distance of it from the cluster center. This
requirement is useful to suppress yisrup background since
the neutral clusters produced by K9 are wider than those
produced by photons.

To suppress EMC noise and background events from
ete”— K*0(892)K" +c.c., where K*°(892)K® - z°K3KY,
we require the total energy of the neutral clusters outside
the cone to be less than 0.2 GeV. The invariant mass of
every combination of two neutral clusters is calculated to
search for z° candidates. Events where the invariant mass
of any combination satisfies M, € [0.123,0.144] GeV/c?
are rejected.
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FIG. 1. Distributions of X = Ekg/Ebeam at /s = 3.774 (top)
and 4.226 GeV (bottom), where the corresponding y*/n.d.f of the
fits are 1.06 and 0.50, respectively. Dots with error bars are data.
The blue solid lines are the total fit results, the blue dashed lines
are the signal component, the red dashed lines represent the
ete™ — yRy(3686) component, the orange dashed lines re-
present the e*e™ — K*°(892)K" + c.c. component, and the
violet dashed lines represent exponential functions describing
the remaining background.

Figure 1 shows the X =F K9 /Epeam distributions  at
V/s =3.774 and 4.226 GeV, where Exo is the energy of

the K9 in the e*e™ c.m. frame, and Ey = /5/2 is the
beam energy. Clear e~ — K9K9 signals are observed at
X = 1. The signal region defined as X € [0.98, 1.02] is used
for the optimization of the selection criteria. Similar
distributions are observed at the other c.m. energies.

An unbinned maximum likelihood fit is performed
using the X distributions to extract the number of signal
events. The definition of the likelihood can be found
in the Supplemental Material [38]. Three simulated shapes
derived from MC samples are used to describe the
dominant components of the data: the signal component,
the ete™ — y™Ry(3686) background, and the ete™ —
K*°(892)K" + c.c. background. Each is convolved with a
Gaussian function to account for the discrepancies in X
(AX) and resolution (Ac) between data and MC simulation.
The AX = (3.840.8) x 10~ and A = (7.5 £3.2) x 10~
are measured with the process w(3686) — K9K?, which
increases the goodness-of-fit of data. The remaining back-
ground is described by an exponential function. The
expected number of background events from the processes
ete” — YRy (3686) and ete” — K*0(892)K" +c.c. in

the /s =3.774 GeV data sample are calculated to be
147 £ 15 and 390 £ 22 using the corresponding integrated
luminosity and cross sections [41]. They are fixed at their
central values in the fit at \/s = 3.774 GeV while floating
at other energy points, the uncertainties are considered as
one source of systematic uncertainty. The simulated shape
of efe™ — yRy(3686) is only used at 3.710 and
3.774 GeV, its inclusion has negligible effects on the signal
yield at other energy points. The parameters of the
exponential function are determined from the fit at energy
points with high luminosity. For energy points with low
luminosity, the parameters extracted at the nearest high
luminosity point are used.
The dressed cross section is determined as

Nobs
Udressed — 5 —, (1)
e-L-(1468)-B(K§—-nta™)

where N° is the number of signal events from the fit, £ is
the integrated luminosity, and B(K$ — z7z~) = (69.20 +
0.05)% [7] is the branching fraction of Kg — n7n~. The
efficiency € and the ISR correction factor (1 + &) [42] are
obtained iteratively following the procedure used in
Ref. [39]. Figure 2(a) shows the resulting cross sections.
We find that the cross sections are at a subpicobarn level
and decrease gradually with increasing c.m. energy. The
cross section at /s = 3.774 GeV, however, is significantly
lower than the expected trend by more than 5o, suggesting
interference between the e*e™ — K9K? and w(3770) —
K%K amplitudes.

We use the cross sections [excluding /s = 3.774 GeV
data to avoid the y(3770) resonance contribution] to
calculate the electromagnetic form factors of the neutral
kaon via

Gdressed . |1 _ H|2 . 3s

2
Frg (O ="—— (@)

where « is the fine-structure constant, f = /1 — 4m§(0 /sis

the velocity of the K(S) in the laboratory system, and
(1/[1 =TJ?) is the vacuum polarization factor [43].
Figure 2(b) shows the ratio of the neutral and the charged
kaon form factors, where the data on charged kaons
comes from Ref. [40]. We fit the ratios with polynomials
of different orders and find the shape is close to constant
at |Fyogo|/|Fgg-| =0.21£0.01. The coefficients of

higher-order polynomial terms are not significant (<20)
under hypothesis testing. The electromagnetic form factors
of the neutral kaon and the ratio of neutral-to-charged
kaon form factors at each c.m. energy are listed in the
Supplemental Material [38].

The contribution of the y/(3770) — K3KY amplitude is
determined using a maximum likelihood fit of the dressed
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FIG. 2. (a) Dressed cross sections of e*e™ — K3KY and a fit with the coherent sum of a continuum and a y(3770) resonance
amplitude, using the local minimum in (c), where B = 2.6 x 107> and ¢ = —0.39x. Dots with error bars are data. Red solid, green
dashed, and blue dashed lines are the fit results, the continuum production, and the w(3770) production, respectively. (b) The ratio of
neutral-to-charged kaon form factors. The blue solid, red dashed, and green dashed lines result from fits with different order
polynomials, the corresponding y?/n.d.f are 1.26, 1.28, 1.19, respectively. (c) The likelihood contours in the B[y (3770) — K9K?] and
the relative phase ¢ plane. The filled areas are up to 3¢ likelihood contours. The red cross shows the local minimum.

cross section, which we describe as a coherent sum of a
Breit-Wigner function for the w(3770) amplitude and a
power law function for the continuum amplitude:

a

V5"

O.dressed = |BW - eiz/) +

®(+/5)

SN )

where  BW V12T, TB/(s — M? + iMT)]

[®(\/s)/®(M)] is the yw(3770) amplitude with M, T,
I',,, and B being the mass, width, electronic width, and the
branching fraction of (3770) — KgK(Z, respectively;
®(/s) = (¢*/s) is a P-wave phase space factor, in which
q is the Kg/L momentum in the eTe~ c.m. frame; ¢ is the

relative phase between the continuum and y/(3770) ampli-
tudes; The @ and n are free parameters.

Without using the data at /s = 3.774 GeV, we fit the
cross sections with the pure continuum amplitude and
determine a = (0.016 4 0.007) GeV"% pb®3 and n =
4.60 = 0.31. By including the data at /s = 3.774 GeV
and the y(3770) resonance amplitude, with the mass,
width, and electronic width of the y(3770) fixed at their
world average values [7], we perform a likelihood scan in
the B versus ¢ plane. In this scan, the @ and n are allowed to
float until they reach the local minimum within their
parameter space. The results are shown in Fig. 2(c). A
clear region of local minima was observed through the
scan, the B and ¢ are determined to be (2.6311%)) x 107

and (—0.3970%) z within 16 likelihood contour. Figure 2(a)
shows the fit result corresponding to the local minimum.
The significance of the y(3770) resonance contribution is
determined to be 10 in comparison to an alternative fit
without including the resonance. This indicates that the
charmless decay w(3770) — KK is observed for the first
time. The tests for other 17~ resonances such as y(4160)
result in a significance less than 3c.

The systematic uncertainties of the cross section meas-
urement are listed in Table I, where the total systematic
uncertainty is the square root of the quadratic sum of all
sources, assuming they are independent. The uncertainty of
the integrated luminosity is 1.0% [26-30]. The difference
in the tracking efficiency between data and MC simulation
is 1.0% per track [44]. The uncertainties of the K‘S)
reconstruction, the K requirements, and the z° rejection
are estimated with control samples and the efficiency
differences between data and MC simulation are measured
following the method in Ref. [45]. We use w(3770) —
K*0(892)K?, with K*°(892) —» K*zT and K° — K9 to
determine an uncertainty of 1.3% for the K9 reconstruction
after multiplying by a correction factor of 1.018 to the MC
efficiency. Using the control sample y(3686) — K%K?, we
find that the K9 acceptance rate in MC simulation is (5.0 &
0.5)% higher compared to data, therefore we correct the
MC efficiency and quote an uncertainty of 0.5%. Similarly
for the z° rejection, the rate in MC simulation is (3.0 &
0.4)% lower compared to data, therefore we correct the MC
efficiency and quote an uncertainty of 0.4%.

To study the uncertainties resulting from our choice of
signal and background shapes when extracting the number
of signal events, we select five data samples with large
statistics to avoid statistical fluctuations, namely at c.m.
energies of /s =3.510, 3.650, 3.774, 4.178, and
4.226 GeV. The uncertainty resulting from the fixed
parameters of the Gaussian function is estimated by varying
the parameter values within 1o. The difference in the signal
yields is negligible (< 0.5%) except for 3.774 GeV, which
are 1.2% for AX and 2.7% for Ac. The numbers of e™e™ —
YRy (3686) and ete™ — K*°(892)K" + c.c. events are
fixed in the fit at /s = 3.774 GeV, and differences are
estimated by varying them by lo around their central
values. The resulting uncertainty is 7.8% for ete™ —
YRy (3686) and 0.9% for ete™ — K*9(892)K° + c.c.,
respectively. We perform alternative fits by replacing the
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TABLE I. Relative systematic uncertainties of the cross section
measurements.

Source Systematic uncertainty (%)

Luminosity 1.0

Tracking 2.0

KY reconstruction 1.3

KY requirements 0.5

7° rejection 0.4

Fitting line shape 4.7

Total 54

exponential function with the background shape extracted
from the inclusive MC sample. The relative differences in
the signal yields are 2.6%, 2.8%, 4.3%, 1.9%, and 1.8% for
the selected data samples. Therefore, after combining the
uncertainties at 3.774 GeV, a luminosity-weighted uncer-
tainty of 4.7% is taken as the systematic uncertainty caused
by the line shapes used in the fits for all energy points. The
uncertainty from the fitting range is examined by the
“Barlow test” [46]. We choose 20 different fixed-length
fitting ranges with a step size of 1 MeV to compare the
deviation between different measurements. We find these
deviations are due to statistical fluctuations and are thereby
ignored in the systematic uncertainty. The uncertainty from
the branching fraction of K% — 7tz is less than 0.1%
according to the Particle Data Group, which is ignored.

In summary, we measure the electromagnetic form
factors of the neutral kaons at large momentum transfers
from 12 to 25 GeV? for the first time, which are consistent
with previous measurement at 17.4 GeV? [25]. The con-
stant ratio (0.21 £ 0.01) of neutral-to-charged kaon form
factors we obtained indicates a small but significant effect
of flavor-SU(3) breaking on the kaon wave function, and
consequently excludes the possibility that flavor-SU(3)
breaking is the primary reason for the large observed
deviation between the pQCD prediction and the experi-
mental result. The observed constant ratio of the kaon form
factors is also in disagreement with the predicted trend
using a single bound-state interaction kernel [16], provid-
ing more information for the investigation of the internal
structure of neutral kaons.

We observe a significant signal of y(3770) — K%K for
the first time. This is the first discovery of the charmless
decay of the w(3770) with a statistical significance exceed-
ing 5¢. Within the 1o contour of the likelihood value, the
branching fraction of y(3770) — K3KY is determined to
be B = (2.631]4)) x 107>, and the relative phase between
the continuum amplitude and the y(3770) decay amplitude
is ¢ = (—0.397015) 7. The uncertainties are mainly due to
insufficient data points near the y(3770) peak, thus a finer
scan around the y(3770) will help to reveal the nature of
the w(3770). The branching fraction is in good agreement

with the prediction [15] of the S- and D-wave charmonia
mixing model developed to interpret the “pz puzzle”
between J/y and y(3686) decays [14]. Assuming a
negligible contribution [47] from the electromagnetic
y(3770) amplitude, a phase ¢, around —(z/2), supports
the proposition [48] that the relative phase between strong
and electromagnetic charmonium decay amplitudes is
universally —(z/2) and agrees with experimental measure-
ments in various final states [49].
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