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Abstract—The paper presents the results of mathematical modeling of plasma transfer in
a helical magnetic field using new experimental data obtained at the SMOLA trap created at
the Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of
Sciences. Plasma is confined in the trap by transmitting a pulse of magnetic field with helical
symmetry to the rotating plasma. The mathematical model is based on a stationary plasma
transfer equation in the axially symmetric formulation. The distribution of the concentration
of the substance obtained by numerical simulation confirmed the confinement effect obtained
in the experiment. The dependences of the integral characteristics of the substance on the
depth of magnetic field corrugation and on plasma diffusion and potential are obtained. The
numerical implementations of the model by the relaxation method and by the Seidel method
are compared.
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INTRODUCTION

Studies of plasma flow in a magnetic field are of considerable interest for controlled thermonuclear
fusion [1], investigating the resistance of materials under the influence of powerful thermal loads [2],
laboratory modeling of astrophysical processes [3], and a number of other fundamental and applied
scientific problems. To solve problems of controlled thermonuclear fusion, it is necessary to contain
high-temperature plasma of sufficient density in a limited region of space. For a positive energy yield,
the product of plasma density and energy lifetime must exceed a threshold value (for a mixture of
deuterium and tritium nτ ∼ 1020 s/m3, for pure deuterium nτ ∼ 1022 s/m3) [4]. Increased lifetime is
achieved by reducing energy losses from the confinement area. The main method of plasma thermal
insulation considered today is its confinement in a magnetic field of various configurations [1].
The greatest progress has been achieved in systems with a toroidal magnetic field topology. An
alternative approach is plasma confinement in open magnetic systems, where the field is close to
axisymmetric and its field lines intersect the boundary of the confinement domain at two points [5].
The advantages of this approach are more efficient use of magnetic field energy, as well scalability
and engineering simplicity of the system. The main scientific goal of open trap physics is to reduce
the loss of particles and energy along magnetic field lines in the regions where they leave the
confinement region.

Great progress has been made in understanding the physics of open magnetic configurations and
the achieved plasma parameters [6]. To date, a number of possible solutions of the longitudinal
confinement problem have been proposed and experimentally tested, including suppression of lon-
gitudinal losses by a periodic magnetic field (multimirror confinement) [5]. Plasma confinement
by a magnetic field with helical symmetry was proposed as a development of the multimirror con-
finement method [7]. In the reference frame of the rotating plasma, the movement of magnetic
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disturbances has a velocity component codirectional with the magnetic field, which allows momen-
tum to be transferred to the trapped particles. Collisions between transient and trapped particles
provide an effective force acting on the plasma as a whole and facilitating the return of ions to
the confinement region. The SMOLA (from Russian ‘Spiral Magnetic Open Trap’) installation was
developed and built in 2017 at the Budker Institute of Nuclear Physics of the Siberian Branchc
of the Russian Academy of Sciences for experimental testing of this idea [8, 9]. In the SMOLA
installation, the area in which plasma is contained is limited on one side by a classic cork and on
the other side by a multimirror section with a helical magnetic field. In the experiment, parameters
such as the longitudinal magnetic field, the ratio of the longitudinal and helical magnetic fields, and
the density and rotation speed of plasma are varied. The SMOLA facility is designed to simulate
the effects of helical confinement at a low (and therefore easily achievable) plasma temperature. To
scale helical confinement on a thermonuclear-class system, a detailed comparison of experimentally
observed matter flows with model ones and further calculation of the efficiency of a larger-scale
system based on the mathematical model are necessary. Currently, the observed results have been
shown to correspond to approximate theoretical estimates. At the same time, an exact analytical
solution for the theory of helical confinement has not been constructed, so the comparison can be
based on the results of a numerical solution of the equations of plasma motion.

A mathematical model of transfer of matter in a helical magnetic field is constructed based on
equations in [7, 10] and SMOLA installation parameters. Mathematical modeling of the process
was carried out for the first time in [11]. The purpose of this work is to validate the model and
optimize the experimental parameters.

1. STATEMENT OF THE PROBLEM

Let us consider the motion of plasma in the central part of a cylinder-shaped trap (see Fig. 1).
The matter enters the confinement region from the plasma source through the left end of the
cylinder and exits into the expander through the right boundary. Let us consider the cross section
of a cylinder in the plane (r, z). In the paper [12], expressions were obtained for the components of
radial and longitudinal transport of particles in a helical magnetic field. The system of equations
describes the dynamics of plasma in the MHD approximation in an axially symmetric formulation.
Differences in the motion of trapped and transient ions are taken into account in the form of an
effective friction force that depends on the mutual velocity of the components and the fraction of the
trapped particles. The longitudinal force acting on the plasma arises as a result of the interaction of
the radial electric current of the trapped ions with the azimuthal component of the helical magnetic
field. Plasma diffusion across the magnetic field is taken into account. Elimination of dependent

Fig. 1. Diagram of the central part of the trap.
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variables reduces the system of equations to the flow continuity equation
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where u is the concentration of the substance, T = Ti + Te, Ti = 4 eV and Te = 30(1 − (r/r0)
2)

are the ion and electron temperatures, Λ is the ratio of the length of the system to the mean free
path λ, κ(r,Rm) is the fraction of trapped particles, l = 216 cm is the length of the system along
the field line, Z is the average charge of one ion, and D is the diffusion coefficient in the transverse
field. The fraction of trapped particles κ(r,Rm) = 1−1/R(r,Rm), R(r,Rm) = 2(Rm−1)(r/a)2+1,
where Rm = 1.52 is the corrugation depth. The parameter ζ = c/Vz is the ratio of the speed of
sound cs = (Te/M)1/2 to the longitudinal velocity Vz of motion of magnetic disturbances under
rotation of plasma in its own ambipolar electric field. In Eq. (1), the physical variables are made
dimensionless by normalization to r0 = a, z0 = l, ϕ0 = Te/e, u0 = umax, and T0 = Te, where a = 8 cm
is the boundary of the chamber in which plasma can exist. The electric field potential ϕ(r) is
introduced as a polynomial that interpolates experimental data [13],

ϕ(r) = −2.21776 + 1.31r − 7.79r2 + 31.18r3 − 33.43r4 + 10.94r5.

In the simulated experiment, the plasma and electromagnetic field parameters are settled with-
in 40 ms and then a phase begins when the process is steady for 120 ms, after which the discharge
is turned off. The main task of experiments and mathematical modeling is to study plasma con-
finement in which all parameters remain constant. The plasma potential measured using probes in
experiments on the SMOLA installation depends on the experimental parameters. The maximum
of ϕ varies from 2Te/e to 3Te/e. The maximum value of the dimensionless potential ϕ for the next
generation of installations, in which it is possible to use the principle of helical confinement, also lies
within the same limits [14, 15]. The experimentally observed potential distribution in the central
region of the plasma (for radius values less than 0.6 in dimensionless quantities) is close to quadratic;
further, in the peripheral region of the plasma, the derivative of the potential with respect to radius
decreases. The error in measuring the potential in the experiment is approximately 5%. The degree
and coefficients of the approximating polynomial are selected in such a way that its deviation from
the values experimentally measured in the reference experiment is comparable to the experimental
error.

To specify the influence of the field in the radial direction, the model uses the derivative of the
absolute value of the electric field

q(r) =
∂
∣∣ϕ(r)∣∣
∂r

= |1.31− 7.79r + 31.18r2 − 33.43r3 + 10.94r4|.

It is well known that the potential value decreases with increasing z due to the presence of transverse
plasma conductivity. The spatial potential distribution is given as follows:

Φ(r, z) =

(
1− 0.002z

h

)
q(r).

Let us consider the domain [0, rmax] × [0, zmax] in the cross section of the central part of the
installation (Fig. 1). In dimensionless quantities, the domain is a unit square. We assume that the
matter does not reach the walls of the trap, we set a symmetry condition on the z-axis, and at
the input and output of the substance we set the boundary distribution of the concentration of the
substance u(r, 0) = uL(r) and u(r, zmax) = uR(r), respectively. For the calculations, we used the
experimental data [6] for the distribution of concentration at the boundaries. Figure 2b shows the
experimental values of plasma concentration and their interpolation of the form

uL(r) = 1.03 + 0.46r − 1.52r2 + 14.48r3 − 44.17r4 + 43.77r5 − 14.05r6,
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Fig. 2. Dependences of the modulus of the electric field potential and its derivative (a) and the boundary plasma
distribution (b) on the installation radius at the input (squares) and output (circles).

uR(r) = 0.2− 0.12r + 9.11r2 − 73.43r3 + 210.13r4 − 285.64r5 + 188.54r6 − 48.78r7.

Thus, the steady-state problem has the form
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where the coefficients in the equation are
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2. SOLUTION METHOD

The paper [11] implements the relaxation method [12]. The choice of this approach was deter-
mined by the reliability of the method and the ease of monitoring the correctness of the solution. The
present paper presents an implementation of problem (2) using the more economical Seidel method.
During the calculations, it turned out that the choice of stencil when approximating the mixed
derivative affects the solution. When using the grid operator for the mixed derivative on a four-
point [11] and six-point [13] stencil, Λrz = C3(r)(C4(r)uz̄)r and Λrz = C3(r)(C4(r)(uz̄ + uz)/2)r,
oscillations occurred when the diffusion coefficient D dropped below 0.001. Here uz and uz̄ are
the forward and backward difference derivatives. Therefore, both solution methods (the relaxation
method and the Seidel method) required careful selection of a stencil for approximating the mixed
derivative κ(r) ∂
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Z
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no oscillations occur.
On a grid with nodes ri = ih, i = 1, . . . , Nr, zk = kh, k = 1, . . . , Nz, the grid functions

un
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i = uR(ri). The convergence criterion |un+1
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i,k| ≤ ε, ε = 10−8.
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To implement problem (2) using the relaxation method for τ = 10−4, we used an unconditionally
stable stabilizing correction scheme and the tridiagonal matrix algorithm [17]. The new version of
the difference scheme has the form
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Solving Eq. (2) using the Seidel method [18] at each time step allows one to construct an eco-
nomical algorithm. The difference scheme based on the Seidel method has the form
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It can be noted that the problem (3) and the solution algorithm (4) contain the parame-
ter ζ(r) = 1/Ar, obtained by approximating the experimental data; here A = 20. On the axis
for r = 0, the parameter ζ is limited to the value for r = ρB, where ρB = VTi

·mc/eB is the gyro-
radius. For the SMOLA installation parameters ρB ≈ 0.3–0.4 cm. This is due to the fact that the
ion moves along a Larmor orbit (rotates in a magnetic field), and therefore, its radial coordinate
oscillates. In the model under consideration, all influences are averaged, and the ion is assigned
the coordinate of the center of the circle along which it moves in the magnetic field. That is, the
coordinate is equal to zero for ions that fly around the axis and are at a distance of the gyroradius
from it. Therefore, to eliminate the singularities of the solution during calculations in the vicinity
of the symmetry axis, the dimensionless parameter ζ is specified as follows:

ζ(r) =

1/Ar if r > ρB

1/AρB if ρB ≥ r ≥ 0.

Along with other advantages, the Seidel method is interesting for its ease of use in cylindrical
coordinates. The principle of expressing the required element in terms of scheme-neighboring points
of the “cross” type is universal and independent of the choice of coordinate system.

3. NUMERICAL SIMULATION RESULTS

For the test problem, we consider the equation

∂2u

∂z2
+
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+
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(5)
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Fig. 3. Distribution of the test problem solution function for m = 1.3 (a) and m = 0.124 (c); graph of the accuracy
of convergence to the solution depending on the grid step (b) and the problem parameter m (d) when using the
relaxation method (circles) and the Seidel method (squares).

Problem (5) has the analytic solution (Fig. 3a)

uex(r, z) =

exp
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Approximation of mixed derivatives in Eq. (5) by finite differences yields a result depending on
the order of differentiation with respect to coordinates,

Λrz =
(
(ur̄)z + (ur)z̄

)
/2,

Λzr =
(
(uz)r + (uz̄)r̄

)
/2.

We obtained graphs (Fig. 3b) of the relative error ε = ∥un+1−uex∥
∥uex∥ to achieve criterion for the

convergence of the iterative process εn = 10−8 on a sequence of refined meshes. The Seidel method
is more economical and easier to implement than the relaxation method. The required number of
iterations of the relaxation method exceeds 4000. The Seidel method requires up to a thousand
iterations, and in the case of the proposed stencil for approximating the mixed derivative, conver-
gence occurs twice as fast. As the coefficient m of the boundary condition in problem (5) decreases,
the number of complete periods of the sine function on the boundary increases (Figs. 3a, 3c). As
the number of grid points per sine period increases, a uniform exponential decrease in error of the
form ε = Am

0 + Am
1 exp(−m/m1) + Am

2 exp(−m/m2) is observed (Fig. 3d). As m increases, the
convergence rate of each method increases. For example, when m = 0.124, 10 radial grid points are
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Fig. 4. Plasma concentration distribution in a helical magnetic field (a) and matter concentration along sections of
the z-axis (b).

used to calculate the total sine period (Fig. 3c). For m = 1.3, the full period (Fig. 3a) occupies the
entire boundary of the computational domain (100 points) and the convergence rate of each method
is twice as high compared as that with m = 0.124.

In the course of modeling the transfer of matter in a helical magnetic field, concentration dis-
tributions were obtained for various values of the magnetic field corrugation depth, diffusion, and
plasma potential. The plasma concentration distribution is shown in a computational domain that
has the shape of a unit square in dimensionless form (Fig. 4a). Sections along the z-axis are given
(Fig. 4b) for further analysis of the calculation results and comparison with experimental data.
Calculations show a decrease in plasma density; this confirms the confinement effect observed in
experiments.

Since there are experimental data available on the plasma concentration in the cross sec-
tion z = 0.4, the results of calculations are presented only in this section (Fig. 5). Computational
experiments were carried out for various permissible values of the diffusion coefficient, the derivative
of the absolute value of the electric field, and the corrugation depth. For further use of the model,
the calculation of the integral of density over the cross section, I(z) =

´ 1

0
u(r, z) dr, was introduced.

Calculations have shown that as the diffusion coefficient in the transverse field decreases, the
matter begins to squeeze up against the axis (Fig. 5a). The coincidence of the calculated distri-
butions with the experimental ones, taking into account the finite accuracy of the experimental
changes, is achieved with a diffusion coefficient in the range D = 0.01–0.1. Further calculations
were carried out with D = 0.1. Compression of the plasma pinch towards the axis is observed with
an increase in the derivative of the absolute value of the electric field and the corrugation depth.
The results obtained are consistent with the experimental data.

To predict the results of the operation of designed installations for confining plasma in a helical
magnetic field, it is necessary to determine the diffusion coefficient more accurately. For this purpose,
it is planned to carry out calculations with low values of the plasma potential using Neumann
boundary conditions and experimental data obtained with the SMOLA installation at the Budker
Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences.

CONCLUSIONS

The paper presents the results of mathematical modeling of plasma transfer in the SMOLA
helical open magnetic trap. The steady-state equation of matter transfer in the axially symmetric
formulation contains second derivatives with respect to space. The optimal stencil for approximating
the mixed derivative has been selected. For numerical implementation, the relaxation method and
the more economical Seidel method were used. The dependences of the integral characteristic of
the density of matter on the depth of magnetic field corrugation, the diffusion, and the plasma
potential were obtained. There is a qualitative agreement between the modeled dependences and
the experimental data with values of the dimensionless diffusion coefficient D = 0.01–0.1 and the
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Fig. 5. Plasma concentration distribution over the cross section of the axis z = 0.4 (left column) and the integral of
the density over the cross section (right column) for various values of the diffusion coefficient (a), the derivative of
the absolute value of the electric field (b), and the corrugation depth (c).

cross-sectional average corrugation depth Rm = 1.52. In the calculations, the effect of pinching
(reduction in the average radius) of the plasma jet is observed, which also manifests itself in the
experiment. Further work will be aimed at expanding the range of parameters for which the model
has sufficient predictive power.
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