This article was downloaded by: [Otto-von-Guericke-Universitaet Magdeburg]
On: 23 October 2014, At: 01:17
Publisher: Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3J H, UK

Ferroelectrics

Publication details, including instructions for authors and subscription information: http:// www.tandfonline.com/loi/gfer20

The sequences of structural phase transitions in perovskites

K. S. Aleksandrov ${ }^{\text {a }}$
${ }^{\text {a }}$ Institute of Physics, USSR Academy of Sciences, Krasnoyarsk, USSR
Published online: 16 Mar 2011.

To cite this article: K. S. Aleksandrov (1976) The sequences of structural phase transitions in perovskites, Ferroelectrics, 14:1, 801-805, DOI: $10.1080 / 00150197608237799$

To link to this article: http:// dx. doi.org/ 10.1080/00150197608237799

PLEASE SCROLL DOWN FOR ARTICLE

Taylor \& Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor \& Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor \& Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms \& Conditions of access and use can be found at http:// www.tandfonline.com/page/terms-and-conditions

THE SEQUENCES OF STRUCTURAL PHASE TRANSITIONS IN PEROVSKITES

K. S. ALEKSANDROV
Institute of Physics, USSR Academy of Sciences, Krasnoyarsk 660036 USSR.

(Received May 1, 1975; in final form March 5, 1976)

Abstract

A classification of the octahedral tilt systems in perovskites is given, based on the work of Glazer ${ }^{1}$ but extending it and using a new notation; this leads to a simple description of the sequences of phase transitions, and shows how they are related to the soft modes M_{3} and R_{25}. Examples from the literature are discussed.

The perovskite structure is very commonly found in oxides and halogenides of the general formula ABX_{3}. Many of these materials have a structure which is slightly distorted as compared with the ideal cubic structure, either by cation displacements (as in ferroand antiferroelectrics) or by the tilting of BX_{6} octahedra. A classification of octahedral tilt systems in perovskites and a derivation of the symmetry of distorted phases was made some years ago by Glazer. ${ }^{1}$ The results were used successfully in the structure analysis of sodium niobate and sodium-potassium niobate solid solutions. ${ }^{2-5}$ In the papers cited it was assumed as a working approximation that (a) the tilts around different cubic axes are mutually independent, (b) the octahedra are regular throughout, (c) A-cation displacements do not change the symmetry of the distorted phase. These assumptions will be accepted in this paper. The symmetry of distorted structures ${ }^{1}$ will be re-examined, and we shall make an attempt to determine the most probable sequences of phase transitions in relation to octahedral tilting, and to compare the theoretical predictions with the experimental evidence.

In all displacive-type transitions in crystals, displacements of ions from their equilibrium positions are fairly small compared with the interionic distances. Transitions of this type are nearly continuous (of second order or nearly so). This allows us to take advantage of the results of group-theoretical analysis of space group $O_{h}{ }^{16,7}$ from which the possible secondorder transitions to subgroups were tabulated. Among irreducible representations of this space group there are two which correspond to modes of the perovskite lattice associated with octahedral tilting only. These modes, M_{3} and R_{25}, both belong to boundary points,
M and R, of the Brillouin zone. If either or both become soft modes of the lattice, a phase transition of the type we are discussing will arise.

When one octahedron in the perovskite structure is tilted about any axis, say [001], it causes tilting of neighbouring octahedra in the layer normal to the axis of tilt; ${ }^{1}$ the distortion of the whole layer is uniquely defined by the first tilt. For successive layers along the tilt axis, there is however freedom of choice. If they have the same sense of tilt, the structure will be tetragonal, with space group $D_{4 h}^{5}, z=2$, $a=b \simeq \sqrt{2} a_{0}, c \simeq a_{0}$, where a_{0} is the ideal cubic cell parameter. This distortion is due to condensation of the M_{3} mode, and will be given the symbol (00ψ). On the other hand, if successive layers along [001] have opposite senses of tilt, the distortion corresponds to condensation of the R_{25} mode, the structure is still tetragonal, but with space group $D_{4}^{18}, z=4$, $a \simeq b \simeq \sqrt{2} a_{0}, c \simeq 2 a_{0} ;$ it is given the symbol (00ϕ) . In both symbols, the positional sequence within the brackets indicates that the tilt is about the c-axis, [001]. The notation thus carries information about the orientation relative to the axial directions [100], [010], and [001]; in this it resembles the HermannMauguin notation for space groups, and differs from that of Schoenflies.

With further condensation of M_{3} and R_{25} modes about different axial directions, more complex distortions can arise. Here we note that the magnitudes of tilts about two axes, or all three, may be equal or independent. Restricting ourselves for the moment to systems each involving only one species of tilt, we have, for the M_{3} mode, $(\psi \psi 0),(\psi \psi \psi),\left(\psi_{1} \psi_{2} 0\right)$, ($\psi_{1} \psi_{2} \psi_{2}$), and ($\psi_{1} \psi_{2} \psi_{3}$); and for the R_{25} mode, $(\phi \phi 0),(\phi \phi \phi),\left(\phi_{1} \phi_{2} 0\right),\left(\phi_{1} \phi_{2} \phi_{2}\right)$, and ($\phi_{1} \phi_{2} \phi_{3}$). The
symmetry and unit-cell dimensions of these phases are shown in Table I (see also references ${ }^{6,7}$), with Glazer's notation ${ }^{1}$ included for comparison.

To find the probable sequence of phase transitions, we use two familiar principles:
i) According to thermodynamical theory, successive transitions are possible when each of the phases concerned is described by one of the irreducible representations of the cubic phase, or, if this is multidimensional, by one or more of its components.
ii) distortions of the structure increase with decreasing temperature (increasing external pressure).

The ferroelectric transitions in BaTiO_{3} and KNbO_{3} are examples of sequences obeying these principles.

Here, however, we introduce the idea of transitions associated with tilts. The irreducible representations involved are the M_{3} and R_{25} representations, which are 1 -dimensional and 3 -dimensional respectively. If a phase is described by the two representations M_{3} and R_{25} simultaneously, the distorted structure is a combination of ψ and ϕ tilts.

Transitions due to either the M_{3} or the R_{25} modes form sequences analogous to those in $\mathrm{BaTiO}_{3},(000) \rightarrow$ $(00 \phi) \rightarrow(0 \phi \phi) \rightarrow(\phi \phi \phi)$ and $(000) \rightarrow(00 \psi) \rightarrow(0 \psi \psi) \rightarrow$ $(\psi \psi \psi)$ respectively. We note here that only the highest transition in each sequence is second-order

TABLE I
Tilts systems and crystallographic data

Symbols		Space group	Unit cell in unit a_{0}			Z
This paper:	Glazer ${ }^{1}$		a	b	c	
000	$a^{0} a^{0} a^{0}$	$O_{h}{ }^{1}=P m 3 m$	1	1	1	1
00ψ	$a^{0} a^{0} c^{+}$	$D_{4}^{\text {S }}=P 4 / \mathrm{mbm}$	$\sqrt{2}$	$\sqrt{2}$	1	2
$\psi \psi 0$	$a^{+} a^{+} c^{0}$	$D_{4 h}^{17}=14 / \mathrm{mmm}^{\text {b }}$	2	2	2	8
$\psi \psi \psi$	$a^{+} a^{+} a^{+}$	$T_{h}{ }^{5}=\operatorname{Im} 3$	2	2	2	8
$0 \psi_{1} \psi_{2}$	$a^{0} b^{+} c^{+}$	$D_{2 h}^{25}=I m m m$	2	2	2	8
$\psi_{1} \psi_{1} \psi_{2}$	$a^{+} a^{+} b^{+}$	$D_{2 h}^{25}=\mathrm{Immm}$	2	2	2	8
$\psi_{1} \psi_{2} \psi_{3}$	$a^{+} b^{+} c^{+}$	$D_{2 h}^{25}=1 \mathrm{mmm}$	2	2	2	8
00¢	$a^{0} a^{0} c$	$D_{4 h}^{18}=14 / \mathrm{mcm}$	$\sqrt{2}$	$\sqrt{2}$	2	4
$\phi \phi 0$	$a^{-} a^{-} c^{0}$	$D_{2 h}^{28}=$ Imam	$\sqrt{2}$	$\sqrt{2}$	2	4
$\phi \phi \phi$	$a^{-} a^{-} a^{-}$	$D_{3 d}^{6}=R \overline{3} c$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$	2
$\phi_{1} 0 \phi_{2}$	$a^{-} b^{0} c^{-}$	$C_{2 h}^{3}=I 2 / m$	$\sqrt{2}$	2	$\sqrt{2}$	4
$\phi_{1} \phi_{1} \phi_{2}$	$a^{-} a^{-} c^{-}$	$C_{2 h}^{6}=12 / c$	$\sqrt{2}$	$\sqrt{2}$	2	4
$\phi_{1} \phi_{2} \phi_{3}$	$a^{-} b^{-} c^{-}$	$C_{i}^{1}=I \overline{1}$	$\sqrt{2}$	2	$\sqrt{2}$	4
$0 \phi \psi$	$a^{0} b^{-} c^{+}$	$D_{2 h}^{17}=\mathrm{Cmcm}$	2	2	2	8
$00 \Delta^{\text {a }}$	-	$D_{4 h}^{5}=P 4 / \mathrm{mbm}$	$\sqrt{2}$	$\sqrt{2}$	2	4
$\phi \phi \psi$	$a^{-} a^{-} c^{+}$	$D_{2 h}^{16}=$ Pnam	$\sqrt{2}$	$\sqrt{2}$	2	4
$\psi \psi \psi$	$\left.a^{+} a^{+} c^{-}\right)$	$D_{2 h}^{13}=P \mathrm{mmm}$	2	2	2	8
$\psi_{1} \psi_{2} \phi$	$a^{+} b^{+} c^{-}$					
$0 \psi \Delta$	-					
$\psi \psi \Delta$	-					
$\psi_{1} \psi_{2} \Delta$						
$\phi_{1} \psi \phi_{2}$	$a^{-} b^{+} c^{-}$	$C_{2 h}^{2}=P 2_{1} / m$	$\sqrt{2}$	2	$\sqrt{2}$	4
¢0 ${ }^{\text {d }}$	-	$C_{2 h}^{3}=C 2 / m$	2	2	2	8
$\phi \psi \Delta$	-	$C_{2 h}^{2}=P 2_{1} / m$	2	2	2	8
$\phi \phi \Delta$	-	$C_{2 h}^{5}=P 2_{1} / a$	$\sqrt{2}$	$\sqrt{2}$	2	4
$\phi_{1} \phi_{2} \Delta$	-	$C_{i}^{1}=P \overline{1}$	$\sqrt{2}$	$\sqrt{2}$	2	4

[^0](or nearly so), associated with a soft mode detectable above and below the transition; the other transitions are first-order.

We now consider what happens when the two kinds of soft modes are both present, each set of tilts being about a different axis. The resultant symmetry can be derived from a superposition of their separate distortions. For small tilt angles, the result is independent of the sequence of operators. Thus, the symmetry represented by ($0 \phi \psi$) corresponds to the space group $\bar{D}_{2 h}^{17}=\mathrm{Cmcm}$, with $z=8, a \simeq b \simeq c \simeq 2 a_{0}$, and this phase could appear in either of the two sequences

$$
\begin{array}{cc}
(000) & \rightleftarrows(00 \psi) \\
O_{h}{ }^{1} & D_{4 h}^{5} \tag{1a}
\end{array} \underset{(0 \phi \psi)}{\rightleftarrows} D_{2 h}^{17}, ~
$$

or
$\underset{O_{h}{ }^{1}}{(000)} \underset{D_{4 h}^{18}}{\rightleftarrows} \underset{(0 \phi 0)}{(0)} \underset{D_{2 h}^{17}}{(0 \phi \psi)}$
Other combinations of ϕ and ψ tilts can be formed in the same way; the resulting tilt systems are included in Table I.

We must also consider the possibility that tilts of type ϕ and ψ may occur together about the same tilt axis. The resulting tilts in adjacent layers of octahedra are $\psi+\phi, \psi-\phi$. We write this system as (00Δ), where $\Delta=\psi \pm \phi$. It has the same space group $D_{4 h}^{5}$ as (00ψ), but, unlike the latter, shows doubling of the c-axis; on the other hand, its space group is lower than that, $D_{4 h}^{18}$, possessed by (00ϕ) which resembles it in the doubling of the c axis. These Δ^{-}tilts have not been considered by Glazer. ${ }^{1}$ Combinations with ϕ or ψ tilts about other pseudocubic axes are possible, and are listed, together with (00Δ), in Table I. Combinations involving Δ tilts about more than one pseudocubic axis are also possible, e.g. $(\phi \Delta \Delta)$, $(\psi \Delta \Delta)$, but are not considered in this paper. When the paper was first drafted, there were no published observations of Δ tilts, but one has now been reported ${ }^{8}$ and will be discussed below. We think it likely that others may be found in ordered structures such as $\boldsymbol{A}_{2}\left(B_{1} B_{2}\right) X_{6}$, or other complex ones.

It is known that in the distorted phases of KMnF_{3}, SrTiO_{3}, and other $A B X_{3}$ perovskites with a single tilt system, only the X ions are displaced; these are the ions which take part in the soft mode vibration. In several cases listed in Table I, the same space group corresponds to two or more tilt systems. In these cases the X ions are located in general positions, and can be given additional displacements without changing the space group. If, however, the symmetry group
is orthorhombic or lower, the point symmetry of the A-ion site is lowered, and the A ion are displaced. In such crystals, the structure is essentially determined by the minimum of potential energy, and only roughly fits the theoretical situation described by condensation of the soft modes. That is the reason why it is not safe to reverse the argument and attempt to determine the symmetry of the soft modes from the ionic displacements in low-temperature phases, ${ }^{9}$ a method which could result in overestimation of the number of modes condensed at the phase transition.

Applying the principles enunciated above, we can now determine the sequences of phase transitions between the tilt systems listed in Table I. They are shown in Figure 1 for the most important distorted phases. We distinguish between transitions that can be

FIGURE 1 The probable sequences of phase transitions and of tilts in perovskites. Full lines correspond to second-order transitions; the soft modes M_{3} or R_{25} are first condensed at these points. Dashed lines correspond to the first-order transitions. The number of ϕ or ψ-tilt components are changed at these points. The groups $\left(\phi_{1} \phi_{2} 0\right),\left(\phi_{1} \phi_{1} \phi_{2}\right) \ldots,\left(\psi_{1} \psi_{2} 0\right) \ldots$ are omitted for sake of clarity (see Table I). Positional order within the symbol is disregarded in this Figure.
continuous (though they are not necessarily so) and those that can not; the former, shown by full lines, are associated with the points of condensation of a soft mode, while the latter, shown by dashed lines, are first-order transitions. The number of components of ϕ - or ψ-tilts are changed at these points and no soft mode should be observable. For example, the transition between tilt systems (00ϕ) and ($\phi 0 \phi$) cannot be continuous, because a second tilt equal in magnitude to the first must appear at the transition point. A sequence of continuous transitions is possible only via the lower-symmetry phase ($0 \phi_{1} \phi_{2}$).

A search of the literature has revealed many crystals with tilt systems of the kinds discussed here. Of these, all that are reported to undergo two or more transitions are listed in Table II. Table IIa contains those where detailed studies leading to a knowledge of all the tilt systems have been made; for substances in Table Ilb the information is incomplete.

We note that all the phases in Table IIa can be described in terms of tilts of the kinds postulated.

In the compounds $\mathrm{NaNbO}_{3}, \mathrm{CsPbCl}_{3}, \mathrm{CsPbBr}_{3}$, and KMnF_{3}, the first two transitions are connected with the condensation of a single soft mode in each case-with different sequences in the different materials-as shown by the full-line joins in Figure 1. They are therefore capable of being second-order transitions. In fact, most of them are experimentally known to be continuous or to have only very small discontinuities, but this is not invariably the case: the $(00 \psi) \rightarrow(\phi \psi \phi)$ transition in CsPbBr_{3}, for example, shows more obvious discontinuities. Particular attention may be called to $\mathrm{KMnF}_{3},{ }^{8}$ where the lowest phase provides the first known example of
the (00Δ) tilt, with the magnitudes of ψ and ϕ equal in this case. Before this was directly established, it could have been predicted from the earlier experimental work ${ }^{12}$ that the probable tilt system for this G_{2} phase was either ($\psi 0 \phi$), $\left(\psi_{1} \psi_{2} \phi\right)$, or (00Δ).

In all the above-mentioned materials, the observed transitions are in agreement with the assumption of the onset of additional tilt distortions as the temperature decreases. This is not true for PrAlO_{3} and SmAlO_{3}. In PrAlO_{3}, after the first transition, (000) $\rightarrow(\phi \phi \phi)$, the number of tilt components dicreases, and in SmAlO_{3} the tilt system is reconstructed at the second transition, $(\phi \phi \phi) \rightarrow(\phi \psi \phi)$. The reasons for this are unknown.

For substances in Table IIb, neither the space group nor the tilt system has been established with certainty for more than one phase; indeed, for $\mathrm{SrZrO}_{3}{ }^{19}$ and $\mathrm{NaMgF}_{3}{ }^{20}$ even the point groups indicated in the table are subject to some doubt. We may make some predictions.
i) For $\mathrm{TlMnCl}{ }_{3}{ }^{18}$ and $\mathrm{CsSrCl}_{3}{ }^{17}$, the tilt systems for phases G_{1} and G_{2} are likely to be (00ψ) and (space group $D_{4 h}^{5}$) and ($0 \phi \psi$) (space group $D_{2 h}^{17}$) as for $\mathrm{CsPbCl}_{3}{ }^{10}$.
ii) For $\mathrm{NaMgF}_{3}{ }^{20}$ and many other crystals with a G_{2} phase ($\phi \psi \phi$) (space group $D_{2 h}^{16}$) the G_{1} phase is likely to be (00ψ) (space group $D_{4 h}^{5}$) rather than $(0 \psi \psi)$ as suggested by Glazer, ${ }^{1}$ because the sequence $(000) \rightarrow(0 \psi 0) \rightarrow(\phi \psi \phi)$ seems more natural than $(000) \rightarrow(0 \psi \psi) \rightarrow(\phi \psi \phi)$. The possibility is not excluded that in some of these crystals the orthorhombic phase ($\phi 0 \psi$) (space group $D_{2 h}^{17}$) found in NaNbO_{3} and

TABLE II

Substance	Transition temperatures, tilt systems or point groups						Reference, methods
	T ${ }_{1}{ }^{\circ} \mathrm{K}$	${ }^{\prime} G_{1}$	$T_{2},{ }^{\circ} \mathrm{K}$	G_{2}	$T_{3},{ }^{\circ} \mathrm{K}$	G_{3}	
(a)							
NaNbO_{3}	914	(00\%)	848	$(\phi 0 \psi)$	793	$\left(\phi \psi_{1} \psi_{2}\right)$	2-5 ${ }^{\text {a }}$
CsPbCl_{3}	320	(00ψ)	314	$(\phi 0 \psi)$	310	($\phi_{1} \phi_{2} \psi$)	$10^{\text {a }}$
CsPbBr_{3}	403	(00ψ)	361	$(\phi \psi \phi)$	-	($11^{\text {a }}$
KMnF_{3}	185	(00¢)	91	(00 ${ }^{\text {) }}$	-	-	$8,12^{\text {a }}$
PrAlO_{3}	1320	($\phi \phi \phi$)	205	($\phi 0 \phi$)	151	$\left(\phi_{1} 0 \phi_{2}\right)$	13, $14^{\text {a,b }}$
SmAlO_{3}	2100	($\phi \phi \phi$)	1100	$(\phi \psi \phi)$	-	(15, $16^{\text {c }, \mathrm{a}}$
(b)							
CsSrCl_{3}	386	$D_{4 h}$	375	$D_{2 h}$	363	$D_{2 h}$	$17^{\text {c }}$
TlMnCl_{3}	296	$D_{4} \boldsymbol{h}$	276	$D_{2 h}$	235	$D_{2 h}$	$18^{\text {c }}$
SrZrO_{3}	1440	$D_{4} h$	1130	$D_{4 h}$	1000	$D_{2 h}$	$19^{\text {c }}$
NaMgF_{3}	1170	$D_{4 h}$	1030	$(\phi \psi \phi)$	-	-	$20^{\text {c,a }}$

[^1]$\mathrm{Cs} \mathrm{PbCl}_{3}$ may occur as an intermediate phase, giving the sequence $(000) \rightarrow(00 \psi) \rightarrow(\phi 0 \psi) \rightarrow(\phi \phi \psi)$.

We believe that Figure 1 will be of use in the structure determination of distorted perovskite phases, investigations of soft modes, and other related problems. As more detailed structural information becomes available, it will provide further checks on the assumptions about the sequence of phase transitions on which this paper was founded.

ACKNOWLEDGEMENT

I wish to thank Dr. V. Zinenko and Dr. H. D. Megaw for criticism of manuscript and helpful discussions. ${ }^{\dagger}$
\dagger After this paper was submitted, the author's attention was called to the work of H. Bärnighausen (Acta Cryst. 31, S.3, 1975) dealing with the same subject.

REFERENCES

1. A. M. Glazer, Acta Cryst. B28, 3384 (1972).
2. M. Ahtee, A. M. Glazer and H. D. Megaw, Phil. Mag. 26, 995 (1972).
3. H. D. Megaw, Ferroelectrics 7, 87 (1974).
4. A. M. Glazer and H. D. Megaw, Acta Cryst. B29, 489 (1973).
5. M. Ahtee and A. M. Glazer, Ferroelectrics 7, 93 (1974).
6. K. Aleksandrov, V. Zinenko, A. Michelson and Yu. Sirontin, Krystallographia 14, 327 (1969).
7. Yu. Gufan and V. Sachnenko, Fizika Tverdogo Tela 14, 1935 (1972).
8. M. Hidake, J. Phys. Soc. Japan 39, 180 (1975).
9. W. Cochran and A. Zia, Phys. Stat. Sol. 25, 273 (1968).
10. Y. Fujii, S. Hoshino, Y. Yamada and G. Shirane, Phys. Rev. B9, 4549 (1974).
11. S. Hirotsu, J. Harada, I. Masachi and K. Gesi, J. Phys. Soc. Japan 37, 1393 (1974).
12. V. Minkiewitz, Y. Fujii and Y. Yamada, J. Phys. Soc. Japan 28, 443 (1970).
13. R. Harley, W. Hayes, A. Perry and S. Smith, J. Phys. C6, 2382 (1973).
14. R. Birgenau, J. Kjems, G. Shirane and L. Van Uitert, Phys. Rev. 10B, 2512 (1974).
15. S. Geller, Acta Cryst. 10, 243 (1957).
16. S. Geller and V. Bala, Acta Cryst. 9, 1019 (1956).
17. L. Pozdnyakova, B. Beznosikov, I. Kokov and K. Aleksandrov, Fizika Tverdogo Tela 15, 3586 (1973).
18. K. Aleksandrov, A. Anistratov, A. Krupny, L. Pozdnyakova, S. Melnikova and B. Beznosikov, Fizika Tverdogo Tela 17, 735 (1975).
19. L. Carlsson, Acta Cryst. 23, 901 (1967).
20. E. C. T. Chao, H. T. Evans, B. J. Skinner and C. Milton, Amer. Miner. 46, 379 (1962).

[^0]: a $\Delta=\psi \pm \phi$.
 ${ }^{\text {b }}$ Wrongly given in [1]; corrected by Glazer (Acta Cryst. A31, p. 758, 1975).

[^1]: ${ }^{\text {a }}$ Direct structural methods.
 ${ }^{\mathrm{b}}$ Indirect methods (radiospectroscopical etc.).
 ${ }^{c}$ Macroscopical methods and X-ray analysis of powders.

