
Theoretical and Mathemat ical  Physics, Vol. 117, No. 3, 1998 

A N H A R M O N I C  STATES OF T H E  O N E - D I M E N S I O N A L  

A N I S O T R O P I C  H E I S E N B E R G  M O D E L  W I T H  F R E E  B O U N D A R Y  

C O N D I T I O N S  

S. N.  M a r t y n o v  1 

States described by anharmonic functions are shown to exist in the one-dimensional anisotropic Heisenberg 
model with a finite number of spins 1/2 and free boundary conditions. Several such states are determined. 

1. Introduct ion  

Solutions of the one-dimensional Heisenberg model are important  in magnetism theory because they 
arise in a variety of problems. In addition, exact solutions of this model provide good criteria for the 
applicability of many approximation techniques and numerical methods used when exact solutions do not 
exist. Eigenfunctions and energy eigenvalues in the Heisenberg model, as in any other model, depend 
essentially on not only the Hamiltonian parameters but also the boundary conditions (BC) imposed on the 
solutions. Standard cyclical BC [1, 2], which permit using the Bethe ansatz [3], restrict a solution to a 
periodic fanction of the coordinate. However, the BC that  are usually realized are the free BC under which 
the border spins of a magnetic chain only interact with one nearest neighbor. The anisotropic open chain was 
first investigated by Gaudin [2]. The general relations for momenta and phases of an arbitrary number M of 
flipped spins were found, and the hypothesis that  real solutions for momenta exist was advanced. However, 
the question of what the conditions for the appearance of imaginary solutions ki are and how to calculate 
their number remained open. To close this question, we find the complete set of eigenfunctions and energy 
eigenvalues with M = 1, 2 for interchange anisotropy of the "light axis" type. 

2. O n e - m a g n o n  so lut ions  

The Hamiltonian of the anisotropic Heisenberg model with a finite number N of spins 1/2 is 

g = J~(S~S~+ I + A(S.xSX+I + S ~.qy ~ . - . + l  J J- (1) 
n 

An exact solution of the corresponding SchrSdinger equation can be found in the class of the one-magnon 
states M = 1 with the eigenfunctions 

(N--1)12 

r = ak(n)r (2) 
n=-(N-l)/2 

where n is the coordinate of the flipped spin, the reference point is in the middle of the magnetic chain, 
and k is the momentum that parameterizes the solutions. This Schr6dinger equation for the amplitudes 
ak(n) can be reduced to the system of finite-difference equations 

N - 1  N - 1  
2(e + 1)a(n) = A ( a ( n -  1) + a(n + 1)), 2 < n < ~ (3) 
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The coordinate n takes integer values for odd N and half-integer values for even N. Hereafter, we omit the 
subscript k of the a(n) amplitudes for brevity. All formulas for amplitudes are related to eigenstates (1) 
with k fixed. Energy c = E / J  is measured in J units w.r.t, the ferromagnetic "vacuum." For free BC, the 
finite-difference equations for the boundary amplitudes are 

2(E + 2 ) a ( : t : N 2 1  ) = A a ( + ~ - - ~ ) .  (4) 

The initial inhomogeneous system of finite-difference equations (3) and (4) is equivalent to a homoge- 
neous system if we complete the set of g physical amplitudes a(n), n �9 ( - ( g -  1 ) / 2 , . . . ,  ( N -  1)/2), by 
adding two nonphysical amplitudes related to the physical amplitudes by the two additional conditions 

a(--l-N21 ) = Aa (:1: N + I  2 ) (51 

Adding conditions (5) term-by-term to boundary equations (4), we can reduce the problem to solving the 
homogeneous finite-difference equation system on which BC (5) are imposed. For A r 1, these BC are not 
the mirror-type BC, which ensure the periodicity of solutions of the isotropic Heisenberg model [4]. In an 
arbitrary finite system, noncyclical BC imply that  the physical amplitude of a wave function is identically 
zero outside the domain of definition. This permits seeking solutions (up to a nonessential phase factor) as 
real coordinate functions whose symmetries are the symmetries of the problem under consideration. 

With the normalization taken into account, harmonic solutions of homogeneous system (3), (4), (5) 
that are symmetrical (s) and antisymmetrical (a) w.r.t, the middle of the spin chain n = 0 are 

,4(n) = V'/N 2 sin(kN) cos(kn), 
"[- sin k 

ai(n) = 2 
_ sin(k/V) sin(kn). 

v s ink 

(6) 

Wave vectors of solutions (6) are determined by BC (5), 

kN I + A  k 
cot T - l--Z- ~ tan ~, (7) 

kN 1 + A  k 
tan -~- 1 - A tan 2 (8) 

for the symmetrical and antisymmetrical solutions respectively. Solutions with the momentum kj for states 
with different symmetries are functions (2), which are orthogonal by definition. Solutions with the coinciding 
symmetries satisfy the orthogonality conditions 

sin N(k + k') sin N(k - k') 
2 + 2 

k + k' k - k ~ 
sin - -  sin - -  

2 2 

= 0  

for the corresponding symmetrical and antisymmetrical pairs k and k ~. In the domain of definition of 
physically different solutions 0 _< k < r ,  the number of solutions of Eq. (7) is 

N 
N ~ m - = - ~ - i  
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for even N. The number of antisymmetrical harmonic solutions of (8) depends on the number of spinors N 
and the quantity A, 

I + A  N N <  
Nlam = 2 ' 1 - A 

I + A  N 1, N >  . 
2 1 - A  

For odd N, we obtain 

N - 1  
N[m - 2 ' 

N - 1  
2 ' 

N~m = N -  1 

2 
, 

I + A  
N < ~  

1 - A '  
I + A  

N > - -  
l - A "  

The case 
I + A  

N -  - -  
1 - A  

is special. Here, the linear antisymmetrical solution 

a~(n) = n (9) 
~ [ N ( N  2 - 1) 

with the bottom one-magnon branch energy et = A -  1 arises. Therefore, harmonic one-magnon solutions (6) 
predict a number of k states less than the initial number N of the independent coordinate functions. The 
complete set of orthonormal one-magnon functions can be obtained if we enhance exponential function 
class (6) by adding anharmonic hyperbolic functions possessing the corresponding symmetry; these functions 
correspond to solutions with imaginary momenta k = iq, 

a (n) = 2 
N '  si-nh(qN) cosh(qn), 

- ~ q  

2 
aq(n) ~l lnh( -q - -~  sinh(qn). 

(10) 

The corresponding equations for q, which can again be obtained by substituting relations (10) in BC (5), 
are 

coth q N  1 + A q (11) - ~  = 1 - - -~  tanh 2'  

tanh q N  1 + A q (12) y = 1------------~ ~ tanh 

for the respective symmetrical and antisymmetrical cases. A symmetrical anharmonic solution exists for 
any N and A < 1; antisymmetrical solution equality (12) holds only if the threshold condition 

I + A  
N > 1- - -~  (13) 
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Fig. 1 

is satisfied. Therefore, the union of harmonic and anharmonic one-magnon solutions always ensures the 
completeness of the eigenfunction system for operator (1). 

Different one-magnon solutions with the minimal values of k and q for N = 10 and A = 0.9 are 
depicted in Fig. 1. To clarify threshold condition (13), the functions are taken not normalized but passing 
through the same boundary points (5). For the given N and A, an antisymmetrical anharmonic solution 
cannot pass through these points and through the inversion center and is therefore absent. To obtain such 
a solution, either a larger N or a smaller A must be chosen. Then, the first antisymmetrical harmonic 
solution a --~ sin(kn) disappears. 

3. Two-magnon solutions 

For M = 2, the symmetry restrictions imposed on the eigenfunction amplitudes, 

r  k 2 ) =  ~ a(nl, n2)r (14) 
n l  <~n2 

can be reduced to the evenness restrictions for the corresponding amplitudes w.r.t, the flipped-spin coordi- 
nate inversion, 

a(nl ,n2)  = + a ( - n 2 , - h i ) -  

Hereafter, we omit the amplitude subscripts kl and k2 for brevity. All the amplitudes a(nl, n 2 )  a r e  related 
to the fixed pair kl, k2,  which parameterizes each two-magnon solution. The plus sign corresponds to the 
functions with a symmetrical amplitude distribution w.r.t, the center, and the minus sign corresponds to 
the antisymraetrical distribution. The inhomogeneons system of finite-difference equations for amplitudes 
can be reduced to the homogeneous system 

2(E+2)a(nl, n2)=A(a(nl+l,n2)+a(nl--l ,n2)+a(nl,  n2+l)+a(nt,n2--1)), nl  < n2, (15) 

if we complete the set of physical amplitudes a(nl < n2), 

nI,~22 E 2 ' ' ' "  2 ' 

by adding 3N - 2 nonphysical amplitudes a(n, n), a(-(N + 1)/2, n2), a(nl, (N + 1)/2), on which the BC 

( N - 1 )  ( N ; 1  ) 
a ~ , n2  ---- ~ a  , n2  , 

(N I) 
a n l ,  ~ = A a  n l ,  2 ' 

2ak,k2(nl,nl + 1) = ~ ( a k , ~ ( n l ,  nl) + a~ ,~(n l  + 1,,~1 + 1)) 

(16) 

(17) 
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are imposed. The procedure, completely analogous to the isotropic case [4], equates the total numbers of 
amplitudes and equations; the solution is therefore unique. Because the amplitudes are real, we obtain the 
relation for the harmonic solutions 

as'a(~,, ~ )  = C(kl, k~) (coS(kl(~l + 51))COS(k~(~ -- 52)) Jr coS(k:(~, + 52))COS(k~(~2 -- 51))). (~S) 

The phase shifts 51 = 5(kl) and 52 = 5(k2) determine the maxima of the wave function, which are equal to 
N/2 in the case of the mirror-like BC [4] (the isotropic Heisenberg model). In the anisotropic case, these 
shifts are determined from BC (16), which result in the equations 

5i=5~+ N-~, cot(kiSS)-  I+A1 - A t a n - 2  -'ki i = 1,2. (19) 

The momenta kl and k2 of each solution are related by Eq. (17), which establishes a one-to-one correspon- 
dence between kl and k2, i.e., two-magnon solutions to the anisotropic one-dimensional Heisenberg model 
depend on a single parameter. We obtain two systems of equations 

sin2k161 sin2k262 
sink1 ( 1 - A c o s k l ) = k  sink2 ( 1 - A c o s k 2 ) = 0 ,  

sink1(251 - 1) _t_sink2(252 - 1) 
~ 0 ,  

sink1 sink2 

(20) 

where 51,2 satisfy Eqs. (19), for the respective symmetrical and antisymmetrical solutions. 
When considering real solutions ki, it is convenient to exclude phases (19) and write the equations for 

the total (K = kl + k2) and relative (q = (kl - k2)/2) momenta. We obtain 

t a n ( - ~ )  s i n ( K )  (2 cos K - A(3 - A2) cosq) + A2 -- 1+ 

+ 2 cos 2 -~- + 2A 2 cos 2 q -- A (3 + A 2) cos cos q = 0, 

tan(qN)sin(q)(2cosq- A(3- A2)cos K) + A 2 - 1 +  

+ 2 c o s  2 q + 2 A  2cos 2 - ~ - - A ( 3 + A  2) cos -~- c o s q = 0  

(21) 

for the symmetrical solutions and 

c o t ( - ~ N - ) s i n ( K ) ( A ( 3 - A 2 ) c o s q - 2 c o s  K )  + A 2 - 1 +  

+ 2 cos 2 -~ + 2A 2 cos 2 q - A(3 + A 2) cos cos q = 0, 

cot(qN)sin(q) A ( 3 - A 2 ) c o s ~ - 2 c o s q  + - 1 +  

+ 2 c o s 2 q + 2 A 2 c o s 2 K - - -  A ( 3 + A 2 )  c o s ( K ' ~ c o s q = 0  
2 \ 2 1  

(22) 

for the antisymmetrical solutions. 
Equations (20) are invariant w.r.t, changing the signs of ki and transposing them (correspondingly, 

w.r.t, changing the signs of and transposing K and q in (20) and (21)). All physically different solutions 
of (20) and (21) lie inside the interval 0 < K, q < 7r. Except for the real solutions K and q, these equations 
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have solutions in which one of these momenta is imaginary. Because of the equation symmetry under 
transpositions of K and q, we can obtain all physically different solutions of this type keeping K real 
and q imaginary. These solutions correspond to the bounded Bethe complexes kl = k~ for which Eqs. (20) 
and (21) for K and q' = -iq remain real. In the coordinates R = (nl + n2)/2 and r = nl  - n2, the Bethe 
complex amplitudes are 

/ 
aSB(R, r) C(Z,q') (cos(KR)cosh(q'(r + N + 2 Re(6 ' ) )+  g Im(6 ' ) )+ 

\ 

, )) + cosh(2q N) cos ~- ( r  + N + 2 ae(6')) + 2q' Im(6') , 

aaB(R,r) = C(K,q')(sin(KR)sinh(q'(r + N + 2 Re(5 ' ) )+  K Im(6 ' ) )+ 

+sinh(2q 'N)s in (K(r+N+2Re(6 ' ) )  + 2q' I m ( 5 ' ) ) )  

for the respective symmetrical and antisymmetrical complexes where 6' = 6[ = (61)*. 
Real and complex-conjugate solutions ki of the anisotropic open chain with A < 1 neither exhaust 

all possible solutions of Eqs. (20) nor produce the complete set of eigenfunctions of Hamiltonian (1). 
Equations (20) admit solutions in which one of the momenta ki or both these momenta are purely imaginary. 
In the former case, mixed states (m-states) appear whose wave function amplitudes are expressed via a 
superposition of harmonic (trigonometric) and hyperbolic functions, 

a~a(nl,n2) : C(kl, k2) (cos(kl(n~ § 61))cosh(lk21(n2 - 61)) =t: cosh(Ik21(n~ + 52))cos(kl(n2 - 61))). 

In the latter case, pure anharmonic states (a-states) appear whose amplitudes are expressed only via the 
hyperbolic functions, 

aSa(nl,n2) = C(kl,k2)(coshOkll(nl + 61)) cosh(Ik21(n2 - 62))+ 

+ cosh(Ik l(nl + 62)) cosh(Ikll(n  - 61))), 

a~(nx, n2) -- C(kl ,  ks)(eosh(]kll(nl  + 51)) sinh(Ik21(n2 - 52))+ 

+ sinh(tk l(nl + 62)) cosh(Ikll(   - 61))). 

For the amplitudes an(hi, n2), BC (16) imply that for the phase 52, 

N tanh(ik216~) _ 1 + A k2 62 = 6~ + ~ ,  1 ~  tanh -~- 

instead of (19). 

4. O n e -  a n d  t w o - m a g n o n  s t a t e  e n e r g i e s  

In Fig. 2, the energy spectrum, which depends on the total real momentum K = Re( ~ ki), is depicted 
for N = 10 and A = 0.9 for the obtained solutions. One-magnon states are labelled by small circles (black 
are symmetrical and white are antisymmetrical states). Squares correspond to two-magnon solutions (again, 
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black are symmet r i ca l  and  whi te  are an t i symmet r i ca l  s tates) .  The  one -magnon  energies correspond to one 
anharmonic  and N - 1 ha rmonic  solutions,  

e(h z) = A c o s k  - 1, 

e (z) = A cosh q -  1. 

The  last is the  energy of the  symmet r i ca l  anharmonic  solution.  In this  case, th reshold  condi t ion (13) is 
not  satisfied and the  an t i symmet r i ca l  a-s ta te  is absent.  Because cosh q _> 1, anharmonic-so lu t ion  energies 
for the  fer romagnet ic  exchange J < 0 are below the branch of ha rmonic  energies. At  the same t ime,  
the symmet r ica l  anha rmon ic  s ta te  has the  m i n i m u m  energy (the first exci ted state) .  This  follows from 
the wave funct ion form (see Fig. 1): the  s ta te  energy decreases as the  magne t i za t ion  d is t r ibut ion  (wave 
funct ion ampl i tude)  becomes  more  homogeneous  along the  chain. The  d i s t r ibu t ion  of levels in our problem 
is complete ly  analogous  to the  d is t r ibut ion  of particle levels in a po ten t ia l  well; the  la t ter  depends  on the 
number  of the  wave funct ion  nodes.  

Harmonic  two-magnon  solut ions have the  energies 

e(h 2) : A(COS kl + cos k2) - 2, 

whose number  is d imin ished  by N in compar ison  wi th  the  isotropic case [4]. This  is because N m- and 
a-solutions appear .  In our example ,  only one symmet r ica l  a-solution,  which possesses the  m i n i m u m  energy 
among  all the  two-magnon  solutions,  exists (this solut ion is on the axis K : 0 in the insert in Fig. 2). 
An  an t i symmet r i ca l  a-solut ion arises when  anisotropy increases to A ~ 0.8 (for N : 10) and one of the 
an t i symmetr ica l  m-solu t ions  (the one tha t  is closest to the  axis K -- 0 in the  insert in Fig. 2) disappears.  
Energies of mixed and  anha rmon ic  solutions are respectively 

e~  ) : A(coskz  + cosh [k2l) - -2 ,  

~(2) : A(cosh Ikl[ + cosh [k2[) - 2. 

The  Bethe complexes  compose  the lower branch of two-magnon  solutions,  

e (2) = 2A cos K cosh [ql - 2. 
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5. D i s c u s s i o n  

The general relations for momenta  and phases of the exponential  Bethe functions [2] produce one- 
magnon (M = 1) solutions (6)-(8) after the corresponding transformations.  Admi t t ing  the imaginary 
momenta  k, we obtain anharmonic states, which are needed to complete the eigenfunction set to the total 
number of N. The number of anharmonic states (one or two) depends on the relation between the anisotropy 
and the number  of spins, and their energies are the lowest in the spectrum. The linear solution appearing 
at N = (1 + A)/(1 - A) cannot be obtained from a finite number  of exponential  functions. This means 
that  the exponential functions do not necessarily produce the total  eigenfunction set. 

Already for M = 2, it is difficult to obtain the explicit form of functions and equations for momenta  
by solving general relations (2). Using the symmetr ized real wave functions, we can give a mathematical ly  
simple and physically clear analysis of the number  and types of possible solutions. For the exchange 
anisotropy A < 1 (of the "light axis" type) and under the free BC, the number  of real-ki solutions reduces, 
and, correspondingly, N imaginary-ki solutions appear. Anisotropy A > 1 (of the "light plane" type) does 
not admit  such solutions. In the latter case, the ground state is degenerate w.r.t, the basic plane direction, 
and the excited-state wave functions need a separate investigation. For an anisotropy A < 1, the number  
of the bounded Bethe complexes is not changed al though it depends nontrivially on the spin number  [5, 6]. 
The total number  of states is equal to the initial state number  C~v = N ( N  - 1)/2, all the states are one- 
parametric, and there are no states with coinciding momenta .  For the ferromagnetic exchange, the a-state 
energies lie below the bo t tom of the energy zone of two-magnon harmonic states, and the m-state  energies 
constitute the lower two-magnon branch spreading over the one-magnon branch in Fig. 2. The m-state 
momenta  kj are close to the one-magnon momenta  but  not eqaal to them as in the isotropic case. This 
means that  resonance transitions A M  = 1 occur with A K  :fi 0, and because A K  << r / N  in the present 
case, it is just  this branch that  gives the macroscopic probability for transitions in a homogeneous resonance 
field Wn ,-~ N. 
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