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Abstract 

We investigate the coherent dynamics of carriers in semiconductor superlattices driven by ac-dc electric fields. We 

solve numerically the time-dependent effective-mass equation for the envelope function. We find that carriers undergo Rabi 
oscillations when the driving frequency is close to the separation between minibands. @ 1998 Elsevier Science B.V. 
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Recent advances in laser technology make it possi- 

ble to drive semiconductor nanostructures with intense 
coherent ac-dc fields. This opens up new research 

fields in time-dependent transport in mesoscopic sys- 

tems [ 1,2] and puts forward the basis for a new gener- 
ation of ultra-high speed devices. Artificial two-level 

semiconductor nanostructures acting as switching de- 
vices based on Rabi oscillations (ROs) have been 
already suggested [ 31. Moreover, resonant phonon- 
assisted tunneling through a double quantum dot could 
be used as an efficient electron pump from spatial 
ROs [4]. 

Zhao et al. have analytically investigated a tight- 
binding model of a two-band system in a time- 
dependent ac-dc field in the weak coupling limit [ 51. 
They identified ROs between Bloch bands under res- 
onant conditions, which reveal the existence of quasi- 
energy bands and fractional Wannier-Stark ladders. 

The advances achieved in molecular beam epitaxy, 

which allow one to fabricate semiconductor super- 

lattices (SLs) tailored with the desired conduction- 

band profiles, make these systems ideal candidates to 

propose experiments on coherent carrier dynamics. 
However, the tight-binding approximation presents 

some limitations to describing actual semiconduc- 
tor superlattices (SLs) when the coupling between 
neighboring quantum wells is not weak. Thus, in or- 
der to experimentally access the validity of theoretical 
predictions, one should use a more realistic model. 
In this Letter we present an effective-mass model 
beyond the tight-binding approximation, containing 
all ingredients of actual SLs, namely finite interband 
coupling and multiband scattering. 

We consider electron states close to the conduction- 
band edge and use the effective-mass approximation. 
The electron wave packet satisfies 
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where x is the coordinate in the growth direction, F 
and w are the strength and the frequency of the ac field, 
respectively. The SL potential at flat band is V’,(x) = 
AE, if x lies inside the barriers and zero otherwise, 
AE, being the conduction-band offset. We have con- 
sidered a constant effective-mass nz* for simplicity. 

The band structure at the flat band is computed 
by using a finite-element method [ 61. The eigenstate 
j of the band i with eigenenergy Ejj’ is denoted as 
$:” (x). A good choice for the initial wave packet is 

provided by using a linear combination of the eigen- 
states belonging to the first miniband. For the sake 

of clarity we have selected as the initial wave packet 
?P( x, 0) = fi!.” (x), although we have checked that 

this assumption can be dropped without changing 
our conclusions. The subsequent time evolution of 
the wave packet P(x, t) is calculated numerically 
by means of an implicit integration schema [ 71. In 
addition to P(x, t) we also compute the probability 
of finding an electron, initially in the state P( x, 0) = 
4,‘,‘)(x). in the state rf/:-“(x), 

00 

fy(t) = .I dxP*(x,t)$;“(x). 
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We present here the results for a SL with 10 peri- 

ods of 100 8, GaAs and 50 A Gae~Ale.3As with band 
offset AE, = 250 meV and m* = O.O67m, m being 

the free electron mass. We consider electric field F = 
25 kV/cm as a typical value, although similar results 
are observed for other values. Fig. 1 a displays Pd:) (t) 
for F = 25 kV/cm at the resonant frequency w,, = 
(Ef” - EA5’)/h = 150 THz. Thus, we are monitor- 
ing the transitions between the central state (j = 5) 

in the first miniband to the central state in the second 
miniband as a function of time. We observe the oc- 
currence of very well defined ROs with an amplitude 
close to 0.3. Summing up the probabilities of the rest 
of states in the second miniband, the probability of 
finding the electron in this band is very close to unity 
(- 0.99). The frequency of the ROs, obtained by per- 
forming the fast Fourier transform (FFT) of Pdis) ( t), 

is Ci&,bi = 19.18 THz. The probability Piis’ ( t) is dra- 
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Fig. I. The probability of findin g an electron. initially situated 

in the state (c;:“. in the state $j” as a function of time for 

F = 25 kV/cm. when the ac field (a) is tuned to the resonant fre- 

quency waC = I.50 THz and (b) is out of resonance wBc = 100 THz. 

Note the different vertical scales. 

maticaily reduced when the ac driving field is out of 
resonance, as shown in Fig. lb for w,~ = 100 THz. 

The FFT of those data reveals no specific features be- 
sides the peak at the driving frequency w,,. 

In a pure two-level system, a straightforward pertur- 
bation calculation yields #R&j = l&i I/n at resonance, 

where Fe1 is the matrix element of the perturbation be- 

tween the ground state and the first excited state. Thus, 
tiaabl is linear in the electric field in a pure two-level 
system. Although the SL is not a pure two-level sys- 

tem, we realize that this linear dependence still holds, 
as we can see in Fig. 2. 

As an estimation of the leakage current that one 
could observe in electron pumping devices based on 
ROs in SLs, we have studied the integrated density in 
the right part of the SL, defined as 

(3) 

.I, 

where x, is the coordinate of the right edge of the 
SL. Fig. 3 shows the results at the resonant frequency 
w nc = 150 THz as well as out of resonance when 
w ac = 200 THz. Under resonant conditions the wave 
function is emitted by bursts from the SL region every 
time a RO has been completed. On the contrary, the 
tunneling across the whole SL is negligible when the 
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Fig. 2. Rabi frequency as a function of the dc field when the driving 

frequency is tuned IO the resonant frequency wai. = 150 THz 
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Fig. 3. f~(t) as a function of time at the resonant frequency 

mdC = 150 THz (solid line) and out of resonance wac = 200 THz 

(dashed line). 

11 1 J.B. Pieper. J.C. Price, Phys. Rev. Lett. 72 ( 1994) 3586. 

[ 21 S.T. Cundiff, A. Knorr, J. Feldmann, S.W. Koch, E.O. Glibel, 

H. Nickel. Phys. Rev. Lett. 73 (1994) 1178. 

13 j T. Martin, G.P. Berman, Phys. Lett. A 196 ( 1994) 6.5. 

141 CA. Sttaford, N.S. Wingreen. Phys. Rev. Lett. 76 (1996) 

1916. 
ac driving frequency is not very close to the resonant [ 5 I X.-G. Zhao, C.A. Georgakis, Q. Niu. Phys. Rev. B 54 ( 1996) 
one. R5235. 

In summary, we have studied the coherent carrier 
dynamics in semiconductor SLs driven by an intense 
ac-dc field. We found that the electron can perform 
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ROs under resonant conditions as in pure two-level 
systems. The Rabi frequency of the oscillations de- 
pends linearly on the strength of the electric field. We 
have shown that electrons are emitted by bursts under 
resonant conditions, whereas the tunneling probability 
is vanishingly small out of resonance. Therefore. we 
suggest that semiconductor SLs driven by an intense 
ac-dc field may be used as an efficient electron pump- 
ing device in THz science. Finally, we should mention 
that we have not considered the role of imperfections 
or any other scattering mechanism that could result 
in a reduction of the carrier coherence. Our prelimi- 
nary results show that scattering by interface rough- 
ness does not strongly modify the above picture. Fur- 
ther work along these lines is currently in progress. 
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