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Abstract 

In this Letter we study the metastable states of a Bloch particle in the presence of external ac and dc fields. For the 
resonance condition between the period of the driving frequency and the Bloch period, the complex quasi-energies are 
numerically calculated for two qualitatively different regimes (quasi-regular and chaotic) of the system dynamics. For the 
chaotic regime an effect of quantum stabilization, which suppresses the classical decay mechanism, is found. This effect is 
demonstrated to be a kind of quantum phenomenon sensitive to the resonance condition. @ 1998 Elsevier Science B.V. 
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In this Letter we study quantum states of a Bloch 

particle in the presence of external dc and ac fields, 

H = p2/2 + cos x + Fx + Fox sin( wt) . (1) 

The system ( 1) has been discussed in the context of 

solid state physics for at least 50 years, but is still of 
some recent interest * . The main bulk of results so far 
known concerns the case of a static field F, = 0 (see, 
for example, the reviews [ 2,3] ) or a pure oscillatory 
field F = 0 [4-61, In the general case, F # 0, F, # 
0, our knowledge about the system is rather poor and 
mainly based on studies of the tight-binding model [ 7- 
91. However, the use of the tight-binding model, which 
most frequently amounts to using a one-band approx- 

imation, can leave aside a number of phenomena. For 

example, neglecting interband transitions in the case 
of a pure dc field transforms the Wannier-Stark res- 
onances (metastable states 3 ) into stationary, expo- 

nentially localized eigenfunctions. In the pure oscil- 
latory case, using a one-band approximation reduces 

the phase space of the generally chaotic system ( 1) 
to a cylinder and, thus, eliminates the phenomenon of 

chaotic diffusion of the momentum. In this present pa- 
per we study the system states beyond the one-band 
approximation. From the preliminary remarks above 
these states are expected to be a kind of “chaotic” 

’ E-mail: kolovsky@physik.uni-kl.de. 
*We also mention that recently the subject received new im- 

petus from experiments with neutral atoms in an optical lattice, 

which suggest an almost perfect realization of a one-dimensional 

Hamiltonian ( 1), see Ref. [ 1] 

3 To avoid a misunderstanding, we note from the very beginning 

that the term “resonance” is used in this paper in three different 

contexts. Fist, we use “resonance” as a synonym of the “metastable 

state” [2] ; second, this term is used to identify the classical 

nonlinear resonance [ 121 and its quantum counterpart; third it 

is used to distinguish the resonance condition between the Bloch 

period and the period of the driving frequency [ 161. 
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Fig. 1. Phase portrait of the system (2) for F = 0. Coordinates 

x( r,) and momentum p( tn) of a classical particle for times I,, 

being the multiple of the driving frequency period are plotted for 

50 different initial conditions. The driving frequency w = 10/6, 

scaled driving amplitude c = 0.1 (a), and E = 1.5 (b). 

metastable states [ 111. 
We begin with the classical analysis. It is convenient 

to include the ac term in the Hamiltonian ( 1) in the 
periodic potential, which is done by the usual gauge 

transformation p -+ p + (F,/w) cos( wt), x -5 x + 
( Fw/w2) sin( wt). Then the Hamiltonian ( 1) takes the 

form 

H= PZl+cos[x-tsin(ot)l+Fx, +. (2) 

It is also useful to expand the “new” time-dependent 
potential in the Fourier series 

cos[x - esin(wt)] = JO(E) cosx + F Jm(e) 
I?*= 1 

x [cos(x-mwt) +(-1)“COS(X+mwt)]. (3) 

It follows from Eqs. (2), (3), that for F = 0 the 
system ( 1) is a system of many interacting nonlin- 

ear resonances and, therefore, its dynamics can be ei- 
ther quasi-regular or chaotic depending on a particular 
choice of the parameters w and E [ 121. Here we re- 
strict ourselves to the choice (a) w = 10/6, E = 0.1, 
where the system dynamics is almost regular, and (b) 
w = 10/6, E = 1.5, where a developed chaos exists. 
Fig. 1 shows phase portraits of the system for these 
two cases. For small E only three terms in Eq. (3), 
Je(~)cosxand Jkicos(xfwr),areimportant [13] 
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Fig. 2. Comparison between classical and quantum decay processes 

for F = wj43r N 0.13 in the chaotic case (b). The dotted line 

shows the classical decay, the solid line is the quantum decay for 

the resonance condition T, = TB (Tc. = l/2), and the dashed line 

is the slightly off resonance case (A = 0.5109531). 

- three nonlinear resonances originated by these terms 
are well seen in Fig. la. For large E many such reso- 
nances overlap and chaotic diffusion is possible. We 
note, however, that the classical motion always re- 
mains bounded in momentum space for F = 0. 

Adding a weak dc field cardinally changes the sys- 
tem dynamics. The static field destroys the invari- 
ant curves separating the chaotic component from the 

outer region of regular motion. Thus, the chaotic com- 

ponent can not support a bounded (in momentum 
space) motion for an infinite time. However, it can 

support a bounded motion temporally. The dotted line 
in Fig. 2 shows the probability PC1 (t) of a classical 
particle to stay within the chaotic region for the pa- 
rameters of Fig. lb and F M 0.13. (The classical 
probability was calculated by simulating the dynam- 
ics of N = 40000 particles with initial conditions 
around x = 0, p = 0. Then the function PCt( t) denotes 
the relative number of the particles with momentum 

Ip] < 6.) It is seen that the probability decays expo- 
nentially with a classical decay time r,t M lOT,. This 
transient chaotic (actually diffusive) dynamics of the 
system is in contrast with the accelerated motion ob- 
served in the outer region of negative momentum (we 
fix F > 0, so that a particle is accelerated towards 
minus infinity). It should also be noted that the ho- 
mogeneous static field not necessarily destroys the in- 
variant curves separating the chaotic component from 
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Fig. 3. Quasi-energy spectrum A = Et(k)T,,,/h of the system (2) 

for F = 0. The parameters are the same as in Fig. 1 and Ti = 0.5. 

Only the states with mean kinetic energy less than 25ri2 (a) and 

less than 35A2 (b) are shown. 

embedded regions of regular motion. Thus, large sta- 

bility islands (like those in Fig. la) typically survive 
after applying a moderate dc field. 

The quantum analysis of the system ( 1) , (2) is 
based on the notion of quasi-energy states (I/l&(x), 
which by definition are the eigenstates of the system 
evolution operator 5 over the period T, of the driving 

frequency 0, 

&h.k(.d =exp[-iE/(k)T,/~il~l,k(X) 7 (4) 

In the pure oscillatory case, the operator (5) obvi- 
ously commutes with the translational operator over 
the lattice period, 2 = exp( -2aJ/&), and, therefore, 
the quasi-momentum k is a good quantum number. 

Fig. 3 shows the quasi-energy spectrum h = 
E,( k)T,/h of the system for the parameters of Fig. 1 

and (scaled) Planck constant zi = 0.5. For the almost 
regular case E = 0.1 in Fig. 3a, the spectrum is domi- 
nated by the three classical nonlinear resonances seen 
in Fig. la. The horizontal bands are associated with 

&he central resonance, while the bands with the slope 
27r (forming a rhombus) originate from the primary 
resonances with m = =!I 1 (see Eq. (3) ) . The presence 
of the chaotic component separating the primary res- 
onances reflects the system local nonintegrability and 
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manifests itself in clear avoided crossings between 
“primary resonance bands”. The bands looking like 
straight lines correspond to classically ballistic (al- 
most free) motion. For the chaotic case, E = 1.5, the 
quasi-energy spectrum is typical for a globally nonin- 
tegrable quantum system and contains many avoided 
crossings. A statistical analysis of the spectrum is an 

appropriate approach in this case [ 14,151. We also 
note that by closer inspection of the spectrum depicted 

in Fig. 3b one can also find a sign of resonances with 
m = fl and m = f2, although these resonances are 
hard to detect in Fig. lb. 

We proceed with the case F # 0. For the F # 0 
evolution operator (5) generally does not commute 
with the operator of lattice translation. An exception 

is the case, where the period of the driving frequency 
T, is commensurable with the so-called Bloch period 

TB = h/F, i.e., rT, = qTB, r,q are integers [ 161. In 
this paper we mainly consider the case r = 1, q = 1, 
where the explicit form of the evolution operator over 

the common period T = T, = TB is [ 11,171 

(6) 

with 

H(t)=@--F~)*/~+cos[x-esin(wt)]. (7) 

Because we are interested in the metastable states, 
the operator (6) should be diagonalized with the res- 
onance boundary condition, which corresponds to a 
vanishing probability to find a particle with a positive 

momentum, 

lim I$l,k(P)? + 0. (8) 
P+C= 

In a numerical calculation the condition (8) can be 
automatically satisfied by truncating the operator 6 in 
momentum space [ 17,18 1. 

In the quasi-regular case (a) the spectrum of the 
system’s metastable states is shown in Fig. 44. The 

4 For the sake of comparison with Fig. 3 the spectrum in Figs. 4- 
6 is actually presented for H = p2/2 + cos[ x - l cos( wt)] + Fx 
insteadofH=p2/2+cos[x-esin(wr)]+Fx.Inthelattercase 

the spectrum is as shown but shifted by 114 over k. (A shift of the 
field phase obviously does not affect the quasi-energy spectrum 

in Fig. 3.) 
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Fig. 4. Complex quasi-energies El(k) in the quasi-regular case (a). 

The circular plot on the left shows the phase A = Re[ El( k) ]T/ri 
against the decay coefficient f = exp( -Im[ /?I( k)]T/fi). The plot 

on the right presents k-dependence of the phase A, only the states 

with r > exp( -2) are shown. 

parameters are the same as in Fig. 3a, and F E 0.13 is 
chosen to satisfy the condition T, = TB. The circular 

diagram on the left depicts the complex quasi-energy 
spectrum in polar coordinates and the plot on the right 
presents the k-dependence of the real part of the quasi- 

energy. It is seen that the complex quasi-energies are 
arranged in bands, which resembles the nonlinear res- 

onance band structure in Fig. 3a. Thus, we can con- 

clude that the most stable states are those associated 
with primary nonlinear resonances. This conclusion 

is in agreement with the classical picture where, as 
mentioned above, the islands of regular motion sur- 
vive after applying a static field. We would also like to 
stress that the crossing of the bands seen in Fig. 4 (and 
later on in Fig. 5) is an artificial fact due to the two- 
dimensional presentation of three-dimensional space 
spanned by the quasi-energies (see Fig. 5). 

Fig. 6 shows the spectrum of the metastable states in 
the chaotic case (b). It is seen that the k-dependence 
of both real and imaginary parts of the quasi-energies 

.EI( k) is quite irregular and a statistical approach 
seems to be an appropriate one to analyze the spec- 
trum. Such a statistical analysis will be the subject of 
a forthcoming study. Here we only present the distri- 
bution of the imaginary parts of the quasi-energies, 
more precisely, the distribution f(r) of decay times 
of the quantum metastable states 

7 = K/2Im[EI(k)] (9) 
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Fig. 5. The same as in Fig. 4 but using 3D presentation for the 

complex quasi-energies. 
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Fig. 6. Complex quasi-energies in the chaotic case (b). The 

phases in the right-hand plot are shown only for the states with 

r > exp(-I). 

in Fig. 7. A remarkable feature of the distribution 
shown is the existence of states with an extremely large 
decay time r in comparison to the classical decay time 

rc1 M 10T. (The numerical data suggests asymptotic 
f(r) - r-* for 7 > T.) Thus the quantum system is 

essentially more stable against a static field than the 
classical one. This statement is confirmed by direct 
numerical simulation of wave packet dynamics. The 
solid line in Fig. 2 shows the probability of a quantum 
wave packet to “stay within the chaotic region” 

Pqu(t) = I lcW~~)l*dp. 
I&5 

Here the initial wave function was chosen as a min- 
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Fig. 7. Integrated distribution function I(T) = & f(#) d7’ of 

quantum decay times 7 = ?i/2 Im[ El( k) ] in the chaotic case (b). 

Note that the T-axis is in logarithmic scale. The insert shows the 

integrated distribution for y = T/r. 

imal uncertainty Gaussian packet centered at x = 0, 
p = 0. A clear deviation from the classical behavior is 

noticed. For the moment we have no explanation for 
this quantum stabilization phenomenon. However, it 
can be stated for sure that this quantum stabilization 

is a consequence of the resonance condition between 

the period of the driving frequency and the Bloch pe- 
riod. The dashed line in Fig. I shows the function 

Pqu (t) for the same values of o, E and F, however, 
for li = 0.5109531 instead of fi = 0.5. It is seen that 

in this case the quantum behavior seems to follow the 
classical one. We also would like to stress that the 
quantum stabilization discussed is not a particular fea- 

ture of the system ( 1). The same phenomenon was 
noticed earlier for a different chaotic system with the 
Hamiltonian H = p2/2 + cos( ot) cosx + Fx [ 111. 

We believe it is useful to compare our approach with 
that based on the tight-binding mode1 in some more 
detail. For the problem considered the tight-binding 
Hamiltonian has the form 

A= -:x(11+ 1)(11 + 11)(1+ 11) 
I 

+ [F+ F,,,sin(wt)] ~24I)(Zj, (10) 
I 

where 1 labels the lattice cites and A is the width of a 
single Bloch band. The advantage of this mode1 ( IO) 
is that (provided the resonance condition is satisfied) 

it can be solved analytically [ 7-101. However, if we 

wish to relate the problem (10) to the genera1 sys- 
tem ( 1 ), a condition justifying that interband transi- 

tions may be neglected should be met. It is easy to 
see that this is not the case for the system parame- 
ters presently used. In fact, as has already been seen 
in Fig. 3, the system is in a regime of strong band 
coupling induced by the periodic field (every avoided 
crossing can be identified with a particular multipho- 

ton transition). Thus, the regimes of the system dy- 
namics discussed in this paper cannot be studied by 
using a tight-binding model in principle. 

To summarize, we have numerically analyzed the 
metastable states of a Bloch particle in the presence 

of ac and dc fields for a resonance between the Bloch 
period and the period of an ac field. For a small am- 
plitude of the driving field a perturbative approach 

can be used and the complex spectrum of the quasi- 
energies has a regular structure. In contrast, for a large 
amplitude the spectrum should be regarded as chaotic 
(quasi-random). The statistical analysis of the spec- 
trum shows the presence of an algebraic tail for the 

distribution of the resonance widths (imaginary part 
of the quasi-energy), which is responsible for the phe- 
nomenon of quantum stabilization. We believe that 

this new phenomenon can be well observed in experi- 
ments with cold atoms in an optical lattice [5,19,20]. 

(It is an appropriate place here to note that the di- 
mensionless values of the driving frequency w and the 
amplitude E used in our numerical calculation corre- 
spond to the scaled frequency and amplitude of laser 
field modulation used in the experiment [ 51.) Since 
a small value of the scaled Planck constant requires a 

pretty large intensity of the laser field, special efforts 
to decrease the effect of spontaneous emission (which 
causes an incoherent scattering of the atoms similar 

to scattering of electrons by impurities in a solid crys- 
tal) should be taken 5 Fortunately, recent progress in 

5 For the system “an atom in a standing laser wave” the scaled 

Planck constant is given by A’ = 4(2Rk’S/mR~)‘/*, where 0, 

is the Rabi frequency, 8 the detuning, ~1 the atomic maqs, and k 
the wave vector of a standing wave (for this scaling see, for ex- 
ample, Ref. [21] ). Thus the scaled Planck constant is inversely 

proportional to the intensity of the laser field. The effect of spon- 

taneous emission is characterized by the atomic diffusion constant 

D = Fi*k2/‘f@262, where r is the natural width of the opti- 

cal transition. It is seen from the last formula that the effect of 

spontaneous emission can be suppressed only for large detuning. 
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the experimental techniques indicates that the effect 
of spontaneous emission can be very well controlled 
in the experiment with cold atoms [ 19,201. 
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