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The two-dimensional (2D) Heisenberg model with anisotropic exchange (D512Jx /Jz) and
with negative next nearest neighbor exchange (J2) with S51/2 is investigated by using
the quantum-mechanical Monte-Carlo method. The energy, magnetic moment at a site, heat
capacity, and spin-spin correlation functions are calculated. The stability regions for Ne´el ordering
of spins as well as the strip-phase and gapless quantum spin liquid are determined in the
interval D/2<J2 /J1<1/(2D). © 1998 American Institute of Physics.@S1063-777X~98!00808-1#

Over the recent years, a large number of publications
have been devoted to the theoretical and experimental stud-
ies of 2D Heisenberg antiferromagnets~AF! in a square lat-
tice with spin S51/2. Following the discovery of high-
temperature superconductivity in metal oxides, considerable
attention has been paid to the investigations of frustrated
antiferromagnets with a negative next nearest neighbor inter-
action. Several elegant theories have been proposed for new
types of magnetic states. These are the resonant valence bond
~RVB! states proposed by Anderson,1 which are formed as a
result of superposition over all realizations of singlet pairs.
Calculations for a 434 lattice2 confirm the closeness of the
energiesERVB to the exact value. TheN-Fermi approach, in
which N different flavors are introduced instead of the two
projections of the electron spinS,3,4 leads to a 1/2-flux state
with gapless spin excitation and a power attenuation of the
spin–spin correlation function. In the strong frustration re-
gion J2 /J1;0.6, whereJa is the energy of antiferromag-
netic exchange interaction between nearest or next nearest
neighbors, the existence of gap magnetic states is assumed
with an energy gap;(0.1– 0.2)J. These states include that
of a quantum spin liquid~SL! with scalar and vector chiral
ordering,4,5 and an ordered dimeric~spin-Peierls! state.6,7 in
the 1/N approximation (N is the number of flavors!,6 the
energy of the dimeric state is slightly lower than the energy
of the chiral spin state:Echiral/Edimer50.994. The exact di-
agonalization in small lattices8 gives opposite results: the
vector chiral order parameter is double the dimeric param-
eter. The latter states are described by fractional statistics and
have a specific spectrum of spinon, holon, and anyon excita-
tions described in detail by Izyumovet al.9

Most works devoted to investigation of the Heisenberg
model with frustrations assume a long-range AF order atT
50 andJ250. The critical value ofJ2 /J1 corresponding to
the violation of long-range magnetic order depends on the
technique and approximations used in analytic computations
and varies between 0.1 and 0.4.7,10–12The more precise the
uncoupling of spin correlation functions, the smaller the
critical value for the frustrated bond. For values ofJ2 /J1 in

the interval 0.6–0.8, a four-sublattice AF is formed.7,11 All
these investigations are based on Heisenberg’s isotropic
model although quasi-two-dimensional compounds have an
exchange anisotropy;(1024– 1022)J. For example,
CaV3O7 with an exchangeJ2 /J1'1.3 has a temperature-
independent static structural factorS(q) above the Ne´el
temperature.13 The anisotropy lowers quantum fluctuations
and minimizes computational error associated with the finite
size of the lattice.

In an earlier work,14 we studied the dimeric state in an
antiferromagnetic Heisenberg chain with four-spin interac-
tion and with a spinS51/2. The four-spin exchange may be
a result of interaction of spins with lattice vibrations
~phonons!. Expanding the exchange integral in powers of
atomic displacements, we obtain the spin–phonon interaction
in first-order perturbation theory. Transforming the phonon
operators through a displacement by a certain constant15 de-
termined by the condition of vanishing of terms linear in
phonon operators, we obtain the four-spin exchange. Thus
the bilinear and four-spin exchange correspond effectively to
a spin-Peierls system with a spin-Peierls phase transition in
the one-dimensional Heisenberg model.16 Such a transition
corresponds to the formation of spin pairs that are in singlet
states with ordered centers of mass relative to one another. In
this work, we study the properties of the dimeric state and
calculate the dimeric state–paramagnet phase transition tem-
perature as a function of the four-spin interaction. The tran-
sition vanishes in the absence of a four-spin interaction, and
the calculated properties for the antiferromagnetic chain are
in good agreement with the results of computations, e.g., the
correlation radius varies according to a power lawj5A/T in
the entire range of temperatureT.

Thus, we can single out two problems. The first one
concerns the possibility of existence of a quantum spin liquid
in an anisotropic frustrated AF and the effect of exchange
anisotropy on the stability region of long-range antiferro-
magnetic order and the quantum spin liquid. The second
problem concerns the existence of an energy gap in the ex-
citation spectrum of a quantum spin liquid. The value of the
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gap in the SL can be determined from the temperature de-
pendence of heat capacity, susceptibility, and from the de-
pendence of magnetization on the applied magnetic field. We
shall use the trajectory algorithm17 in the Monte-Carlo~MC!
method. The basic idea underlying this algorithm is the
transformation of a quantumD-dimensional problem into a
classical (D11)-dimensional problem by introducing ‘‘time
sections’’ in the space of imaginary time 0,t,1/T, and the
realization of the MC procedure in the ‘‘imaginary time-
coordinate’’ space.

1. MODEL AND COMPUTATIONAL TECHNIQUE

Let us consider an anisotropic Heisenberg AF with the
next nearest neighbor antiferromagnetic interaction in a
square lattice with spinsS51/2 localized at its sites and
directed along theZ-axis coinciding with the direction of the
applied field. The Hamiltonian can be presented in the form

H52 (
a51
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(
ha51

4

(
i 51

N

$Ja
zz~ha!Si

zSi 1ha

z

1Ja
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whereJa,0, the summation overha is carried out over all
neighbors in theath coordination sphere,D512Jx,y/Jz is
the ‘‘easy axis’’ type exchange anisotropy,Hz is external
magnetic field, andN the total number of spins.

The algorithm and the MC method were described in
detail in an earlier publication.18 The Hamiltonian is divided
into clusters of four spins on a plaquette, and commutation
between them is taken into consideration using Trotter’s for-
mula. In the MC procedure adopted in our work, we use
periodic boundary conditions along Trotter’s direction and
over the lattice. The linear dimensions of the lattice areL
540, 48, 64 and 80, andm516, 32, 48 ~where m is a
positive integer called Trotter’s number!. The number of MC
steps per spin varies from 3000 to 10000. One MC step
involves the rotation of all spins in a lattice of sizeL3L
34m. The energyE and the heat capacityC are defined by
formulas

E5K ~1/2!(
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r52]/]b~ ln r i
r !, C5dE/dT.

~2!

Here r i , j
r are matrix elements of the local density matrix

( i , j 51,...,L, r 51,...,m), and b51/(kBT). Summation is
carried out over eight spin clustersL3L3m, and the angle
brackets indicate thermodynamic averaging. Magnetization
M and longitudinal susceptibilityx are defined as
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We calculated the longitudinalR(r )5^S0
zSr

z& spin-spin and
four-spin ^S0

zS1
zSr

zSr 11
z & correlation functions and their Fou-

rier transform along the sides and diagonal of a square lat-
tice. The thermodynamic mean of the spin at a site is defined
as s5 limr→`@abs(̂ S0

zSr
z&)#1/2. The correlation radiusj of

spin interaction and the pre-exponential indexh are defined
through the relation

R~r !5A/r h exp~2r /j!, ~4!

where R(r ) is the normalized correlation functionR(r )
5^Sz(0)Sz(r )&2^Sz&2. In the model with competing inter-
actions in the absence of a magnetization-type order param-
eter, a possible characteristic of the system may be the cor-
relation function of locally calibrated operator over an
elementary plaquette. These plaquettes may turn out to be
ordered, and the type of this order may be determined from
the eight-spin correlation function

^Sz~0!Sz~hx!S
z~hy!Sz~hx1hy!Sz~r !Sz~r 1hx!

3Sz~r 1hy!Sz~r 1hx1hy!&. ~5!

Chiral order may exist in the region of strong frustrations
(J2;0.5J1). Let us determine the vector parameter of chiral-
ity over the smallest triangle
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We calculate the correlation functions of normal and anoma-
lous types of spin operatorŝS1(0)S2(r )&, ^S1(0)S1(r )
1S2(0)S2(r )&. by using the Hirsch technique.19 The idea
underlying this technique is that the world lines are ruptured
at a distancer 5m in the Trotter direction, and the wave
functions in theSz representation become equal at this dis-
tance. The computation of these correlations requires a new
MC procedure with free boundary conditions in the Trotter
direction and a doubling of the computation time.

The statistical error in MC computation was determined
by using the standard technique. The mean value was com-
puted, the instantaneous value memorized, and the mean
square deviation determined after completion of the MC pro-
cedure. This error lies in the interval~0.1–2!%. The system-
atic error arises due to a finite value of the numberm and is
proportional to;A/(mT)2.

In a frustrated AF, the matrix elements in a 16316 ma-
trix corresponding to a four-spin cluster on a plaquette may
assume negative values. However, the probability of local
and closed rotations is an even function of negative matrix
elements. The probability of global rotations is equal to the
product of matrix elements from 1 tom, which may be nega-
tive. The statistical weight of these configurations is small
and is determined as follows. The number of configurations
in the space of negative~positive! weightsZ2(Z1) is deter-
mined by the MC procedure, and the quantityZ2 /(Z1
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1Z2)50.02– 0.044 decreases with increasing temperature.
This leads to a systematic error of the same order of magni-
tude in the computed values:

^A&'A1$11Z2 /~Z12Z2!%. ~8!

Here A1 is the sum of physical quantities in the space of
positive weights. To improve convergence of thermody-
namic means, the sign of the statistical weight of the con-
figuration was not taken into consideration. This is valid if
the ratio (Z12Z2)/(Z11Z2) tends to a constant value as
T→0.20 In the region of strong frustrations (J2 /J150.5), the
difference in the values of energy calculated by taking into
account the sign of transition probabilityW.0 and without
it abs(W) is ;5%.

2. DISCUSSION OF RESULTS

While calculating the thermodynamic characteristics of
an anisotropic AF with frustrated next nearest neighbor ex-
change in the ground state, we shall use the technique of
asymptotic continuation of these quantities~calculated at fi-
nite temperatures! to T50. The dependence of energy, mag-
netization at a lattice site, and spin correlation functions on
the next-nearest neighbor exchange was calculated for sev-
eral values of exchange anisotropyD50.05, 0.1, 0.2, 0.3,
0.4, 0.6, 0.75 and 0.8. The critical values oflc1,2 correspond-
ing to the vanishing~emergence! of long-range order are
determined from the kinks on the energy dependenceE(l)
and the vanishing of magnetization at a lattice site~Fig. 1!.

Frustration decreases the absolute value of the energy of an
AF by 5–8%. Forl.lc1 , a dimeric state is formed in
which dimers are arranged in a particular order. Such a struc-
ture can be presented schematically in the form of three types
of dimers with a mutually orthogonal arrangement. The fine
lines in Fig. 2 show pairs of spins directed along theX-axis,
while the thick lines and lines with double arrows indicate
respectively the spin pairs directed along theY- andZ-axes.
Spins directed along theZ-axis induce polarization along the
longitudinal spin components on the nearest neighbors
marked by circles in Fig. 2. The spin–spin correlations along
longitudinal components are shown by dashed lines. In this
region, the correlation functions along the diagonal of the
square@110# at a distancer 5&a are negative for longitudi-
nal components and zero along transverse components as
shown in Fig. 2.

Figure 3a shows the spin correlation functions varying
with the exchangeJ2 in accordance with the magnetic struc-
ture presented in Fig. 2. For the critical valuel15(1
1D)/4, the sign of̂ Sz(0)Sz(r 5&)& varies from positive to
negative, and the signs of spin correlation functions of near-
est and next nearest neighbors coincide with the signs of the
exchange, and the frustration disappears. This leads to an
increase in the absolute value of energy. The theoretical
value of the energy of the disordered state exceeds all energy
values obtained by other methods. Thus, forl51/2 the exact
diagonalization gives E/J520.53,21 the spherically-
symmetric spin-wave theory givesE/J520.26,11 while the
1/N- fermion representation givesE/J520.23.4

Upon a further increase in the exchangeJ2 , the short-
range order in transverse spin components along the diagonal
decreases by r 5&a and becomes equal to zero
^S1(0)S2(r 5&)&'0 ~Fig. 3b! for l5l2 . Spin correlation
functions have a power dependence on distance
^Sz(0)Sz(r )&;1/r h, and can be approximated quite well by
a straight line on the logarithmic scale~Fig. 3c! where the
exponenth varies in the interval 2.5–3.5 forl1,l,l2 .
The chirality parameter calculated over the entire lattice ac-

FIG. 1. Dependences of the energyE/NJ of an anisotropic AF withD
50.05 ~curve1!, 0.2 ~curve2!, and an isotropic AF11 ~curve3! (D50.1 in
the inset! ~a! and of the magnetizations at the site for an AF withD50.1
~curve1!, 0.2~curve2!, and 0.4~curve3! ~b! on the normalized next nearest
neighbor exchangel5J2 /J1 .

FIG. 2. Magnetic structure of a spin liquid: spin pairs directed along the
X-axis ~dashed line!, Y-axis ~solid line!, and Z-axis ~arrowed line!. The
dotted line indicates correlations along the longitudinal spin components.
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cording to formula~8! is equal to zero (F50), i.e., there is
no chiral order. The proposed7 ordering of dimers over sub-
lattices embedded into one another in a staggered manner
can be calculated by using the four-spin correlation function
defined in these sublattices. The MC computation of four-
spin correlation functions along the sides, diagonals and sub-
lattices^S0S1SrSr 11&'0 for r 5L/2, and does not lead to a
long-range order of singlet pairs. There is no correlation be-
tween spin plaquettes described by formula~5!. At distances
r .a, the function~5! tends to zero. Hence the long-range
order parameter for chiral and singlet ordering of pairs is
equal to zero in this state.

The dependence of magnetization on the external mag-
netic field is linear~Fig. 4c!. the critical fieldHc50, and
hence there is no energy gap between the ground and triplet
excited states. The susceptibility is independent of tempera-
ture and applied magnetic field in SL. The temperature de-
pendence of heat capacity can be approximated quite well by
a power lawC(T);ATn, where the exponentn varies be-
tween 2 and 3 depending on the value of the exchangeJ2 .
For an exchange anisotropyD50.05,J2 /J153 in an SL, the
MC results are approximated correctly by a power depen-
denceC(T);AT2.7(2) ~Fig. 4a!. It was mentioned above that
the negative sign of the matrix elements of transition prob-
ability leads to a small error of;3% in the energy values
for l50.3. Figure 4b shows the energy values calculated by
taking into account the sign of the transition probability
~curve 1! and without taking the sign into consideration
~curve2!. The computational error decreases with increasing
temperature.

Let us emphasize the basic characteristics of this state.
The thermodynamic mean of the spin is equal to zero, a
short-range order exists with a sharp attenuation of spin cor-
relation functions according to a power law, and the energy
gap between the ground state and the excited state is equal to
zero, which corresponds to the definition of a gapless quan-
tum spin liquid.22 The magnetic properties of a quantum spin
liquid are analogous to those of a ‘‘tomographic’’ Luttinger
liquid for the two-dimensional case.23 The existence of a
gapless SL in the 2D-Heisenberg model with frustrations is
in accord with the general theorem of Lieb, Schultz and
Mattis24 applied to the two-dimensional case.25 According to
this theorem, the disordered phase of an antiferromagnet
containing an arbitrary half-integral spin in a unit cell must
have a broken symmetry or gapless excitations.

The energy of an SL in the isotropic case can be pre-
sented in the form of the energy of singlets inJ1 and the
energy along longitudinal spin components withJ2 ~the Ising
component;2S2J2): E520.68720.5l, which is in good
agreement with the MC results forl.l2 where the correla-
tion functions along the longitudinal components become
equal at distancesr 51 andr 5& ~Fig. 3a!. The exponenth
begins to decrease with increasing exchangeJ2 to h'1 for

FIG. 3. Spin–spin correlation functions along the longitudinal spin compo-
nents^S0

zSr
z& in an SL withD50.1 ~1,2!, 0.75 ~3,4! at r 51 ~2,4!, & ~1,3!

~a! along transverse spin components^S0
1Sr

2& with D50.1, r 51 ~1!, r
5& ~2! ~b!, ~c! shows the dependence of the correlation function of an SL
with D50.05,l50.25 ~1!, 0.8 ~2! on logarithmic scale.

FIG. 4. ~a! Temperature dependence of the heat capacityC/kBN of a spin liquid forD50.05,l52 ~curve1! and 3~curve2!; ~b! temperature dependence
of energyE/NJ calculated without taking~curve 2! and taking~curve 1! into consideration the sign of transition probability forD50.05, l50.3; ~c!
dependence of the magnetizationM on the applied field in a spin liquid withD50.05, l51 ~curve1! and 2~curve2!.
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l5lc2 . A four-sublattice AF structure obtained by the
method of exact diagonalization12,21 or analytically11,26 can
be singled out over several nearest neighbors. This structure
is formed by two spin sublattices with a staggered ordering
and a unit cell size&a embedded one into the other. On
account of an inadequate consideration of spin correlations
in analytic computations and the small size of lattice in an
exact diagonalization, the variation in the short-range order
for l15(11D)/4 and l2 is naturally associated with the
violation of the Néel state and the emergence of a strip phase
~AF2! with a ferromagnetic ordering of spins along one side
of a square, and an antiferromagnetic ordering along the
other side. The strip phase, determined from the Fourier
spectrum^S2qSq& in MC computations, is degenerate for
two vectorsQ(0,p/a) and Q(p/a,0), and a spontaneous
breaking of symmetry occurs along one of these vectors for
l>lc2 . The interpolation of the critical valueslc1 andlc2

calculated by the MC technique leads respectively to a linear
lc15D/2 and inverselc251/2D dependence on exchange
anisotropy. An asymptotic continuation for the isotropic case
reveals the absence of a long-range order of the strip-phase
type. Figure 5a shows the phase diagram of the ground state
of an anisotropic Ne´el antiferromagnet~AF1!, strip phase
~AF2!, and of a quantum spin liquid. Only one line corre-
sponding to the isotropic caseD50 was investigated earlier.
Our computations reveal the absence of a long-range order
for all values of the exchangeJ2,0, and two types of short-
range order forl,0.25 andl.0.75 with a power depen-
dence of the spin correlation functions on distance. In the
interval 0.25,l,0.75, the spin–spin correlation function

decreases sharply with distance:^Sz(0)Sz(r )&;1/r 3.5(3).
For the order parameters in a quantum spin liquid, we

can take correlation functions at distancesr 51,&. The cor-
relation functions along the longitudinal components are in-
dependent of temperature~in contrast to those along the
transverse components!. Since the excitations in SL are
spinons, a singlet pair is transformed into a triplet withSz

50. The static structural factors(Q), viz., the Fourier har-
monic of the pair correlation function atQ5p/a for l
,l2 andQ5p/(&a) for l.l2 , has a temperature depen-
dence analogous to the dependence^Sz(0)Sz(r 51,&a)&
shown in Fig. 6. Two temperature transitions appear in the
spin liquid for l.l2 . The first transition is associated with
the violation of the dimeric order atT5T1c , where the re-
lation ^S1(0)S2(r 51)&2^Sz(0)Sz(r 51)&, characteristic
for an AF with Néel ordering of spins is satisfied. The de-
veloped long-range magnetic order in longitudinal compo-
nents shown by a dashed line in Fig. 2 is preserved forT
.T1c , and is transformed into a paraphrase atT5T2c . The
spin correlation function̂Sz(0)Sz(r 5&)& has a singularity
at this temperature~Fig. 6b!, and the dependence of the
spin–spin correlation function on distance changes from
power to exponential. In the temperature intervalT1c,T
,T2c , the heat capacity~Fig. 4! and susceptibility have their
maximum values. ForT.T2c , the temperature dependence
of heat capacity is analogous to that for a paramagnet:

FIG. 5. Phase diagram of the ground state of a Ne´el antiferromagnet~AF1!,
strip-phase~AF2! and quantum spin liquid~SL! in the coordinates exchange
anisotropy vs. normalized nearest neighbor interaction~a!, and of a para-
magnet ~PM!, AF2 and SL in the temperature vs.l coordinates forD
50.05 ~b!.

FIG. 6. Temperature dependence of spin correlation functions along longi-
tudinal components in a spin liquid withD50.05,l51 ~1!, 2 ~2!, and 3~3!
at a distancer /a51 ~a! and& ~b!. The inset shows the same dependence
for r /a51 with l52 along the transverse components.

576 Low Temp. Phys. 24 (8), August 1998 S. S. Aplesnin



C(T);A/T2 ~Fig. 4!. Figure 5b shows the range of existence
of the spin liquid on the temperature-exchange~normalized
to next nearest neighbor! plane. The long-range magnetic
order13 is formed in CaV3O7 due to a weak interaction be-
tween planes. AboveTN52 K, the magnetic static structural
factor s(Q) is independent of temperature up toT540 K,
and has a noncommensurate vectorQ;0.7p(1,1) in the
basal plane. A quantum spin liquid is probably formed in this
temperature interval.

Summarizing the results of this research, we can con-
clude that for the anisotropic frustrated 2D-Heisenberg
model with antiferromagnetic interactions, a gapless spin liq-
uid exists in the intervalD/2,l,1/2D. For l.(11D)/4,
the spin-spin correlation functions for the nearest and next-
nearest neighbors are negative and frustration vanishes.
Long-range chiral and dimeric order do not exist in a quan-
tum spin liquid. The spin–spin correlation function has a
power dependence on distance in SL.

*E-mail: gap@iph.krasnoyarsk.su

1P. W. Anderson, Mater. Res. Bull.8, 153 ~1973!.
2J. Richter, Phys. Lett. A140, 81 ~1989!.
3I. Affleck and J. B. Marston, Phys. Rev. B37, 3774~1988!.
4D. Poilblanc, Phys. Rev. B42, 4049~1990!.
5S. Spielman, K. Fesler, C. B. Eomet al., Phys. Rev. Lett.65, 123~1990!.
6X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B39, 11413~1989!.

7M. P. Gelfand, R. P. Singh, and D. A. Huse, Phys. Rev. B40, 10801
~1989!.

8J. Richter, Z. Phys. B79, 403 ~1990!.
9Yu. A. Izyumov, M. I. Katsnel’son, and Yu. N. Skryabin,Magnetism of
Collectivized Electrons@in Russian#, Fizmatlit, Moscow~1994!.

10A. V. Mikheenkov, E. L. Nagaev, and E. V. Zhasinos, Phys. Lett. A205,
101 ~1995!.

11A. F. Barabanov and V. M. Beresovsky, Phys. Lett. A186, 175 ~1994!.
12H. J. Shulz, T. A. L. Ziman, and D. Poilblanc, J. Physiol.~Paris! 6, 675

~1996!.
13H. Harashina, K. Kodama, and S. Shamotoet al., J. Phys. Soc. Jpn.65,

1570 ~1996!.
14S. S. Aplesnin, Fiz. Tverd. Tela~St. Petersburg! 38, 1868 ~1996! @Phys.

Solid State38, 1031~1996!#.
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