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The two-dimensional (R) Heisenberg model with anisotropic exchange<1-J,/J,) and

with negative next nearest neighbor exchand@g (vith S=1/2 is investigated by using

the quantum-mechanical Monte-Carlo method. The energy, magnetic moment at a site, heat
capacity, and spin-spin correlation functions are calculated. The stability regions éboidering

of spins as well as the strip-phase and gapless quantum spin liquid are determined in the
interval A/2<J,/J;<1/(2A). © 1998 American Institute of PhysidsS$1063-777X98)00808-1

Over the recent years, a large number of publicationshe interval 0.6—0.8, a four-sublattice AF is formed. Al
have been devoted to the theoretical and experimental stuthese investigations are based on Heisenberg's isotropic
ies of 2D Heisenberg antiferromagnetdF) in a square lat- model although quasi-two-dimensional compounds have an
tice with spin S=1/2. Following the discovery of high- exchange anisotropy~ (10 4-102)J. For example,
temperature superconductivity in metal oxides, considerabl€aV;0,; with an exchangel,/J;~1.3 has a temperature-
attention has been paid to the investigations of frustratethdependent static structural fact®(q) above the Nel
antiferromagnets with a negative next nearest neighbor intetemperaturé® The anisotropy lowers quantum fluctuations
action. Several elegant theories have been proposed for neand minimizes computational error associated with the finite
types of magnetic states. These are the resonant valence boside of the lattice.
(RVB) states proposed by Andersbmhich are formed as a In an earlier work* we studied the dimeric state in an
result of superposition over all realizations of singlet pairs.antiferromagnetic Heisenberg chain with four-spin interac-
Calculations for a & 4 latticé confirm the closeness of the tion and with a spirS=1/2. The four-spin exchange may be
energiesEryp to the exact value. ThN-Fermi approach, in a result of interaction of spins with lattice vibrations
which N different flavors are introduced instead of the two (phonong. Expanding the exchange integral in powers of
projections of the electron spi,®* leads to a 1/2-flux state atomic displacements, we obtain the spin—phonon interaction
with gapless spin excitation and a power attenuation of thén first-order perturbation theory. Transforming the phonon
spin—spin correlation function. In the strong frustration re-operators through a displacement by a certain conStdat
gion J,/J;~0.6, wherel, is the energy of antiferromag- termined by the condition of vanishing of terms linear in
netic exchange interaction between nearest or next neargshonon operators, we obtain the four-spin exchange. Thus
neighbors, the existence of gap magnetic states is assum#étk bilinear and four-spin exchange correspond effectively to
with an energy gap-(0.1-0.2)). These states include that a spin-Peierls system with a spin-Peierls phase transition in
of a quantum spin liquidSL) with scalar and vector chiral the one-dimensional Heisenberg motfeBuch a transition
ordering?® and an ordered dimerigpin-Peierls state®>’ in  corresponds to the formation of spin pairs that are in singlet
the 1N approximation N is the number of flavoyS the  states with ordered centers of mass relative to one another. In
energy of the dimeric state is slightly lower than the energythis work, we study the properties of the dimeric state and
of the chiral spin stateE o/Egime=0.994. The exact di- calculate the dimeric state—paramagnet phase transition tem-
agonalization in small latticBsgives opposite results: the perature as a function of the four-spin interaction. The tran-
vector chiral order parameter is double the dimeric paramsition vanishes in the absence of a four-spin interaction, and
eter. The latter states are described by fractional statistics aritle calculated properties for the antiferromagnetic chain are
have a specific spectrum of spinon, holon, and anyon excitan good agreement with the results of computations, e.g., the
tions described in detail by Izyumaat al® correlation radius varies according to a power EwA/T in

Most works devoted to investigation of the Heisenbergthe entire range of temperatufe
model with frustrations assume a long-range AF order at Thus, we can single out two problems. The first one
=0 andJ,=0. The critical value ofl,/J; corresponding to concerns the possibility of existence of a quantum spin liquid
the violation of long-range magnetic order depends on thén an anisotropic frustrated AF and the effect of exchange
technique and approximations used in analytic computationanisotropy on the stability region of long-range antiferro-
and varies between 0.1 and 3:#~2The more precise the magnetic order and the quantum spin liquid. The second
uncoupling of spin correlation functions, the smaller theproblem concerns the existence of an energy gap in the ex-
critical value for the frustrated bond. For valuesJgf/J; in citation spectrum of a quantum spin liquid. The value of the
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gap in the SL can be determined from the temperature de- (S =+1/2), y=M/H. ©)]
pendence of heat capacity, susceptibility, and from the de-

pendence of magnetization on the applied magnetic field. wi/e calculated the longitudind(r) =(S;S;) spin-spin and
shall use the trajectory algoritifiin the Monte-CarlqMC)  four-spin(S;SiS{Sf., ;) correlation functions and their Fou-
method. The basic idea underlying this algorithm is thefier transform along the sides and diagonal of a square lat-
transformation of a quantu-dimensional problem into a tice. The thermodynamic mean of the spin at a site is defined
classical D+ 1)-dimensional problem by introducing “time s o=1im, _..[abs(S{S/))]"% The correlation radiug of
sections” in the space of imaginary time<0r< 1/T, and the ~ SPin interaction and the pre-exponential indgxre defined
realization of the MC procedure in the “imaginary time- through the relation

coordinate” space. R(r)=A/r? exp(—r/&), 4

where R(r) is the normalized correlation functioR(r)
1. MODEL AND COMPUTATIONAL TECHNIQUE =(S*0)S(r))—(S»2. In the model with competing inter-
actions in the absence of a magnetization-type order param-
Let us consider an anisotropic Heisenberg AF with thegter, a possible characteristic of the system may be the cor-
next nearest neighbor antiferromagnetic interaction in delation function of locally calibrated operator over an
square lattice with spin$=1/2 localized at its sites and elementary plaquette. These plaguettes may turn out to be

applied field. The Hamiltonian can be presented in the formpe eight-spin correlation function

2 4 N
Z Z Z Z Z Z
H==> 2 [J%(h,)S'SE, |, (S%(0)S*(hy) S*(hy) S*(hy+hy) S*(r)S*(r +hy)
et Pa=t 1=l X S(r +hy)S(r +h,+hy)). (5)
X,y X X QY
Ja (h“)(SS‘*haJFS' S'“‘a)} Chiral order may exist in the region of strong frustrations
N/2 (J,~0.53,). Let us determine the vector parameter of chiral-
—HZ D, (S50 ), (1) ity over the smallest triangle
=1 @
Fijk=(SX§+SX§+SXS) (6)

whereJa <0, the summation oven, is carried out over all
neighbors in theath coordination sphereA=1—-J*Y/J%* is  and calculate itg-projectionF*
the “easy axis” type exchange anisotrophl/ is external _ o o
magnetic field, andN the total number of spins. Fix=il(S'S —S §)+(S/S —5'S)
The algorithm and the MC method were described in +(S'S -5 SN @
detail in an earlier publicatiotf The Hamiltonian is divided !
into clusters of four spins on a plaquette, and commutatioWe calculate the correlation functions of normal and anoma-
between them is taken into consideration using Trotter’s forfous types of spin operatorsS™(0)S™(r)), (S"(0)S™(r)
mula. In the MC procedure adopted in our work, we use+S™(0)S™(r)). by using the Hirsch techniqu&.The idea
periodic boundary conditions along Trotter's direction andunderlying this technique is that the world lines are ruptured
over the lattice. The linear dimensions of the lattice bre at a distanca =m in the Trotter direction, and the wave
=40, 48, 64 and 80, anth=16, 32, 48(wherem is a  functions in theS* representation become equal at this dis-
positive integer called Trotter's numbemhe number of MC  tance. The computation of these correlations requires a new
steps per spin varies from 3000 to 10000. One MC stepMC procedure with free boundary conditions in the Trotter
involves the rotation of all spins in a lattice of sitexL direction and a doubling of the computation time.
X4m. The energ)E and the heat capaciy are defined by The statistical error in MC computation was determined
formulas by using the standard technique. The mean value was com-
puted, the instantaneous value memorized, and the mean
E= < (1/2)2 F{’j> , FI=—0aldB(In p{), C=dE/dT. square deviation determined after completion of the MC pro-
LT cedure. This error lies in the intervd).1-2%. The system-
2 atic error arises due to a finite value of the numiveand is
Here pi”j are matrix elements of the local density matrix proportional to~A/(mT)2,
(i,j=1,...L, r=1,...m), and 8= 1/(kgT). Summation is In a frustrated AF, the matrix elements in aX166 ma-
carried out over eight spin clustets<L X m, and the angle trix corresponding to a four-spin cluster on a plaquette may
brackets indicate thermodynamic averaging. Magnetizatiomssume negative values. However, the probability of local

M and longitudinal susceptibility are defined as and closed rotations is an even function of negative matrix
elements. The probability of global rotations is equal to the
M = < E M if’j> , product of matrix elements from 1 ta, which may be nega-
Ly tive. The statistical weight of these configurations is small
1 1 and is determined as follows. The number of configurations
r—__ roo 4 gtl in the space of negativigoositive weightsZ_(Z ) is deter-
Mii=am hx%:O (SHhX'th SHhX'th)' mined by the MC procedure, and the quanty /(Z,
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FIG. 1. Dependences of the eneryNJ of an anisotropic AF withA
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FIG. 2. Magnetic structure of a spin liquid: spin pairs directed along the
X-axis (dashed ling Y-axis (solid line), and Z-axis (arrowed ling. The
dotted line indicates correlations along the longitudinal spin components.

Frustration decreases the absolute value of the energy of an
AF by 5-8%. ForA>M\.;, a dimeric state is formed in
which dimers are arranged in a particular order. Such a struc-
ture can be presented schematically in the form of three types
of dimers with a mutually orthogonal arrangement. The fine
lines in Fig. 2 show pairs of spins directed along ¥axis,

(curvel), 0.2(curve?2), and 0.4(curve3) (b) on the normalized next nearest while the thick lines and lines with double arrows indicate

neighbor exchange=J,/J;.

+Z_)=0.02—-0.044 decreases with increasing temperaturéc.)
This leads to a systematic error of the same order of magn{—n

tude in the computed values:

(A)~A{1+Z_(Z.—Z_)}. ®

respectively the spin pairs directed along theandZ-axes.
Spins directed along thé-axis induce polarization along the
ngitudinal spin components on the nearest neighbors
arked by circles in Fig. 2. The spin—spin correlations along
ongitudinal components are shown by dashed lines. In this
region, the correlation functions along the diagonal of the
squarg110] at a distance =v2a are negative for longitudi-

Here A, is the sum of physical quantities in the space ofha@l components and zero along transverse components as

positive weights. To improve convergence of thermody-

namic means, the sign of the statistical weight of the con- - ) >
if with the exchang@d, in accordance with the magnetic struc-

figuration was not taken into consideration. This is valid

the ratio €, —Z_)/(Z,.+Z_) tends to a constant value as

T—0.2In the region of strong frustrationg4/J;=0.5), the

difference in the values of energy calculated by taking into

account the sign of transition probabil¥y>0 and without
it abs(W) is ~5%.

2. DISCUSSION OF RESULTS

shown in Fig. 2.
Figure 3a shows the spin correlation functions varying

ture presented in Fig. 2. For the critical valung=(1
+A)/4, the sign of S?(0)S*(r =v2)) varies from positive to
negative, and the signs of spin correlation functions of near-
est and next nearest neighbors coincide with the signs of the
exchange, and the frustration disappears. This leads to an
increase in the absolute value of energy. The theoretical
value of the energy of the disordered state exceeds all energy
values obtained by other methods. Thus,Xer1/2 the exact

While calculating the thermodynamic characteristics ofdiagonalization gives E/J=—0.53%' the spherically-
an anisotropic AF with frustrated next nearest neighbor exsymmetric spin-wave theory givés/J= —0.26 1 while the
change in the ground state, we shall use the technique dfiN- fermion representation gives/J=—0.23*

asymptotic continuation of these quantitigsiculated at fi-

Upon a further increase in the exchangie the short-

nite temperaturggo T=0. The dependence of energy, mag- range order in transverse spin components along the diagonal

netization at a lattice site, and spin correlation functions ordecreases byr=v2a and becomes equal

to zero

the next-nearest neighbor exchange was calculated for seyS*™(0)S™ (r=v2))~0 (Fig. 3b for A=\,. Spin correlation

eral values of exchange anisotropy=0.05, 0.1, 0.2, 0.3,
0.4, 0.6, 0.75 and 0.8. The critical values\qf , correspond-
ing to the vanishing(emergence of long-range order are
determined from the kinks on the energy dependdnge)
and the vanishing of magnetization at a lattice $kay. 1).

functions have a power dependence on distance
(S*(0)S(r))~1/r7, and can be approximated quite well by
a straight line on the logarithmic scalEig. 3¢ where the
exponenty varies in the interval 2.5-3.5 fax;<A<A,.

The chirality parameter calculated over the entire lattice ac-
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The dependence of magnetization on the external mag-
netic field is linear(Fig. 49. the critical fieldH.=0, and
hence there is no energy gap between the ground and triplet
excited states. The susceptibility is independent of tempera-
ture and applied magnetic field in SL. The temperature de-
pendence of heat capacity can be approximated quite well by
a power lawC(T)~AT", where the exponent varies be-
tween 2 and 3 depending on the value of the exchabge
For an exchange anisotropgy=0.05,J,/J,=3 in an SL, the
MC results are approximated correctly by a power depen-
denceC(T)~AT?7(?) (Fig. 4a. It was mentioned above that
the negative sign of the matrix elements of transition prob-
ability leads to a small error of3% in the energy values
for A=0.3. Figure 4b shows the energy values calculated by
taking into account the sign of the transition probability
(curve 1) and without taking the sign into consideration
(curve?2). The computational error decreases with increasing
temperature.

Let us emphasize the basic characteristics of this state.
The thermodynamic mean of the spin is equal to zero, a
short-range order exists with a sharp attenuation of spin cor-
relation functions according to a power law, and the energy
gap between the ground state and the excited state is equal to

FIG. 3. Spin—spin correlation functions along the longitudinal spin compo-zero, which corresponds to the definition of a gapless quan-
nents(S{S;) in an SL withA=0.1(1,2), 0.75(3,4 atr=1 (2,4, v2 (1,3
(@ along transverse spin componer&; S, ) with A=0.1,r=1 (1), r

=v2 (2) (b), (c) shows the dependence of the correlation function of an SL

with A=0.05,\=0.25(1), 0.8 (2) on logarithmic scale.

cording to formula(8) is equal to zerok=0), i.e., there is
no chiral order. The proposédrdering of dimers over sub- this theorem, the disordered phase of an antiferromagnet
lattices embedded into one another in a staggered manneentaining an arbitrary half-integral spin in a unit cell must
can be calculated by using the four-spin correlation functiorhave a broken symmetry or gapless excitations.

defined in these sublattices. The MC computation of four-

tum spin liquid®? The magnetic properties of a quantum spin
liquid are analogous to those of a “tomographic” Luttinger
liquid for the two-dimensional cagé.The existence of a
gapless SL in the R-Heisenberg model with frustrations is
in accord with the general theorem of Lieb, Schultz and
Mattis?* applied to the two-dimensional ca&eAccording to

The energy of an SL in the isotropic case can be pre-

spin correlation functions along the sides, diagonals and sutsented in the form of the energy of singletsdp and the
lattices(SyS:S;S; +1)~0 forr=L/2, and does not lead to a energy along longitudinal spin components with(the Ising
long-range order of singlet pairs. There is no correlation becomponent~2S2J,): E=—0.687—0.5\, which is in good
tween spin plaquettes described by form{#@a At distances
r>a, the function(5) tends to zero. Hence the long-range tion functions along the longitudinal components become
order parameter for chiral and singlet ordering of pairs isequal at distances=1 andr=v2 (Fig. 39. The exponenty

equal to zero in this state.

0.8 :
a -0.50
06 mFA o)
Zm 2 '0.55
X 04} ~
) . W _0.60
0.2} 0.65
0 o | [] 1 ] ]
01 2 3 4 5
/J

agreement with the MC results far>\, where the correla-

begins to decrease with increasing exchadgé n~1 for

®
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A““
1

1
02 04
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06 08

T/J

FIG. 4. (a) Temperature dependence of the heat capdziggN of a spin liquid forA=0.05,A=2 (curvel) and 3(curve?2); (b) temperature dependence
of energyE/NJ calculated without takingcurve 2) and taking(curve 1) into consideration the sign of transition probability far=0.05,A=0.3; (c)
dependence of the magnetizativhon the applied field in a spin liquid with =0.05,\=1 (curve 1) and 2(curve2).
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magnet(PM), AF2 and SL in the temperature vi. coordinates forA 0 1 2 3 4
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FIG. 6. Temperature dependence of spin correlation functions along longi-

tudinal components in a spin liquid with=0.05,A=1 (1), 2 (2), and 3(3)
A=M\s. A four-sublattice AF structure obtained by the ata distance/a=1 (a) andv2 (b). The inset shows the same dependence
method of exact diagonalizatib%‘?l or analyticall)}l'zs can for r/a=1 with =2 along the transverse components.
be singled out over several nearest neighbors. This structure
is formed by two spin sublattices with a staggered ordering
and a unit cell size/2a embedded one into the other. On decreases sharply with distan¢&2(0)S(r))~ 1/r35(3),
account of an inadequate consideration of spin correlations For the order parameters in a quantum spin liquid, we
in analytic computations and the small size of lattice in ancan take correlation functions at distancesl, v2. The cor-
exact diagonalization, the variation in the short-range orderelation functions along the longitudinal components are in-
for Aq=(1+A)/4 and A, is naturally associated with the dependent of temperaturgn contrast to those along the
violation of the Nel state and the emergence of a strip phasdransverse componenisSince the excitations in SL are
(AF2) with a ferromagnetic ordering of spins along one sidespinons, a singlet pair is transformed into a triplet wih
of a square, and an antiferromagnetic ordering along the=0. The static structural fact@(Q), viz., the Fourier har-
other side. The strip phase, determined from the Fouriemonic of the pair correlation function &= m/a for A
spectrum(S_,S;) in MC computations, is degenerate for <\, andQ==/(v2a) for \>\,, has a temperature depen-
two vectorsQ(0,m/a) and Q(=/a,0), and a spontaneous dence analogous to the depended&(0)S*(r=1,v2a))
breaking of symmetry occurs along one of these vectors foshown in Fig. 6. Two temperature transitions appear in the
N=\.,. The interpolation of the critical values,; and\.,  spin liquid forA>\,. The first transition is associated with
calculated by the MC technique leads respectively to a lineathe violation of the dimeric order &i=T,., where the re-
Aa1=A/2 and inverse\,=1/2A dependence on exchange lation (S*(0)S™(r=1))—(S*0)S*r=1)), characteristic
anisotropy. An asymptotic continuation for the isotropic casefor an AF with Neel ordering of spins is satisfied. The de-
reveals the absence of a long-range order of the strip-phaseloped long-range magnetic order in longitudinal compo-
type. Figure 5a shows the phase diagram of the ground stateents shown by a dashed line in Fig. 2 is preservedTfor
of an anisotropic Nel antiferromagnet{AF1), strip phase >T,., and is transformed into a paraphrasd atT,.. The
(AF2), and of a quantum spin liquid. Only one line corre- spin correlation functiogS*(0)S*(r =v2)) has a singularity
sponding to the isotropic cage=0 was investigated earlier. at this temperaturéFig. 6b, and the dependence of the
Our computations reveal the absence of a long-range ordepin—spin correlation function on distance changes from
for all values of the exchangk <0, and two types of short- power to exponential. In the temperature interfig,<T
range order fola<0.25 and\>0.75 with a power depen- <T,., the heat capacit{Fig. 4 and susceptibility have their
dence of the spin correlation functions on distance. In thenaximum values. FoT >T,., the temperature dependence
interval 0.25<\<0.75, the spin—spin correlation function of heat capacity is analogous to that for a paramagnet:
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