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Abstract. The two-dimensional (2D) Heisenberg model with exchange anisotutapy=
1-J%/J° (J <0) andS = 1/2 is studied by the quantum Monte Carlo method. Energy
and spin—spin correlation functions are calculated. The staggered magnetizategendence
1/0 = 1+ 0.13(1)In(1/A) on anisotropy exchange is determined.

1. Introduction

In recent times the two-dimensional (2D) quantum spin Heisenberg antiferromagnet (AF)
has attracted a great deal of attention in connection with the antiferromagnetic properties
of materials with high-temperature superconductivity. Although according to Mermin
and Wagner's [1] magnetic theorem the long range order (LRO) at finite temperatures
is excluded for the isotropic Heisenberg magnet in 2D, numerous theoretical ground-state
(GS) investigations of the 2D Heisenberg AF confirm the existence of LRO=at0 [2-5].
However, a proof for antiferromagnetic LRO in the GS of the Heisenberg AF is available
at present only foiS > 1 [6] in the isotropic case or for an anisotropic exchange in the
extreme quantum case= 1/2 [7].

Numerical techniques: an exact diagonalization, usually employing Lanczos-like
methods [8, 9], and a number of quantum Monte Carlo (MC) methods [5, 10-12] are used for
study of the 2D isotropic AF. Exact diagonalization studies are limited to small lattices, since
the Hilbert space grows exponentially with the number of sites. MC methods allow us to
study very large systems, although application is mostly limited to nonzero temperatures and
to study of the isotropic AF. Thus, the nature of the ground state of the 2D antiferromagnet
remains unclear. The rather significant quantum fluctuations due to low dimensionality and
due to low spin can completely destroy the long range order. Some authors on the basis of
analytical methods and the majority of numerical calculations obtain AF order, but others
infer the absence of LRO [13, 14].

How can the isotropic 2D Heisenberg model describe the staggered magnetization
observed in powder diffraction at low temperatures inCa0, [15] and EpCuO, [16]?

The interplanar coupling’ is of the order of 10° J that is very much less than Ising-like
exchange anisotropyx = 1—J*/J* ~ 10~ J[15]. So we need to consider the role of Ising-
like anisotropies to study most of the thermodynamic properties of 2D antiferromagnets with
CuGQ; planes.
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In the paper the quantum Monte Carlo method, using the trajectory algorithm [17]
is applied. The algorithm’s main idea is based on a transformation of the quantum D-
dimensional problem to the classical+ 1-dimensional one, by using ‘temporary ’ cuts in
the space of imaginary time @ r < 1//T and then realization of an MC procedure in the
space ‘imaginary time—coordinate’ is carried out.

2. Model and method

We shall consider the anisotropic 2D Heisenberg model with negative interactions between
nearest neighbours/(< 0) on a square lattice with a sites occupied by spins: 1/2,
directed along an axi® Z. The Hamiltonian looks like:
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where A = 1 — J*/J* is the anisotropy of an ‘easy axis’ exchange a¥idis the total
number of spins.

The algorithm and MC method have been considered in detail earlier [18,19].
calculations are based on the following Trotter formula [20]:

eXp(A1+ A2+ Ag+ -+ Ay) = lim [exp(A1/m) eXp(Az/m) eXp(Az/m) ...
x exp(A,/m)]™

and the parameten is called the ‘Trotter number’. Hamiltonian is divided into a four spin
subsystem
H=H, +vaen+Hdd+H

even

where H;;2, denotes the sum over four spins on even squares in-tloe y-direction and
H,;, takes care of the odd squares. We used three kinds of flip into MC procedure. A
‘global flip’ involves 4n spins aligned in the Trotter direction and changes the value of
M, by creating or annihilating a string of down-spins. The deformation and displacement
of the strings are taken into account by a ‘local flip’, which flips two adjacent spins, and
also by a ‘loop flip’, which flips six spins. The MC calculations were performed on the
sequence of a lattices linear sizelof= 40, 48, 64, 80 and: = 16, 32, 48 with a periodic
boundary condition. For each lattice we used from 1000 to 3000 steps to equilibrate and
another from 2000 to 7000 steps to calculate the averages. One MC step is determined by
turning all spins on a lattice of dimensiolisx L x 4m.

The following quantities were calculated: the energy, the spin—spin correlation functions
of the longitudinal and transverse spin componéftg0)S, (r)) along the directions of the
lattice sides; the staggered magnetization

o =2 lim /abgs*(0)S(r)).

The MC method offers three kind of error. The error due to quantum fluctuations yields
an estimate~A/(mT)? and forT/J = 0.1 it is approximately equal to 2%. The root-mean-
square error of the energy is within0.1%, the staggered magnetizatiorli%.The error
due to finite lattice size can be minimized since we made simulations for correlation radius
&< L/2.
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3. Results and discussion

The energy and the spin correlation functions of the anisotropic AF a+ 0 we shall
determine from the extrapolation of these values estimated for the anisotropic AF at low
temperature. We shall calculate temperature dependences of the energy, of the staggered
magnetization and of the spin—spin correlation functions for several parameters of anisotropic
exchangeA > 0.005 and for four lattice sizes and for three In extrapolating the data

with different Trotter number:, we have used the following/#:?-theorem proved by M

Suzuki [20]:

Cn=C+a/m>+b/m*+ p/mé+ ..

where C,, is the value obtained for the finite decomposition. At every temperature we
perform 1/m?-extrapolation. The typical dependences are represented in figure 1.
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Figure 1. Dependence of the energy/NJ for exchange anisotroppr = 0.02(1), 0.075(2)
and the staggered magnetization of an Afor A = 0.05(1), 0.15(3), 0.25(2) on temperature.

In the range of low temperatures, smaller than the energy gap between the GS and
excited statel’ < 4SJ.,/A(1+ A), the calculated value is interpolated by the power
low A = A(T = 0) — «T? and the exponential lamd = A(T = 0) — aexp(—8/T)
(in the inset of figure 1 it is represented by a dotted line) with three fitted parameters
B and A at T — 0. At these parameters the long spin-wave density is fairly small and
they yield an exponentially small contribution to the thermodynamic properties of the 2D
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Figure 2. The energyE /N J and the correlation functions of the nearest neight0) S* (r =
1)) of an AF atT — 0 against exchange anisotropy= 1 — J*/J%. The curve shown is the
estimated second-order spin-wave (SW) prediction [21].
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Figure 3. The staggered magnetization (in the insgb lagainst IfA)) of an AF against
exchange anisotropgs = 1 — J*/J%; the curve is SW [21].

antiferromagnet, therefore the quantities of the energy and of the staggered magnetization
are practically independent of the lattice size used by the MC procedure. Choice of the
interpolation is based on the least value of the root-mean-square S&MSror.

The extrapolated quantities and (S(0)S*(r)) of the anisotropic AF are represented
in figure 2 atT — 0. They are interpolated by the following functioh = A(A =
0) £+ 1/ expa/AP) with fitted parameters, f and A(0). The quantities of parameters
are accordingly equal: for the energy = 1.61(7), 8 = 0.26(5); for the correlation
functions(5¢(0)S*(r)) « = 2.(1), B = 0.1657). The energy of the 2D isotropic Heisenberg
model E = —0.684(6) at T — 0 agrees well with the theoretically predicted value by
the exact diagonalization methdd = —0.684 45 [8]. The spin—spin correlation function
(S*(0)S*(r)) = —0.120(4) is in agreement with the resu|<(0)S*(r)) = —0.114 [3]. In
figure 2 our results are compared with spin-wave (SW) analysis (to second ordé) ji21].
The discrepancy may be because of the effect of theoretical correlations in SW are fairly
weakly taken into consideration. So thed temperaturdy/J = 0.5 estimated by the
spin-wave theory for the Ising case does not agree with the exact fgsult= 0.564 [22].
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The calculated inverse value of the staggered magnetization fits well to a straight line in
the coordinates /b — In(A) shown in the inset of figure 3. The staggered magnetization is
interpolated by some functions: the exponential law 1 — A/ exp(BA), the polynomial
of degree four and the logarithmic lawd = 1+0.13(1) In(1/A) (figure 3), which provided
the least root-mean-square error. The logarithmic law is based only on numerical grounds
and does not appear yet in the literature. The disagreement between the spin-wave data and
our results may be due to nonlinear excitation, for example thermally excited skyrmions
[23,24]. The staggered magnetizationsis= 0.58(6) up for the value of the exchange
anisotropyA = 0.005. The calculated values of the staggered magnetizatien0.45 g
agree well with experimentally determined values= 0.44 up [15] for La,CuQ, with
exchange anisotropg ~ 1074,

So, summarizing, the staggered magnetization of the anisotropic AF depends on
exchange anisotropy according to the logarithmic laiw & 1+0.13(1) In(1/A) atT — 0.
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