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We consider the process of resonant electron tunneling through a double-barrier potential, taking into
account nonlinear dynamical effects generated by charge accumulation in the interbarrier space. We use the
perturbation approach of Davydov and Ermakov, which was developed for investigating intrinsic bistability in
resonant tunneling. For incoming electron flow, which is modulated slowly in time, we show that the resulting
nonlinear dynamics can become chaotic, with the chaos desdieeduse of the open nature of the system
by a strange attractor. We determine the conditions for the existence of this strange attractor and estimate
characteristic experimental parameters for its observafi®nil 63-18208)08531-3

I. INTRODUCTION of their features in more detail. One of the main peculiarities
of hysteresis and bistability in thieV characteristic of the
The rapid progress of nanotechnology fabrication ha©®©BRTS is its independence of the external circuit in the
stimulated growing interest in electron transport throughsystem; indeed, for this reason the term “intrinsic bistabil-
guantum low-dimensional structures in the ballisticity” was suggested in Ref. 10. Despite the discussion in Ref.
regime'~® One of the most frequently studied devices is thel4 of the role of the external circuit in the appearance of a
double-barrier resonant tunneling struct@@BRTS), which  hysteresis, in the experiment of Goldmetral.,°~*?the prin-
consists of two potential barriers surrounding a potentiakipal cause of intrinsic bistability in DBRTS is quite obvious
well. It is well known that the transmission of electrons now. Besides, this effect was also observed in the computer
through a DBRTS is effective only if certain resonance con-simulations:®> Recently, several experimental and theoretical
ditions are satisfiedsee, for example, Refs. 1-9 and refer- papers studying intrinsic bistability in a system of “three
ences therein barriers plus two wells” have appearddee Ref. 26 and
Apart from the inherently nonlinear nature of the current-references therein Control of the carrier dynamics in a
voltage (-V) characteristics caused by the resonant tunnelDBRTS, or in the three-barrier system, can be achieved us-
ing process itself, additional nonlinear effects have been thing optical techniques based on photoluminescéficé.
focus of much current interest. For instance, a proper ac- When the external bias applied to a DBRTS is larger than
counting of the dynamical charge accumulation within thesome critical value, nonlinear oscillations of the output cur-
potential well leads to an electrostatic feedback mechanisment can appear even for stationary input current. Such self-
that shifts the resonance energy. Under some conditions, thisscillations were investigated in theoretical papgérs,and
can result in the appearance of nonlinear effects such as curnere observed independently in computer simulatidna.
rent instability, intrinsic bistability, self-oscillation’§;'®  possible connection between these self-oscillations and the
Hamiltonian chao#’ dissipative chao% and others. well-known modulation instability of the nonlinear Schro
Experimentally, hysteresigistability) in the voltage de- dinger equation was discussed by Malomed and A%bel.
pendence of the electron current through the DBRTS was In their computer experimeit,Jona-Lasinet al. consid-
observed for the first time by Goldmaet al1°~'2In these ered the periodic transmission of a wave packet through a
papers a simple theoretical explanation of the effect wapotential involving a DBRTS with high transparent barriers
given. Independently and simultaneously, Davydov andand with two infinite walls bounding the system on the both
Ermakov® predicted the existence of bistability in resonantsides of the DBRTS. The system was thus closed and Hamil-
tunneling and developed a consistent theory of the phenontenian, and one could study the “dynamics” by studying the
enon, relating it as well to previous discussions of similarenergy level spectrum. The results of Ref. 20 established that
phenomena in biological systems and in molecularincorporating the effects of charge accumulation within the
electronics->?2-25 While their pioneering work is well DBRTS (using the Hartree approximatipted to chaotic be-
known in these latter contexts, it is unfortunately practicallyhavior for the envelope of the wave packet for energies ex-
unknown to experts in resonant tunneling in semiconductoceeding a critical value. In Ref. 21, the authors investigated
microstructures. numerically a realistic model of a doped quantum well het-
Because the hysteresis and bistability are important norerostructure. Nonlinearity is introduced in the model through
linear characteristics of the DBRTS, we shall mention somehe effective potential due to the density of electrons in the
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well. Dephasing and energy relaxation are introducedng for charge accumulation within the potential well and the
through a density matrix approach. The resultant dynamicsonsequent formation of an electrostatic feedback mecha-
shows the periodic-doubling routes to chaos, in the form ohism.
strange attractor. It was mentioned by the authors of Ref. 21 We use the approach of Davydov and Ermakoi?
that all materials parameters used are well within the presenthich was previously developed in Ref. 13 for the investi-
capabilities of present quantum well technology, and thegation of transient processes in the intrinsic bistability of the
driving field amplitudes and frequencies are easily obtainabl®BRTS. In this section, we present the main results of Ref.
with a free electron laser. 13 in the form that can be applied for potential barriers with
In the present paper, we consider a related but distincan arbitrary transparency. This generalization allows us to
time-dependent problem: the transition to dynamical chaofvestigate several physically interesting cases, and to deter-
when a time-modulated incoming electron current passesiine the conditions of validity of the approach.
through a DBRTS. In contrast to the studies of Refs. 20 and We shall treat the electron-electron interaction within the
21, we consider an open system, so that the electrons “pagssartree approximation, so that the many-body electron wave
through” the DBRTS only once. Thus, our considerationfunction can be represented as a product of single electron
complements the closed system theory developed in Ref. 2Wave functions’ For the single electron wave functions, in
Employing the approach of Ref. 13, we show that the dy-the regions outside the DBRTS, we assume the form,
namical charge accumulation in the potential well leads to a

self-consistent electric field that modifies the resonant tun- Pin(X,1) =[Do(t) e+ R(t)e~ **Je~1wo, (28
neling. As a result, an effective shift of the resonance energy .
appears, which depends on the amplitude of the current PouX,1) =D (t)e' W @a), (2b)

transmitted through the DBRTS. Under certain conditions
the resulting nonlinearity, together with the time-periodic

modulation of the incoming electron current, leadslissi- ; )
ative(because the system is opahaotic dynamics involv- the effgctlve_electron mass. We assume that the amplltudes
P .of the incomingDy(t), the reflectedRk(t), and the outgoing

ing a strange attractor. When the width of a resonance i R .
(t) waves are all slowly varying in time, so that an adia-

small compared to the value of the resonant energy, and al Satic approximation is valid. Within the Hartree approxima-
if the time-periodic modulation of the incoming electron bp : S X PP
ion, the Coulomb interaction between the incoming electron

flow consists of a sequence of short pulses, then the Stranglvave and electrons accumulated in the region of the potential
attractor that appears in this system is the well-known lked e ” .
P Y well (a<x<a-+b) will simply add an additional potential

2930w lore th for th i | : . e ) . :
attracto e explore the prospects for the experimenta erm to the single particle Schiimger equation. This addi-

observation of this dynamical chaos and estimate that th onal potential termV... in the homogeneous approximation
conditions for chaos are close to the conditions for the real~ P : cr | 9 us approxi !

ization of intrinsic bistability in the DBRTS’-32 which is considered below, is given by,

The paper is organized as follows. In Sec. I, we present V=——eg (3a)
the main equations describing the nonlinear dynamics of the ¢ @
DBRTS when charge accumulation effects are included. Inwhere ¢ is the self-consistent electrostatic potential gener-
Sec. lll, we study the conditions for the transition to chaosated by all electrons in the potential well ards the elec-

In Sec. IV, we discuss the necessary conditions for the extron’s charge. The total electric charge accumulated in the
perimental observation of chaos in the DBRTS. To avoidwell is Q= —Nep, whereN is the number of electrons in the
excessive technical detail in the main text while maintainingwell, andp is defined in terms of the electron wave function
completeness, we present the derivations of some formulag as

in two short Appendixes.

where E is the incoming electron energy,k
=(2m*E/%?)Y2, and wo=E/A=Ak?/2m*, with m* being

1 fa+b
p(=} f |p(x.0)[?dx. (3)

II. BASIC EQUATIONS a

Consider a current of electrons moving through a oneUsing Gauss’s law, one can find the electric fi€ldroduced
dimensional(1D) system consisting of two identical poten- by the charge,
tial barriers of heigh¥/y and widtha separated by a distance
b. We shall refer to the region between the barriers as the = _ 4_77 9 30
“potential well” and take as our spatial origin the left edge € S’
of the left barrier. The potential can then be written in the

following form: wheree is the dielectric constant of inter-barrier medium and

Sis the area of the surface that is crossed by the electric flux.
Using the homogeneous approximation for the figle
(1) — &b, we find the final expression fof.. to be

| _ Ve(t) =op(t), (43
We assume that an electron current with a slowly time- _
modulated intensity is injected from the left. The characterWith p given by Eq.(3b) and
istic modulation frequency is much smaller tha&h/#,
whereE, is the energy of the resonant tunneling. We wish to _ 4_77 2
) ) o= e‘ngb, (4b)
study the time dependence of the outgoing current, account- €

0 if x<0, a<x<a+b, x>2a+b
V(x)= V, if 0<x<a, a+b<x<2a+b.
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whereng in the electron density per unit area and all otherthe termAk; arises from the slow time modulation of the
guantities have been defined above. The coeffiakeint Eq.  wave function due to the dependenceVifont.
(4b) can be expressed through the area capaCityf the By direct substitution, one can show that the wave func-
DBRTS aso=e’n,/C,. This form of V, was also used in tion (6) is an approximate solution of the nonstationary
the numerical experiment.In what follows we shall con- Schralinger equation, valid up to the terms of the order of
sider only the cas&/.<E. The potential in Eq(4a is a w/wq for kb=1, which corresponds to the conditions of the
nonlinear and nonlocal functional @f(x,t) and is a source resonant tunneling.
of nonlinear effects, including intrinsic bistability and  One should notice that the final expression for the Cou-
self-oscillations:>16:17 lomb energyV. in Eq. (8) includes the wave vectay, which

We now consider the behavior of the wave function in theis a consequence of the nonlocal structure of our self-
DBRTS. Using an adiabatic approximation, one can deriveconsistent approach to the Coulomb interaction. Thus, Egs.
the wave functions inside the barriers by solving the station{7) and (8) define the wave vectag only implicitly. How-

ary Schrainger equatiort? ever, as we will later show, in the most interesting case of
, near resonant tunneling, one can find an approximate explicit
Ppj(x,0) =[a;(t)e™+ Bj(t)e” et (j=1,2), solution forq.
(5a) The correctionAk in Eqg. (7a) can be expressed through
where the amplitude of the outgoing wave, for x>2a+b. To
this end, we must find relations between the amplitules
y=[2m* (Vo—E)/#?]Y2. (5b) B, andD. Matching the wave functions and their derivatives
. . at the pointsx=2a+b anda+b, we obtain,
Here the complex amplitudes; and 3; are slowly varying
functions oft. 1 [(k+q
Because the DBRTS itself has zero potential in the inter- A= ED (— coshya—i| —— =|sinhya
barrier region, the total potential energy inside the well is q
V.(t). Since the wave function depen@sowly) on time, x exdik(2a+b)—ig(a+b)], 9)
V() is also a slowly varying function of time. Thus, the
wave function inside the potential well must be found as a 1 [[k— ko)
solution of the nonstationary Schfinger equatiort® The B=— EDH— coshya+i —+—)smhya
- . A v q
problem of finding of the solution of the Schiinger equa-
tion (either stationary or nonstationaryor nonlinear and Xexdik(2a+b)+ig(a+b)]. (10

nonlocal potential in Eq(4a) is rather complicated. How- N . . .
ever, if the electrostatic interaction of electrons is weakouPstituting Egs(9) and(10) into the expressions fakk in

enough ¥.<E) andV(t) varies in time slowly, the wave Egs.(7b) and(8), we have

function inside the potential well can be represented in the Ak.= k|D|?
form,: ¢ ’ (11
_ igx —igx]a—iwot (k% 3
Pu(x, D) =[A(DT+B(t)e e 1®0, 6) k= rKo| cosifya+ 5| —+ 7 |sinfya
Y

where the wave vectay will be determined below, and the

complex amplitude#& andB are slowly varying functions of k | 1 :
time, with characteristic frequency<wy=E/%. We will + ;Jr k| 2Kp (1~ cos&b)coshyasinhya
show below thatv is the maximum of) andv, where() is 112 22\ sindkb

the characteristic frequency of time-modulated incoming Yo|sin .

electron flow, andv is the inverse width of the resonant 5(7 F) 2kb smhzya+O(Ak/k)]
level. Substituting Eq(6) in the nonstationary Schdinger .
equation with the potential.(t), we find for the wave vec- - M)
tor q, o ka2 )

gq~k—Ak, Ak=Ak.+Ak, (Ak/k<1), (74  Where the constant is defined in Eq(4b). The logarithmic

time derivativesAA~! andBB~! in the expression foAk,
m* in Eq. (70 can be expressed in terms of the slowly time-

AkC:WVC' (70) dependent variablBD . These relations can be derived in
general from Eqgs(9) and(10) (see Appendix A The sim-
m* . Lo plest form of these relations occurs in two interesting cases:
Aki=—i{-(AAT"+BB ), (70) I. The case of high and wide barriers,
o?iaa yik>1, vya>1, (12
_ 2 2 2igb
Vc_"[ |A[*+[B|*+| AB* 2iqb(e P-1)+c.c. } ) corresponding to the barriers tfw transparencyi.e., low

_ _ _ transmission
The termAk in Eq.(7a) takes into account both the influence ||, The case of high and relatively narrow barriers

of the nonlinearity and the dependence on time. The term
Ak, arises from the Coulomb interaction of electrons, and yik>1, ya<l, y?alk>1.



PRB 58 STRANGE ATTRACTOR IN RESONANT TUNNELING 3957

This case corresponds to the “moderate transparency’of theret it, let us first consider the case of tunneling through the
barriers. The corresponding inequalities can be written in th®©BRTS without taking into account the Coulomb interaction
form, (Ak=0). Settingg—k in Eq. (16), we have the standard
expressiort>192°

1<(ya) l<yik. (13
These two cases will be considered below, and we shall refer Doexd — 2ik(a+b)]
to them as | and II. = (2G?-1)-2i5G 17
In cases | and I, we havisee Appendix A
A B D where
K% §~5+O(Akw(a+b)) (14) , ,
where o is the characteristic frequency of variation of the G(k)=coshyacokb— 2; L4 sinhyasinkb, (18)
functions A, B, andD,. Because we deal with a DBRTS Y
whose characteristic size is of the order of the de Broglie
wavelength,k(a+b)~1, and, up to terms of ordekk/k, k2— 52
we haveAA"'~BB '~DD™ . Thus, the expression for S(k) = coshyasinkb-+ Ky sinhyacokb. (19
Ak; in Eq. (7c) takes the form,
om* D The conditions for the resonant tunnelifig/Do|?>=1 is sat-
Aky=—i— —. (15) isfied for the wave vectok, , which is determined from the
ki D equation,
The expressionéll) and(15) define the correctioAk in (7)
depending on the complex amplituBeof the wave function G(k,)=0. (20)
of outgoing electrons. Hence, we next analyze how this cor-
rection Ak influences the process of resonant tunneling, . ; ;
Matching the wave functions and their spatial derivatives aF quation(20) is equivalent to
the pointsx=0 andx=a, and taking into account Eq§9)
and (10), one can derive the exact dependence between the kz— 2
complex incoming amplitud®, and the outgoing amplitude cotk b= 2Kk ———tanhya. (21)
D7
1 k+q qa vy In the limiting case I, the condition of the resonant tunneling
DO:ZDe"‘(Z“b) (— coshya—i v E) sinhya in Eq. (21) takes a simpler form,
(kta k_7 [ kb~ 7rn— 2k, / 22
X coshya—i| —— = smhya e'ab (O~ mN—=2K [y, (22)
L\ qg Yy 4
k—q q v wheren is an integer. In the case I, the condition for the
- ( K coshya+i| —+ — " smhya resonant tunneling also has the form of Eg2) with the
L Y substitution:y— y?a.
[[k—q kK vy ‘ We now consider the modification of the resonant tunnel-
X (T coshya+i| —+ P sinhya e'qb] (16)  ing conditions when the Coulomb interaction is taken into

account. Using Eq.16), one can showsee Appendix Bthat
The expressiornil6) has a complicated structure, so to inter- to first order inAk/k atkb~1, D andD are related by:

B Doexd —2ik(a+b)]
D== 1+2G(G—iS)+ (Ak/k)[ikb+2kbS G—iS)+(G—iS)Qsinkb]’ @3

where the resonanc&=k—k,, |&/k,<1. ExpandingG(k) and
y S(k) in Egs.(18) and(19) in a power series up to the terms
Qk)=|—+ X sinhya, (24 of first order in¢, we have,
and the expressions f@g(k) and S(k) are given by Egs. G(k + &)~ —¢ebSk,),
(18) and(19). (29

Consider wave vectors in the vicinity of the resonarige,
(20), and introduce a small detuning parameter away from Sk, + &)~ S(k,).
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Using Eq.(25), we can expand Eq23), which to first order
in &, takes the form,

D=Dgexfd —2i(k,+ &) (a+b)]

- b (|/L)l/2 - -1
Xy —=1+iL f—Akr 1—E+k—b5|nkrb) )
(26)
where
L=2bS*k,), |1=Q3k,)b/2, (27

and the expression fakk, is given by Eqgs(7), (11), and
(15) with the substitutiog—k, . In deriving Eqs.(26) and
(27), we have neglected small terms proportionag &k and
Ak/k.

The parametet in Eq. (27) has a simple physical mean-

ing. It defines the half-width of the resonance knspace

when the Coulomb interaction is neglected. The half—widtht

S6E 1, of the resonant level in the well 8E,=2A v, where,

fik,

= omEL (28

14

Indeed, using the standard definitisee, e.g., Ref. 31and

using Eq.(26), the half-width&,,, of the resonant level in the

k space can be found from the equatidi/D,|?=[1
+L28% =3,

The solution of this equation is&;;,=L "1, and 8E,,
=E(k + &) —E(K;) =~ (K, Im*) £1p= 1%k, Im* L.

Notice that despite the small value &k, in Eq. (26), the

value ofL in Eq. (27) can be rather large, and their product
can be of ordeAk,L~1. In particular, for the limiting cases

I and Il, we have the following expressions for

2

L~g—kzexp(2ya) (case), (29

r
AL | 30
~ 2kr2 (case l). (30

Using the variabler defined by Eq(28), the correctiomk;
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k=kU(k), 7=ut, w=vlU(K,),
(|/L)1/2'
U (k) =1+ — < —sin(kb), (34)

Fo(ke,&)=—exd —2i(k+&)(atb)].

For cases | and Il, we havd/{)¥?~(—1)"*1, U(k,)

—1, v—v, and k— k. Thus, the characteristic time scale
for the problem is the “quarter-width” of the resonance
level v in Eq. (28). Notice, that as shown in the experiment
described in Ref. 27, the value ! is the characteristic time
scale that determines the dynamics of charge accumulation
in the DBRTS.

The Eq.(33) was first derived in Ref. 13 in considerations
of the intrinsic bistability in the DBRTS. In what follows, we
shall consider the case in which the incoming waxg 7) is
slowly modulated in time in a periodic fashion. In prepara-
ion for this analysis, we shall first consider the small param-
eters of the problem and the relations among them.

The small parameters discussed thus far in our approach
are Ak/k, <1 (for the wave number v/ wy<<1 (for the fre-
quency. To relate these parameters, we use the following
estimates:

AK m*VC_ Ve 3
¢ khZ  2hwl’ (35
so that
Ak, « [V 1
— == . (36)
ki ko \Av/2kL

If V.~#v, then to satisfy the conditioAk, /k, <1, we re-
quire k,L>1. This implies that the resonance is narrow.
From Eq.(33), the dimensionless parameter of nonlinearity

is kL. From Eq.(35) we have,

A= Ve | [ Ve\[hv| ™t
kL~ CL_%_EE .

As follows from Eq.(37), the regime of strong nonlinearity

(37

containing the time-derivatives can be represented in @xL~1) is V.~#v. This condition has simple physical in-

simple form

i D

Ak=—-r 5. (31)

The expression for the correctiakk, is given by Eq.(11)

using the substitutiok—k, . For cases | and I, the expres-

sion for «x in Eq. (11) can be simplified:

(32

Using Egs.(11), (26), and(31), we can derive the following
differential equation for the complex amplitude of the
transmitted wave,

Kk~ koL/b.

D _
E=—D+iL§D—iLK|D|2D+DO(T)FO(kr,f), (33

where

terpretation — the charging energy is of the same order as a
characteristic width of the resonant leysée Eq(28)]. Note

that we can achieve this regime even if bath and v are
small—V./E<1 andZv/E<1l—since it is their ratio that
determines the strength of the nonlinearity and by 6q)

this ratio can be of the order one.

Ill. CHAOTIC DYNAMICS

We assume that the amplitude of the incoming electron
current,Dy(t), consists of a sequence of pulses periodic in
time, with a pulse duratioify, an amplitudeA,, and a time
interval between the pulsds Then, forvTy<<1 we have,

AOTO 2 mn

?>=A0®0 2 S(r—nT),
(38)

> ex

n=-—w

Do(t)=
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where®,= 1T, andT = »T. We introduce the dimensionless results of numerical experimerits®>~*’Indeed, in the vari-
variables, ables in Eq.(44), the criterion in Eq.(45) take the formK

~2A|Y,|. In the numerical calculations; ' the strange at-
z=(xL)¥D SZAOO(;L)UZFO(k“g)_ (39) tractor was observed, for example, Bt=0.5, A~1.56,
|Yo|~1—5. Thus, the rough condition for the appearance of

Using these variables, E¢33) can be written, the strange attractor in the slowly-modulated DBRTS is,
dz ” -
g, = ~ZtiLéz=ilZPzre > &(r—nT). (40 Ao®orL=1. (46)
n=—w

The criterion in Eq(45) has a simple physical interpretation:
The differential Eq.(40) can be reduced to a discrete map, namely, the variation of the phasee in (41) during one
= “kick” must be sufficiently large: Ap~2|ezo|TAZ1,
Zn+1:(zn+£)p eXF[_IT()\|Zn+8|2_L§)], (41) Wherezn:|zn|exp(—i¢n)_
where
IV. DISCUSSION

T

- < 1—exp(—2T
z,=z(nT—-0), p=e ', )\=L~)

. (42 Our analysis has shown that the resonant tunneling of

T electrons through a DBRTS can exhibit a regime of chaotic

. . . . behavior when the Coulomb interaction is taken into account

mangmdlev%riithe isma\:\tl)elllnkﬁgfv? ]!rsoﬁ]ql;'t\l’l?jlg;t :)cf) f:lhenailr(r?iggl in the Hartree approximation and the incoming electron cur-
P, y rent is modulated with a frequenc{)=2/T, [see Eq.

e e e a1 o w38, of e order of h resonance level i Eg, 2.
9 y 9 9€ She rough criterion for the transition to chaos has the form in

parameters. As introduced in Refs. 29 and 30, the lkeda malgq (46). As the amplitude of modulation satisfid<1

S andf,=vTy<1, it then follows from Eq(46) that the main
Yns1=A+BYpexdi(|Yn|>— 8p)]. (43)  condition for the transition to chaos ieL=1, wherex is
defined in Eq.(38) [see also Eq(11)], and determines the
shift of the resonant level due to the Coulomb interaction,
1/2 andL ! is the half-width of the resonant level kaspace.

Within the following substitutions

A=(\T)V2 = 1—exp—2T) .. It is important to stress that although our system is com-
2 pletely Hamiltonian, the dynamical chaos is effectivelig-
sipativeand is controlled by a strange attractor of the lkeda
B=p=exp(—T), &,=L¢&T, (44)  type. Effective dissipation appears in this Hamiltonian sys-
tem because it is open. In the process of quantum tunneling,
Yn:()ﬁ)lﬂ(zhs), electrons are partially transmitted through the DBRTS and

partially reflected from the DBRTS but in either case are lost
we can establish the equivalence of the two maps given iffgrever” from the region of the DBRTS.
Egs. (41) and (43). Hence, the system of the DBRTS with  The slow modulation of the incoming electron current
periodically modulated incoming current and self-consistentould be realized by the preliminary transformation of this
electron-electron interactions should also exhibit regions ofjow using a modulator for which the potential barrier has
dissipative chaotic dynamics controlled by a strange attracsjowly varying heigh®3°
tor. _ _ _ _ We now examine estimates of the characteristic values of

To estimate the region of parameters for chaotic behavioparameters necessary to observe a transition to chaos in the

directly in terms of the “natural” variables of Eq41), we experiment. For simplicity, consider case dy>1 and
can apply a simple “phase stretching” meth@d This cri-  ,/k 1. Thenk,b~mn (n is an integex The method used
terion gives the rough conditions for the appearance of &pove requires the following conditions to be satisfied:

local instability in a nonlinear system. Applying this criterion A y/k~ «/k,<1. Let us fix the valug.= «/k,<1. Using Eq.
to the map in Eq(41) determines théapproximatg condi-  (32) we obtain,

tion for the transition to chaos to 58,

~ KoL KoL
K=2|ezo| TAZ1. (45) B S (47)
T

Sln_ce AT=[1-exp(-2N}2=< yz,l/vzve hiveK |820_|- 'Il'g where g is defined in Eq(11). Using Eqgs.(32) and (47),
estimate K, we use |20~ (kL)™ &=AgO0Fo(xL) one can present the dimensionless parameter of nonlinearity
~Ag®o(xL)" [see Eq.(39)] Thus,K~Ag®okL, where L through the parameter,
0o=vT,, and Ay is the dimensionless amplitude of the
modulation of the incoming electron current<€0A,|<1). L (mun)?
It follows from Eq. (45) that the conditions for chaos are KL~(xol) 5= Kb (48)
kL=(Ag0q) L.

In applications to the lkeda attractor, the criterion in Eqg.Using the explicit expression fot, in Eq. (11), we have the
(45) is known to agree within an order of magnitude with the following expression forcgb,
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m*e?b®ng 47 f=f,+f,Ak+ Akf
= I 0 1 1
Kob=———7— —. (49) | |
fo=—iAk(a+b)fy, (A4)

Substituting Eq(49) in Eq. (48), we have for the parameter

of nonlinearity, f,=—iAk(a+b)fy.

L— pP(mn\® A2 e Using Egs.(A3) and(A4) we have
KL= "\ "7 —x.2 . (50)
ns\ b/ m*e 4= ] }
. . . f o Akf, o fq
If the dielectric constant of the heterostructure4s13, then —=—iAk(a+b)+ ——~—iAk(a+b)+Ak—-.
for the first resonant leveln=1) and forb=<10 ' cm and f f fo

ne=10 cm 2'® we find xkLb<1, even for u<102. (AS)
Thus, for the nanostructures with typical area electrorLet the characteristic frequency of variation Afand B be
densities’’ the necessary condition for the transition to Then,Ak~ wAk, and it follows from Eqs(A1) and(A5)
chaos:kL=1 is quite reasonable. These conditions can bgpat,
achieved in the framework of the perturbation theory de-
scribed in this paperg<<1). The characteristic frequency of 1B 1D
modulation of the incoming electron current can be of the — B~ oD TO(iAk@tb)+Ak(fi/f). (A6)
order()~10 GHz.

The expression fof,/f, can be found using the definitions
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APPENDIX A: THE RELATION BETWEEN AA™* AND APPENDIX B: AN APPROXIMATE RELATION

DD~* BETWEEN D, AND D
In this appendix we derive the connection betwdeki * In this appendix we derive the approximate relation be-
andDD L. First, we introduced (k,q)=B/D, where the ex- tweenD, and D valid to first order inAk/k and for kb
plicit form of f(k,q) follows from Eq.(10). From the defi- ~1. We begin from the exact dependenceDefon D [Eq.

nition of f, we have the simple relation among the logarith-(16) in the tex{ in the form

mic derivatives D0= De2ik(a+ b)[M (k,q)ef 2ikb+iAkb_ N(k,q)efiAkb],

BB 1=DD 1+ff L. (A1) (B1)
. h
Now we find the expression fdrf ~. Using the expansions ere
k+ i
g~k-Ak, g '~k '+k %Ak, (A2) M(k,q)=[ i |cosva—3 ——E>sinhya
which are valid forAk/k<1, we obtain the expression for
f(k,q), X k*a coshya—l— —— ~|sinhya
2q 2 '
f(k,q)~fo+Akf,, (B2)
fom— K Y Ginhyaxexiik(3a+ 2b)—iAk(a+ b)] Nk =| =) costya+ ~| L+ 2 sinmya
0 2 by k ! a 2k 2 Y k
(A3)
k—q :
1/1 X (Z—)COShya-f-E —+ —|sinhya].

.Y
Ecoshya+ i k73|nhya (B3)
- ; When Ak/k<1 andkb~1, we haveAkb<1. This allows
X — . ' . .
exilik(3a+2b)—iAk(@a+b)] us to expand the exponents in E@1): exp(riAkb)~1
Differentiating Eq.(A3) we get, +iAkb, and then, using EqA2), to expandM (k,q) in Eq.

f]_:_i
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(B2) andN(k,q) in Eq. (B3) in a power series oAk/k. As
a result, we derive from EqB1),

3 Ak |
DONDGZik(a+b)2 [Mle_zikb_Nl](T>
=0
) Ak I+1
+i[Me 2P+ N|] T) (kb)], (B4)
where
k2_,)/2 2
My=| coshya—i 27k )smhya ,
k2+’)/2 2 '
NO__ 2—’)/k S|nh2ya,
" . k2_ 72) . k2+ '}’2 .
1=|icoshya+ 27k sinhya | X 2Ky sinhya,
1 2_ .2
M= —cosﬁ-ya—smhzya+2|( T )coshyasmhya ,
Nj_:Ml, N2:_M2. (BS)

We consider the expansidB4) only to the terms of zeroth
and of first order imMk/k. One can check that,
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Moe 2kP—N,=2G2-1-2iSG,

iAKb[Mge~2kP+ Ny]=2Akb(GS—iS?) +iAkb,
(B6)

) k
M, [e 20 —1]=(G—iS) ;4‘ % sinhyasinkb,

where the expressions f@ andS are defined in Eq918)
and(19), respectively. Thus, from the expansi@), which
includes terms up to order Ak/k, and using Eq(B6), we
derive Eq.(23).

To justify the neglect of the second and third order terms
in Ak/k, it is necessary thgM ,|,|N,|=<|M4|,IN4|. In gen-
eral, the expressions fgM,/M;| and |N,/N;| have com-
plicated forms. Hence we present here only the expressions
for the limiting cases | and Il, which are sufficient for our
present purposes,

N, case |

Ny

(B7)

.

2kl y<1,
M,

k/(y?a)<1, casell.

It follows from Eg. (B7) that the procedure of neglecting of
higher-order terms in EqB4) is self-consistent.
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