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Strange attractor in resonant tunneling

Kirill N. Alekseev
Kirensky Institute of Physics, 660036, Krasnoyarsk, Russia

Gennady P. Berman
Theoretical Division and the CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

David K. Campbell
Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080

~Received 9 January 1998!

We consider the process of resonant electron tunneling through a double-barrier potential, taking into
account nonlinear dynamical effects generated by charge accumulation in the interbarrier space. We use the
perturbation approach of Davydov and Ermakov, which was developed for investigating intrinsic bistability in
resonant tunneling. For incoming electron flow, which is modulated slowly in time, we show that the resulting
nonlinear dynamics can become chaotic, with the chaos described~because of the open nature of the system!
by a strange attractor. We determine the conditions for the existence of this strange attractor and estimate
characteristic experimental parameters for its observation.@S0163-1829~98!08531-2#
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I. INTRODUCTION

The rapid progress of nanotechnology fabrication h
stimulated growing interest in electron transport throu
quantum low-dimensional structures in the ballis
regime.1–9 One of the most frequently studied devices is t
double-barrier resonant tunneling structure~DBRTS!, which
consists of two potential barriers surrounding a poten
well. It is well known that the transmission of electron
through a DBRTS is effective only if certain resonance co
ditions are satisfied~see, for example, Refs. 1–9 and refe
ences therein!.

Apart from the inherently nonlinear nature of the curre
voltage (I -V) characteristics caused by the resonant tunn
ing process itself, additional nonlinear effects have been
focus of much current interest. For instance, a proper
counting of the dynamical charge accumulation within t
potential well leads to an electrostatic feedback mechan
that shifts the resonance energy. Under some conditions,
can result in the appearance of nonlinear effects such as
rent instability, intrinsic bistability, self-oscillations,10–19

Hamiltonian chaos,20 dissipative chaos,21 and others.
Experimentally, hysteresis~bistability! in the voltage de-

pendence of the electron current through the DBRTS w
observed for the first time by Goldmanet al.10–12 In these
papers a simple theoretical explanation of the effect w
given. Independently and simultaneously, Davydov a
Ermakov13 predicted the existence of bistability in resona
tunneling and developed a consistent theory of the phen
enon, relating it as well to previous discussions of simi
phenomena in biological systems and in molecu
electronics.19,22–25 While their pioneering work is well
known in these latter contexts, it is unfortunately practica
unknown to experts in resonant tunneling in semiconduc
microstructures.

Because the hysteresis and bistability are important n
linear characteristics of the DBRTS, we shall mention so
PRB 580163-1829/98/58~7!/3954~9!/$15.00
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of their features in more detail. One of the main peculiarit
of hysteresis and bistability in theI -V characteristic of the
DBRTS is its independence of the external circuit in t
system; indeed, for this reason the term ‘‘intrinsic bistab
ity’’ was suggested in Ref. 10. Despite the discussion in R
14 of the role of the external circuit in the appearance o
hysteresis, in the experiment of Goldmanet al.,10–12the prin-
cipal cause of intrinsic bistability in DBRTS is quite obviou
now. Besides, this effect was also observed in the comp
simulations.15 Recently, several experimental and theoreti
papers studying intrinsic bistability in a system of ‘‘thre
barriers plus two wells’’ have appeared~see Ref. 26 and
references therein!. Control of the carrier dynamics in a
DBRTS, or in the three-barrier system, can be achieved
ing optical techniques based on photoluminescence.26–28

When the external bias applied to a DBRTS is larger th
some critical value, nonlinear oscillations of the output c
rent can appear even for stationary input current. Such s
oscillations were investigated in theoretical papers,16,19 and
were observed independently in computer simulations.17 A
possible connection between these self-oscillations and
well-known modulation instability of the nonlinear Schro¨-
dinger equation was discussed by Malomed and Azbel.18

In their computer experiment,20 Jona-Lasinoet al.consid-
ered the periodic transmission of a wave packet throug
potential involving a DBRTS with high transparent barrie
and with two infinite walls bounding the system on the bo
sides of the DBRTS. The system was thus closed and Ha
tonian, and one could study the ‘‘dynamics’’ by studying t
energy level spectrum. The results of Ref. 20 established
incorporating the effects of charge accumulation within t
DBRTS ~using the Hartree approximation! led to chaotic be-
havior for the envelope of the wave packet for energies
ceeding a critical value. In Ref. 21, the authors investiga
numerically a realistic model of a doped quantum well h
erostructure. Nonlinearity is introduced in the model throu
the effective potential due to the density of electrons in
3954 © 1998 The American Physical Society



e
ic
o

. 2
se
th
b

in
ao
se
an
pa
on
. 2
dy
o
un
rg
re
ns
ic

e
a
n
n

ed
ta
th
a

en
th

. I
os
e

oi
in
ul

ne
-

e
th
e
he

e
er

to
un

he
ha-

ti-
he
ef.
ith

to
ter-

he
ave
tron
in

des

a-
a-
ron
tial

l
-
n

er-

the
e
n

nd
ux.

PRB 58 3955STRANGE ATTRACTOR IN RESONANT TUNNELING
well. Dephasing and energy relaxation are introduc
through a density matrix approach. The resultant dynam
shows the periodic-doubling routes to chaos, in the form
strange attractor. It was mentioned by the authors of Ref
that all materials parameters used are well within the pre
capabilities of present quantum well technology, and
driving field amplitudes and frequencies are easily obtaina
with a free electron laser.

In the present paper, we consider a related but dist
time-dependent problem: the transition to dynamical ch
when a time-modulated incoming electron current pas
through a DBRTS. In contrast to the studies of Refs. 20
21, we consider an open system, so that the electrons ‘‘
through’’ the DBRTS only once. Thus, our considerati
complements the closed system theory developed in Ref
Employing the approach of Ref. 13, we show that the
namical charge accumulation in the potential well leads t
self-consistent electric field that modifies the resonant t
neling. As a result, an effective shift of the resonance ene
appears, which depends on the amplitude of the cur
transmitted through the DBRTS. Under certain conditio
the resulting nonlinearity, together with the time-period
modulation of the incoming electron current, leads todissi-
pative~because the system is open! chaotic dynamics involv-
ing a strange attractor. When the width of a resonanc
small compared to the value of the resonant energy, and
if the time-periodic modulation of the incoming electro
flow consists of a sequence of short pulses, then the stra
attractor that appears in this system is the well-known Ik
attractor.29,30 We explore the prospects for the experimen
observation of this dynamical chaos and estimate that
conditions for chaos are close to the conditions for the re
ization of intrinsic bistability in the DBRTS.10–12

The paper is organized as follows. In Sec. II, we pres
the main equations describing the nonlinear dynamics of
DBRTS when charge accumulation effects are included
Sec. III, we study the conditions for the transition to cha
In Sec. IV, we discuss the necessary conditions for the
perimental observation of chaos in the DBRTS. To av
excessive technical detail in the main text while maintain
completeness, we present the derivations of some form
in two short Appendixes.

II. BASIC EQUATIONS

Consider a current of electrons moving through a o
dimensional~1D! system consisting of two identical poten
tial barriers of heightV0 and widtha separated by a distanc
b. We shall refer to the region between the barriers as
‘‘potential well’’ and take as our spatial origin the left edg
of the left barrier. The potential can then be written in t
following form:

V~x!5H 0 if x,0, a,x,a1b, x.2a1b

V0 if 0 ,x,a, a1b,x,2a1b.
~1!

We assume that an electron current with a slowly tim
modulated intensity is injected from the left. The charact
istic modulation frequency is much smaller thanEr /\,
whereEr is the energy of the resonant tunneling. We wish
study the time dependence of the outgoing current, acco
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ing for charge accumulation within the potential well and t
consequent formation of an electrostatic feedback mec
nism.

We use the approach of Davydov and Ermakov,13,19

which was previously developed in Ref. 13 for the inves
gation of transient processes in the intrinsic bistability of t
DBRTS. In this section, we present the main results of R
13 in the form that can be applied for potential barriers w
an arbitrary transparency. This generalization allows us
investigate several physically interesting cases, and to de
mine the conditions of validity of the approach.

We shall treat the electron-electron interaction within t
Hartree approximation, so that the many-body electron w
function can be represented as a product of single elec
wave functions.17 For the single electron wave functions,
the regions outside the DBRTS, we assume the form,

c in~x,t !5@D0~ t !eikx1R~ t !e2 ikx#e2 iv0t, ~2a!

cout~x,t !5D~ t !ei ~kx2v0t !, ~2b!

where E is the incoming electron energy, k
5(2m* E/\2)1/2, and v05E/\5\k2/2m* , with m* being
the effective electron mass. We assume that the amplitu
of the incomingD0(t), the reflectedR(t), and the outgoing
D(t) waves are all slowly varying in time, so that an adi
batic approximation is valid. Within the Hartree approxim
tion, the Coulomb interaction between the incoming elect
wave and electrons accumulated in the region of the poten
well (a,x,a1b) will simply add an additional potentia
term to the single particle Schro¨dinger equation. This addi
tional potential term,Vc , in the homogeneous approximatio
which is considered below, is given by,

Vc52ew, ~3a!

wherew is the self-consistent electrostatic potential gen
ated by all electrons in the potential well ande is the elec-
tron’s charge. The total electric charge accumulated in
well is Q52Ner, whereN is the number of electrons in th
well, andr is defined in terms of the electron wave functio
c as

r~ t !5
1

bEa

a1b

uc~x,t !u2dx. ~3b!

Using Gauss’s law, one can find the electric fieldE produced
by the chargeQ,

E52
4p

e

Q

S
, ~3c!

wheree is the dielectric constant of inter-barrier medium a
S is the area of the surface that is crossed by the electric fl
Using the homogeneous approximation for the fieldw5
2Eb, we find the final expression forVc to be

Vc~ t !5sr~ t !, ~4a!

with r given by Eq.~3b! and

s5
4p

e
e2nsb, ~4b!
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3956 PRB 58ALEKSEEV, BERMAN, AND CAMPBELL
wherens in the electron density per unit area and all oth
quantities have been defined above. The coefficients in Eq.
~4b! can be expressed through the area capacityCs of the
DBRTS ass5e2ns /Cs . This form of Vc was also used in
the numerical experiment.17 In what follows we shall con-
sider only the caseVc!E. The potential in Eq.~4a! is a
nonlinear and nonlocal functional ofc(x,t) and is a source
of nonlinear effects, including intrinsic bistability an
self-oscillations.13,16,17

We now consider the behavior of the wave function in t
DBRTS. Using an adiabatic approximation, one can der
the wave functions inside the barriers by solving the stati
ary Schro¨dinger equation,13

cb j~x,t !5@a j~ t !egx1b j~ t !e2gx#e2 iv0t ~ j 51,2!,
~5a!

where

g5@2m* ~V02E!/\2#1/2. ~5b!

Here the complex amplitudesa j andb j are slowly varying
functions oft.

Because the DBRTS itself has zero potential in the in
barrier region, the total potential energy inside the well
Vc(t). Since the wave function depends~slowly! on time,
Vc(t) is also a slowly varying function of time. Thus, th
wave function inside the potential well must be found a
solution of the nonstationary Schro¨dinger equation.13 The
problem of finding of the solution of the Schro¨dinger equa-
tion ~either stationary or nonstationary! for nonlinear and
nonlocal potential in Eq.~4a! is rather complicated. How
ever, if the electrostatic interaction of electrons is we
enough (Vc!E) and Vc(t) varies in time slowly, the wave
function inside the potential well can be represented in
form,13

cw~x,t !5@A~ t !eiqx1B~ t !e2 iqx#e2 iv0t, ~6!

where the wave vectorq will be determined below, and th
complex amplitudesA andB are slowly varying functions of
time, with characteristic frequencyv!v05E/\. We will
show below thatv is the maximum ofV andn, whereV is
the characteristic frequency of time-modulated incom
electron flow, andn is the inverse width of the resonan
level. Substituting Eq.~6! in the nonstationary Schro¨dinger
equation with the potentialVc(t), we find for the wave vec-
tor q,

q'k2Dk, Dk5Dkc1Dkt ~Dk/k!1!, ~7a!

Dkc5
m*

k\2 Vc , ~7b!

Dkt52 i
m*

k\
~ȦA211ḂB21!, ~7c!

Vc5sH uAu21uBu21FAB*
e2iqa

2iqb
~e2iqb21!1c.c.G J . ~8!

The termDk in Eq. ~7a! takes into account both the influenc
of the nonlinearity and the dependence on time. The te
Dkc arises from the Coulomb interaction of electrons, a
r

e
-

r-
s

a

k

e

g

m
d

the termDkt arises from the slow time modulation of th
wave function due to the dependence ofVc on t.

By direct substitution, one can show that the wave fun
tion ~6! is an approximate solution of the nonstationa
Schrödinger equation, valid up to the terms of the order
v/v0 for kb.1, which corresponds to the conditions of th
resonant tunneling.

One should notice that the final expression for the C
lomb energyVc in Eq. ~8! includes the wave vectorq, which
is a consequence of the nonlocal structure of our s
consistent approach to the Coulomb interaction. Thus, E
~7! and ~8! define the wave vectorq only implicitly. How-
ever, as we will later show, in the most interesting case
near resonant tunneling, one can find an approximate exp
solution forq.

The correctionDk in Eq. ~7a! can be expressed throug
the amplitude of the outgoing waveD, for x.2a1b. To
this end, we must find relations between the amplitudesA,
B, andD. Matching the wave functions and their derivativ
at the pointsx52a1b anda1b, we obtain,

A5
1

2
DF S k1q

q D coshga2 i S k

g
2

g

qD sinhgaG
3exp@ ik~2a1b!2 iq~a1b!#, ~9!

B52
1

2
DF S k2q

q D coshga1 i S k

g
1

g

qD sinhgaG
3exp@ ik~2a1b!1 iq~a1b!#. ~10!

Substituting Eqs.~9! and~10! into the expressions forDkc in
Eqs.~7b! and ~8!, we have

Dkc5kuDu2,
~11!

k5k0H cosh2ga1
1

2S k2

g2 1
g2

k2 D sinh2ga

1S k

g
1

g

k D 1

2kb
~12cos2kb!coshgasinhga

2
1

2S k2

g2 2
g2

k2 D sin2kb

2kb
sinh2ga1O~Dk/k!J

S k0[
m* s

k\2 D ,

where the constants is defined in Eq.~4b!. The logarithmic
time derivativesȦA21 and ḂB21 in the expression forDkt
in Eq. ~7c! can be expressed in terms of the slowly tim
dependent variableḊD21. These relations can be derived
general from Eqs.~9! and ~10! ~see Appendix A!. The sim-
plest form of these relations occurs in two interesting cas

I. The case of high and wide barriers,

g/k@1, ga@1, ~12!

corresponding to the barriers oflow transparency~i.e., low
transmission!.

II. The case of high and relatively narrow barriers

g/k@1, ga!1, g2a/k@1.
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PRB 58 3957STRANGE ATTRACTOR IN RESONANT TUNNELING
This case corresponds to the ‘‘moderate transparency’’of
barriers. The corresponding inequalities can be written in
form,

1!~ga!21!g/k. ~13!

These two cases will be considered below, and we shall r
to them as I and II.

In cases I and II, we have~see Appendix A!,

Ȧ

A
'

Ḃ

B
'

Ḋ

D
1O„Dkv~a1b!…, ~14!

wherev is the characteristic frequency of variation of th
functions A, B, and D0. Because we deal with a DBRT
whose characteristic size is of the order of the de Brog
wavelength,k(a1b);1, and, up to terms of orderDk/k,
we have ȦA21'ḂB21'ḊD21. Thus, the expression fo
Dkt in Eq. ~7c! takes the form,

Dkt52 i
2m*

k\

Ḋ

D
. ~15!

The expressions~11! and~15! define the correctionDk in ~7!
depending on the complex amplitudeD of the wave function
of outgoing electrons. Hence, we next analyze how this c
rection Dk influences the process of resonant tunneli
Matching the wave functions and their spatial derivatives
the pointsx50 andx5a, and taking into account Eqs.~9!
and ~10!, one can derive the exact dependence between
complex incoming amplitudeD0 and the outgoing amplitude
D,

D05
1

4
Deik~2a1b!H F S k1q

k D coshga2 i S q

g
2

g

k D sinhgaG
3F S k1q

q D coshga2 i S k

g
2

g

qD sinhgaGe2 iqb

2F S k2q

k D coshga1 i S q

g
1

g

k D sinhgaG
3F S k2q

q D coshga1 i S k

g
1

g

qD sinhgaGeiqbJ . ~16!

The expression~16! has a complicated structure, so to inte
,
om
e
e

er

e

r-
.
t

he

pret it, let us first consider the case of tunneling through
DBRTS without taking into account the Coulomb interacti
(Dk[0). Settingq→k in Eq. ~16!, we have the standard
expression,13,19,25

D5
D0exp@22ik~a1b!#

~2G221!22iSG
, ~17!

where

G~k!5coshgacoskb2
k22g2

2kg
sinhgasinkb, ~18!

S~k!5coshgasinkb1
k22g2

2kg
sinhgacoskb. ~19!

The conditions for the resonant tunnelinguD/D0u251 is sat-
isfied for the wave vectorkr , which is determined from the
equation,

G~kr !50. ~20!

Equation~20! is equivalent to

cotkrb5
kr

22g2

2krg
tanhga. ~21!

In the limiting case I, the condition of the resonant tunneli
in Eq. ~21! takes a simpler form,

krb'pn22kr /g, ~22!

wheren is an integer. In the case II, the condition for th
resonant tunneling also has the form of Eq.~22! with the
substitution:g→g2a.

We now consider the modification of the resonant tunn
ing conditions when the Coulomb interaction is taken in
account. Using Eq.~16!, one can show~see Appendix B! that
to first order inDk/k at kb;1, D andD0 are related by:
D5
D0exp@22ik~a1b!#

2112G~G2 iS!1~Dk/k!@ ikb12kbS~G2 iS!1~G2 iS!Qsinkb#
, ~23!
s

where

Q~k!5S k

g
1

g

k D sinhga, ~24!

and the expressions forG(k) and S(k) are given by Eqs.
~18! and ~19!.

Consider wave vectors in the vicinity of the resonancekr
~20!, and introduce a small detuning parameter away fr
the resonancej5k2kr , uju/kr!1. ExpandingG(k) and
S(k) in Eqs.~18! and~19! in a power series up to the term
of first order inj, we have,

G~kr1j!'2jbS~kr !,
~25!

S~kr1j!'S~kr !.
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Using Eq.~25!, we can expand Eq.~23!, which to first order
in j, takes the form,

D5D0exp@22i ~kr1j!~a1b!#

3H 211 iL Fj2Dkr S 12
b

L
1

~ l /L !1/2

krb
sinkrbD G J 21

,

~26!

where

L52bS2~kr !, l 5Q2~kr !b/2, ~27!

and the expression forDkr is given by Eqs.~7!, ~11!, and
~15! with the substitutionq→kr . In deriving Eqs.~26! and
~27!, we have neglected small terms proportional tojDk and
Dk/k.

The parameterL in Eq. ~27! has a simple physical mean
ing. It defines the half-width of the resonance ink space
when the Coulomb interaction is neglected. The half-wid
dE1/2 of the resonant level in the well isdE1/252\n, where,

n5
\kr

2m* L
. ~28!

Indeed, using the standard definition~see, e.g., Ref. 31!, and
using Eq.~26!, the half-widthj1/2 of the resonant level in the
k space can be found from the equation:uD/D0u25@1
1L2j2#215 1

2 .
The solution of this equation is:j1/25L21, and dE1/2

[E(kr1j1/2)2E(kr)'(\2kr /m* )j1/25\2kr /m* L.
Notice that despite the small value ofDkr in Eq. ~26!, the

value ofL in Eq. ~27! can be rather large, and their produ
can be of orderDkrL;1. In particular, for the limiting case
I and II, we have the following expressions forL,

L'
g2b

8kr
2 exp~2ga! ~case I!, ~29!

L'
g4ba2

2kr
2 ~case II!. ~30!

Using the variablen defined by Eq.~28!, the correctionDkt
containing the time-derivatives can be represented in
simple form

Dkt52
i

nL

Ḋ

D
. ~31!

The expression for the correctionDkc is given by Eq.~11!
using the substitutionk→kr . For cases I and II, the expres
sion for k in Eq. ~11! can be simplified:

k'k0L/b. ~32!

Using Eqs.~11!, ~26!, and~31!, we can derive the following
differential equation for the complex amplitudeD of the
transmitted wave,

dD

dt
52D1 iL jD2 iL k̄uDu2D1D0~t!F0~kr ,j!, ~33!

where
h

a

k̄5kU~kr !, t5 n̄t, n̄5n/U~kr !,

U~kr !511
~ l /L !1/2

krb
sin~krb!, ~34!

F0~kr ,j!52exp@22i ~kr1j!~a1b!#.

For cases I and II, we have (l /L)1/2'(21)n11, U(kr)
→1, n̄→n, and k̄→k. Thus, the characteristic time sca
for the problem is the ‘‘quarter-width’’ of the resonanc
level n in Eq. ~28!. Notice, that as shown in the experime
described in Ref. 27, the valuen21 is the characteristic time
scale that determines the dynamics of charge accumula
in the DBRTS.

The Eq.~33! was first derived in Ref. 13 in consideration
of the intrinsic bistability in the DBRTS. In what follows, w
shall consider the case in which the incoming waveD0(t) is
slowly modulated in time in a periodic fashion. In prepar
tion for this analysis, we shall first consider the small para
eters of the problem and the relations among them.

The small parameters discussed thus far in our appro
areDk/kr!1 ~for the wave number!, n/v0!1 ~for the fre-
quency!. To relate these parameters, we use the follow
estimates:

Dkc.
m* Vc

kr\
2 5

Vc

2\nL
, ~35!

so that

Dkc

kr
.

k

kr
5S Vc

\n D 1

2krL
. ~36!

If Vc;\n, then to satisfy the conditionDkr /kr!1, we re-
quire krL@1. This implies that the resonance is narro
From Eq.~33!, the dimensionless parameter of nonlinear
is k̄L. From Eq.~35! we have,

k̄L;DkcL5S Vc

2\n D5S Vc

2ED S \n

E D 21

. ~37!

As follows from Eq.~37!, the regime of strong nonlinearity
(k̄L;1) is Vc;\n. This condition has simple physical in
terpretation — the charging energy is of the same order a
characteristic width of the resonant level@see Eq.~28!#. Note
that we can achieve this regime even if bothVc and n are
small—Vc /E!1 and \n/E!1—since it is their ratio that
determines the strength of the nonlinearity and by Eq.~37!
this ratio can be of the order one.

III. CHAOTIC DYNAMICS

We assume that the amplitude of the incoming elect
current,D0(t), consists of a sequence of pulses periodic
time, with a pulse durationT0, an amplitudeA0, and a time
interval between the pulsesT. Then, forn̄T0!1 we have,

D0~ t !5
A0T0

T (
n52`

`

expS 2pn

T D5A0Q0 (
n52`

`

d~t2nT̃!,

~38!
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whereQ05 n̄T0 andT̃5 n̄T. We introduce the dimensionles
variables,

z5~ k̄L !1/2D «5A0Q0~ k̄L !1/2F0~kr ,j!. ~39!

Using these variables, Eq.~33! can be written,

dz

dt
52z1 iL jz2 i uzu2z1« (

n52`

`

d~t2nT̃!. ~40!

The differential Eq.~40! can be reduced to a discrete map

zn115~zn1«!p exp@2 i T̃~luzn1«u22Lj!#, ~41!

where

zn[z~nT̃20!, p5e2T̃, l5
12exp~22T̃!

2T̃
. ~42!

The discrete map in Eq.~41! is equivalent to the Ikeda
map,29,30 which is well known from studies of dynamica
chaos and bistabilities in optical systems, and for wh
strange attractors dominate the dynamics for a large rang
parameters. As introduced in Refs. 29 and 30, the Ikeda
is

Yn115A1BYnexp@ i ~ uYnu22d0!#. ~43!

Within the following substitutions

A5~lT̃!1/2«5F12exp~22T̃!

2
G1/2

«,

B5p5exp~2T̃!, d05LjT̃, ~44!

Yn5~lT̃!1/2~zn
†1«!,

we can establish the equivalence of the two maps give
Eqs. ~41! and ~43!. Hence, the system of the DBRTS wit
periodically modulated incoming current and self-consist
electron-electron interactions should also exhibit regions
dissipative chaotic dynamics controlled by a strange att
tor.

To estimate the region of parameters for chaotic beha
directly in terms of the ‘‘natural’’ variables of Eq.~41!, we
can apply a simple ‘‘phase stretching’’ method.32,33This cri-
terion gives the rough conditions for the appearance o
local instability in a nonlinear system. Applying this criterio
to the map in Eq.~41! determines the~approximate! condi-
tion for the transition to chaos to be,34

K52u«z0uT̃l*1. ~45!

Since lT̃5@12exp(22T̃)#/2<1/2, we haveK;u«z0u. To
estimate K, we use uz0u;(k̄L)1/2, «5A0Q0F0(k̄L)1/2

;A0Q0(k̄L)1/2 @see Eq.~39!#. Thus, K;A0Q0kL, where
u05 n̄T0, and A0 is the dimensionless amplitude of th
modulation of the incoming electron current (0<uA0u<1).
It follows from Eq. ~45! that the conditions for chaos ar
kL*(A0Q0)21.

In applications to the Ikeda attractor, the criterion in E
~45! is known to agree within an order of magnitude with t
h
of

ap

in

t
f

c-

r

a

.

results of numerical experiments.30,35–37Indeed, in the vari-
ables in Eq.~44!, the criterion in Eq.~45! take the formK
'2AuY0u. In the numerical calculations,35–37 the strange at-
tractor was observed, for example, atB'0.5, A'1.56,
uY0u'125. Thus, the rough condition for the appearance
the strange attractor in the slowly-modulated DBRTS is,

A0Q0kL*1. ~46!

The criterion in Eq.~45! has a simple physical interpretation
namely, the variation of the phaseDw in ~41! during one
‘‘kick’’ must be sufficiently large: Dw;2u«z0uT̃l*1,
wherezn5uznuexp(2iwn).

IV. DISCUSSION

Our analysis has shown that the resonant tunneling
electrons through a DBRTS can exhibit a regime of chao
behavior when the Coulomb interaction is taken into acco
in the Hartree approximation and the incoming electron c
rent is modulated with a frequency,V52p/T0 @see Eq.
~38!#, of the order of the resonance level width,n in Eq. ~28!.
The rough criterion for the transition to chaos has the form
Eq. ~46!. As the amplitude of modulation satisfiesA0<1,
andu0[n̄T0,1, it then follows from Eq.~46! that the main
condition for the transition to chaos iskL*1, wherek is
defined in Eq.~38! @see also Eq.~11!#, and determines the
shift of the resonant level due to the Coulomb interactio
andL21 is the half-width of the resonant level ink-space.

It is important to stress that although our system is co
pletely Hamiltonian, the dynamical chaos is effectivelydis-
sipativeand is controlled by a strange attractor of the Ike
type. Effective dissipation appears in this Hamiltonian s
tem because it is open. In the process of quantum tunne
electrons are partially transmitted through the DBRTS a
partially reflected from the DBRTS but in either case are l
‘‘forever’’ from the region of the DBRTS.

The slow modulation of the incoming electron curre
could be realized by the preliminary transformation of th
flow using a modulator for which the potential barrier h
slowly varying height.38,39

We now examine estimates of the characteristic value
parameters necessary to observe a transition to chaos in
experiment. For simplicity, consider case I:ag@1 and
g/kr@1. Thenkrb'pn (n is an integer!. The method used
above requires the following conditions to be satisfie
Dk/k;k/kr!1. Let us fix the valuem[k/kr!1. Using Eq.
~32! we obtain,

m'
k0L

bkr
'

k0L

np
, ~47!

wherek0 is defined in Eq.~11!. Using Eqs.~32! and ~47!,
one can present the dimensionless parameter of nonline
kL through the parameterm,

kL'~k0L !
L

b
5

~pmn!2

k0b
. ~48!

Using the explicit expression fork0 in Eq. ~11!, we have the
following expression fork0b,



r

ro
to
b
e
f

th

.K
fo
th
a
p-
fo
th
h
d-

th

r

s

een

e-

3960 PRB 58ALEKSEEV, BERMAN, AND CAMPBELL
k0b5
m* e2b3ns

pn\2

4p

e
. ~49!

Substituting Eq.~49! in Eq. ~48!, we have for the paramete
of nonlinearity,

kL5
m2

ns
S pn

b D 3 \2

m* e2

e

4p
. ~50!

If the dielectric constant of the heterostructure ise'13, then
for the first resonant level (n51) and forb&1027 cm and
ns&1010 cm22,18 we find kLb&1, even for m<1022.
Thus, for the nanostructures with typical area elect
densities,27 the necessary condition for the transition
chaos:kL*1 is quite reasonable. These conditions can
achieved in the framework of the perturbation theory d
scribed in this paper (m!1). The characteristic frequency o
modulation of the incoming electron current can be of
orderV;10 GHz.
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APPENDIX A: THE RELATION BETWEEN ȦA21 AND
ḊD21

In this appendix we derive the connection betweenȦA21

andḊD21. First, we introducef (k,q)[B/D, where the ex-
plicit form of f (k,q) follows from Eq. ~10!. From the defi-
nition of f , we have the simple relation among the logari
mic derivatives

ḂB215ḊD211 ḟ f 21. ~A1!

Now we find the expression forḟ f 21. Using the expansions

q'k2Dk, q21'k211k22Dk, ~A2!

which are valid forDk/k!1, we obtain the expression fo
f (k,q),

f ~k,q!' f 01Dk f1 ,

f 052
i

2S k

g
1

g

k D sinhga3exp@ ik~3a12b!2 iDk~a1b!#,

~A3!

f 152
1

2S 1

k
coshga1 i

g

k2sinhgaD
3exp@ ik~3a12b!2 iDk~a1b!#.

Differentiating Eq.~A3! we get,
n

e
-

e

.
r
e
-

r
e
e

-

ḟ 5 ḟ 01 ḟ 1Dk1D k̇ f 1 ,

ḟ 052 iD k̇~a1b! f 0 , ~A4!

ḟ 152 iD k̇~a1b! f 1 .

Using Eqs.~A3! and ~A4! we have

ḟ

f
52 iD k̇~a1b!1

D k̇ f 1

f
'2 iD k̇~a1b!1D k̇

f 1

f 0
.

~A5!

Let the characteristic frequency of variation ofA and B be
v. Then,D k̇;vDk, and it follows from Eqs.~A1! and~A5!
that,

1

v

Ḃ

B
5

1

v

Ḋ

D
1O„2 iDk~a1b!1Dk~ f 1 / f 0!…. ~A6!

The expression forf 1 / f 0 can be found using the definition
for f 1 and f 0 in Eq. ~A3!,

kU f 1

f 0
U5 gk

k21g2Fcoth2ga1
g2

k2G1/2

5H 1, if g/k@1 and ga@1

1, if g/k@1, ga!1, but g/k@1/~ga!.

~A7!

Combining Eqs.~A6! and ~A7!, we derive Eq.~14!. The
same procedure can be used for deriving the relation betw
ȦA21 and ḊD21.

APPENDIX B: AN APPROXIMATE RELATION
BETWEEN D0 AND D

In this appendix we derive the approximate relation b
tween D0 and D valid to first order inDk/k and for kb
;1. We begin from the exact dependence ofD0 on D @Eq.
~16! in the text# in the form

D05De2ik~a1b!@M ~k,q!e22ikb1 iDkb2N~k,q!e2 iDkb#,
~B1!

where

M ~k,q!5F S k1q

2k D coshga2
i

2S q

g
2

g

k D sinhgaG
3F S k1q

2q D coshga2
i

2S k

g
2

g

qD sinhgaG ,
~B2!

N~k,q!5F S k2q

2k D coshga1
i

2S q

g
1

g

k D sinhgaG
3F S k2q

2q D coshga1
i

2S k

g
1

g

qD sinhgaG .
~B3!

When Dk/k!1 andkb;1, we haveDkb!1. This allows
us to expand the exponents in Eq.~B1!: exp(6iDkb)'1
6iDkb, and then, using Eq.~A2!, to expandM (k,q) in Eq.
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~B2! andN(k,q) in Eq. ~B3! in a power series ofDk/k. As
a result, we derive from Eq.~B1!,

D0'De2ik~a1b!(
l 50

3 H @Mle
22ikb2Nl #S Dk

k D l

1 i @Mle
22ikb1Nl #S Dk

k D l 11

~kb!J , ~B4!

where

M05Fcoshga2 i S k22g2

2gk D sinhgaG2

,

N052S k21g2

2gk D 2

sinh2ga,

M15F icoshga1S k22g2

2gk D sinhgaG3S k21g2

2kg D sinhga,

M25
1

4F2cosh2ga2sinh2ga12i S k22g2

2kg D coshgasinhgaG ,
N15M1 , N252M2 . ~B5!

We consider the expansion~B4! only to the terms of zeroth
and of first order inDk/k. One can check that,
s
,

e,

.

e

m

M0e22ikb2N052G22122iSG,

iDkb@M0e22ikb1N0#52Dkb~GS2 iS2!1 iDkb,
~B6!

M1@e22ikb21#5~G2 iS!S k

g
1

g

k D sinhgasinkb,

where the expressions forG andS are defined in Eqs.~18!
and~19!, respectively. Thus, from the expansion~B4!, which
includes terms up to order;Dk/k, and using Eq.~B6!, we
derive Eq.~23!.

To justify the neglect of the second and third order ter
in Dk/k, it is necessary thatuM2u,uN2u&uM1u,uN1u. In gen-
eral, the expressions foruM2 /M1u and uN2 /N1u have com-
plicated forms. Hence we present here only the express
for the limiting cases I and II, which are sufficient for ou
present purposes,

UM2

M1
U;UN2

N1
U5H 2k/g!1, case I

k/~g2a!!1, case II.
~B7!

It follows from Eq. ~B7! that the procedure of neglecting o
higher-order terms in Eq.~B4! is self-consistent.
.
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