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We investigate theoretically the dynamics of squeezed state generation in nonlinear systems possessing a
transition from regular to chaotic dynamics in the limit of a large number of photons. As an example, the model
of a kicked Kerr oscillator is considered. We show that at the transition to quantum chaos the maximum
possible degree of squeezing increases exponentially in time, in contrast to the regular dynamics, where the
degree of squeezing increases only powerwise in time. We demonstrate the one-to-one correspondence of the
degree of squeezing and the value of the local Lyapunov instability rate in the corresponding classical chaotic
system[S1063-651X98)12203-1

PACS numbes): 05.45+b, 42.50.Dv, 03.65.Sq

[. INTRODUCTION dynamics during the same time interval. We find a direct
correlation between the degree of squeezing and the value of
In recent years, it was realized that chaos can have usefthe local Lyapunov instability rate in the corresponding clas-
applications. Among others we mention the diffusive ioniza-sical chaotic system.
tion of a hydrogen atom by a microwave figld—3], the Our consideration26] is based on three simple but gen-
dissociation of polyatomic molecules by laser radiation dueeral ideas.
to the transition to chaop4,5], the stabilization of chaotic (i) A free electromagnetic field is in a coherent state that
laser radiatiorf6] by the controlling chaos methdd], secret is a Gaussian wave packet. A wave packet spreads when it
communicationg 8] using synchronization of chaotic sys- propagates through a nonlinear medium. However, there still
tems[9], and the fact that chaos can be used in the generaxists a time interval of well-defined quantum-classical cor-
tion of music variations and other sequences of contextrespondence during which the wave packet follows a path in
dependent symbol$10]. All the applications mentioned phase space closed to the path defined(dsmiclassical
dealt with classical chaos. equations of motion. During this time interval, localized the
Recently the main activity in chaos has been shifting towave packet demonstrates squeezing in one direction of
the studies of quantum chaos, particularly in the behavior ophase space and stretching in another direction. As a result,
guantum systems that are chaotic in the classical fiidit- one of the field quadrature components may be observed in
16]. As a rule, quantum effects distort or suppress “useful” the squeezed state at some time moments. Due to the pres-
manifestations of classical chaos. For example, in the mosince of the local stron@exponential instability inherent in
studied system, a hydrogen atom in a microwave field, quarthe underlying classical chaotic dynami&4], the stretching
tum effects suppress diffusive ionization by the mechanismand squeezing of the wave packet for quantum chaos is much
of quantum localization17] (the analog of Anderson local- stronger than for the case of the regular and stable dynam-
ization in a solid statg18]) or by the appearance of “scars” ics, when the distance between two initially closed trajecto-
of a wave functior[19] in the vicinity of classical unstable ries in phase space increases in time only in a powerwise
periodic orbits of the corresponding classical model of theway [31].
atom[20]. The only probable useful application known to us  (ii) The time interval of the quantum-classical correspon-
(in particular in the area of quantum opficr quantum dence depends on the number of quanta involved in the non-
chaos is the suggestidi21] to utilize the effect of wave linear dynamics: It has a power dependence on the number
function localization in a one-dimensional quantum chaoticof quanta for regular dynamics and this dependence is loga-
system driven by a periodic external field, for the generatiorrithmic for chaotic dynamic$§32,11,18. In spite of the time
of an electromagnetic field in the Fock state. interval of the localized wave-packet motion, when enhanced
In this paper we discuss the possibility of generatingsqueezing is expected, for chaotic dynamics that may be very
squeezed states of the ligl&2—25 at the transition to quan- short, this time scale is quite observable in modern experi-
tum chaos. We show that the maximal possible degree ahents on light squeezif@2-25, where the average number
squeezing, achievable during some time interval of measuresf photonsN involved in the nonlinear interaction is as great
ment, for chaotic dynamics is much greater than for regulaas 16— 10'2. Moreover, in the conditions of the experi-
ments, the time of the localized wave-packet motion and the
well-defined quantum-classical correspondence may be of

*Electronic addresses: kna@iph.krasnoyarsk.su andhe same order as the time scale when dissipation and other
kna@vist.krascience.rssi.ru factors restricting squeezing could be neglected.
"Electronic address: perina@optnw.upol.cz (iii) Along with stretching and squeezing, another inher-
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ent characteristic of chaos in bounded phase space is foldindegree of local instability in the corresponding classical sys-
For strong chaos there are strong and multiple foldings of théeem. We also compare our approach with the generalized
wave packet; therefore, the time intervals of squeezing beGaussian approximatiof23,38, which is used to find ap-
come very short and squeezing even becomes und28le proximate solutions of many problems of quantum optics
However, at the same time that strong folding appears, the#0—43, as well as with a similar variation of the cumulant
wave packet becomes delocalized and well-defined quantungxpansion43] and find good agreement with minor differ-
classical correspondence, which we understand here as tREC€S- o _ _
motion of a wave-packet center along a classical trajectory, OUr presentation is organized as follows. In Sec. I, using
is broken[33]. Therefore, if one studies the dynamics of the e 1N-expansion method and starting from the Heisenberg
wave packet only on a time scale of well-defined quantum-eq“at!or‘s of motion, we derive the self-consistent set of
classical correspondence, the squeezing could be strong aRguations for the mean values and second-order cumulants
still rather stable for not very strong chaos or even for regud€scribing the dynamics of quantum fluctuations in the semi-
lar trajectories lying in phase space near the chaotic regiorgassical limit for an arbitrary quantum system with de-

It is already known that light squeezing can be increase@’€es of freedom. We show that these equations coincide
near the bifurcation points between different dynamical re\With the equations used for the calculation of the classical
gimes[34,25. In addition to well-studied parametric media Lyapunov exponent. In Sec. lll we discuss the conditions of
[34], such an increase of squeezing was predicted also for thédlidity of our basic equations for regular and chaotic dy-
interaction of the field with two-level atoms inside a high- namics and compare our approach with the results of other
cavity [35,36. The explanation of enhanced squeezing neap€Miclassical techmques used in _both quantum optics _and
the bifurcation point has been usg&¥] and it is very similar quantum chaos studies. We consider the dynamics of light

to the arguments presented above that utilize quantum cha§§U€€zing at the transition to quantum chaos, and compare it
for large squeezing: At the transitigbifurcation) between With the dynamics of squeezing for regular and stable motion
different dynamic regimes, there should exist some divergin Sec. IV. We illustrate our results on enhanced squeezing at
variable and then the conjugate variable should be strongl§€ transition to chaos in the model of a kicked quantum
squeezed. In spite of the similarity, our suggestion has twgscillator in Sec. V. Our conclusions are summarized in Sec.
significant differences. First, all papers devoted to the stud)y I

of enhanced squeezing in the vicinity of the instability

threshold [25,34—36 dealt with the integrable or near- Il. SEMICLASSICAL DYNAMICS OF QUANTUM

integrable systems withegular dynamicsInstead, we sug- FLUCTUATIONS: GENERAL FORMALISM

gest the use of the transition fromagular to chaoticdynam-
ics. Second, from the general viewpoint, the transition t

chaos and chaos itself are frequent phenomena and, as a ru Znce on time, wherb andb are Bose operatorgf,b']

they take place for a rather wide region of control param-_ .
eters, in contrast to a commonly narrow region of the control_ 1r) of tthri riTr:o?:ied. we rl;Sel nrormal rorr?g:;glof_r%peratrorr?_Let
parameter characterizing a bifurcation between different redur syste clude some large para - 'he para

- ; eter N may represent the number of quangahotong
gimes of regular motion.
In this paper we consider the squeezed light generation b umped to the systefi30] or the number of degrees of free-

nonlinear nonintegrable optical systems obeying the transicoN of a quan'Fur_n syste[1_36_]. Because we are interested in
tion from regular to chaotic dynamics in the classical limit. semiclassical “mm\.lﬂ.oo.’ it is useful to introduce new op-
As for other problems of quantum chafl—16, we deal erators for the annihilation and creation of photons

with the semiclassical limit when a great number of quantum a=b/NY2 at=pt/NL2 1)
levelsN>1 are involved in the dynamics. Our consideration '

is valid for any nondissipative quantum system withde-  \yith the commutation relation

grees of freedom, but we demonstrate our main results on the

enhanced squeezing for some particular model of the nonin- [a,a’]=1N. 2)
tegrable optical system: the nonlinear oscillator periodically

forced by the classical field. To investigate the nonlineann the classical limit N—«), one has two commuting
dynamics of the systems and the dynamics of squeezing inumbers. The natural quantum states for the consideration of
the semiclassical limit, it is natural to use the cumulant exthe quantum system in the semiclassical limit are coherent
pansion technique[38] as a variation of the general stateq11,39. Thus we suppose that our quantum system is
1/N-expansion method39]. In this paper, we use the initially in the coherent stathy)=expMNaa'—Nao* a)|0) cor-
1/N-expansion method suggested [i86], which is well  responding to the mean number of quart&l. Following
adapted for the problems of quantum optics. We show that agie general scheme of theNkexpansion methof39,36, we
long as the wave packet is localized, its dynamics may beewrite the HamiltoniarH in the form

well described by the behavior of the mean values account-

ing for quantum corrections and the lowest-order quantum H=NHy(a,a't), 3
cumulants. We demonstrate that the equations of motion for

the second-order cumulants are essentially the same as thosbere the HamiltoniarHy generates the correct classical
used in the definition of the Lyapunov exponent for the cor-equations of motion in the classical linht— . In the clas-
responding classical system. This allows us to find a direcsical limit, the operators,a’, following Eq. (2), may be
correlation between the degree of light squeezing and theonsidered as numbers of order of unity and all quantum

We begin with a single-mode quantum system described
the HamiltonianH(b,b,t) including an explicit depen-
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corrections being of order of or less thanNltould be The set of equation$6) is not closed and actually is
treated by perturbation theory. equivalent to the infinite-hierarchy dynamical system for mo-
In order to illustrate the representation of the Hamiltonianments and cumulants. To truncate it we make the substitution
in the form (3), consider a particular model of the noninte- a—z+ Sa, where at least initially the mean=1 and the
grable quantum system: the nonlinear oscillator periodicallyquantum correction|Sa(t=0)|=N"2<1. We expand
driven by the classical field. In the interaction picture, thefunctionsV(a,a*) andW(a,a*) around the mean value

Hamiltonian has the formA(=1) =(a),

K oV oV

H=Ab'b+ -b™b2+eNY4b+b")F(t), (4) V=V, + —) Sa+|—| Sa*+---,
2 Jda , da
z

whereb andb' describe a single mode of the quantum field
andk is proportional to the third-order nonlinear susceptibil- W=W.+ ﬂv Sa+ Sa* + 9)
ity of a nonlinear medium. The last term in E@) corre- da a* ’

sponds to a coupling of the oscillator with an external, clas-

sical, periodically modulated field containing a large numbefyhere the subscript means that the values &f, W, and
of photonsN>1 [ is a coupling constanE(t) is a periodic  their derivatives are calculated at mean valzeand z*.

function of time, and\ is a detuning of the mode frequency Substituting expansion®) into Egs.(6) and taking into ac-
from the carrier frequency of the external figltsing new  count the equality

operatorsa,a’ given in Eq.(1), the Hamiltonian4) may be
represented in the forr(8) with <(9v> < JHy > <(9v*>
% = =

(10)
9 dada* da*
Hy=Aa'a+ -a'%a?+s(a+a’)F(t), g=«N. (5 _ _ .

2 resulting from Eqs(7), we have in the first order of i/ the

. . o self-consistent set of equations for mean values and first-
It may be shown that in the classical limi>1, when we  grder cumulants

have classical variables,a* instead of operatora,a’ with
|a|=1, the dependenog=N correctly gives the time scale d . ) .
of the energy oscillation for Kerr nonlinearifg4]. We will i512= V)t alz,2% ((6a)%) (Sa* ba)], (113
return to the study of the nonlinear oscillai@) in Sec. V.

We now turn to the general caé® and derive the equa- N
tion of motion for mean values and first-order cumulants|_<(5a)2> 2( ) <(5a)2>+2
From the Heisenberg equations fo@? and their Hermitian
conjugated equations, we have the following equations of (11b
motion for the averages over coherent states:

el
(Sa* Sa)+(W),,

d d(5 *Sar) (&V*) ((Sa)?)+ ) ((8a*)?).
Z I—(oa™ oa)= — o [
=V, 6a
(1190
d The small quantum correctiag=1/N involved in Eq.(113
_ 2y _
Idt<(5a) )= 2Voa)+(W), (6b) has the form of the second differential gf
d 1, 2y ) 9V o
| qp(0a* ba)=—(V* ba)+(Sa*V), (6¢) q=5d*V[,=5 Py ((6a))+5| —| ((6a*)%)
z z
where we have introduced 92V
" (Sa* Sa). (12
Hy 10V Jardal,
V(a,a*)=——, W(a,a*)= (7) o N
sal N gaf The initial conditions for the system(11) are

((8a)?)(t=0)=(Sa* a)(t=0)=0 and some arbitrary
and z=(a), dJae=a-z, ((sa)?))=(a®)—(a)?, and z(0) is given, which is of the order of unity.

(8a* sa)=(a'a)—(a')(a). In the derivation of Eqs(6) we We now turn to the classical equations of motion. The
used the equalitiegt5] classical limit may be obtained from El.18 by neglecting
the quantum correctioq of order 1N and then the classical
1M 1 oM Hamiltonian equations are
[aM(aah]=5 —. [M(aah)al=5 ®)
N gat N da’
dz dHy dz IHy
_ ) ) _ i-—= =V(z,Z*), i =——=-V*(z,7%).
which are valid for an arbitrary functiod of operatorsa,a’ dt = oz dt Jz

[Ed. (2)]. (13



4026 KIRILL N. ALEKSEEV

Linearization of the classical equatiofi3) nearz by means
of the substitutiore—z+ A a(]Aa|<|z|) gives

4NN
Id'[ Y9z 9z* “n

VAL WA 14

Idt “ = 0z 9z7* as ( )

where all derivatives are taken on the classical trajectory

found from the Hamiltonian equatior{¢3). Using the clas-
sical analog of th€10),

N IV*
0z gz’

we have from Eqgs(14) the following equations of motion
for quadraticvariables A a)? and|A a|?:

=l A 2—2—av A 2+2—&V Aal? 15
Idt( )= az( @) az*I al?, (159
d IV* oV

T— 2_ _ 24 2

Idt|Aa| o (Aa) +¢9Z* |[Aa|?, (15b

with the initial conditions

(A)*(0)=[Aa(0)]?, [Aal*(0)=[Aa(0)][Aa*(0)],

(16)

where Aa(0) and Aa*(0) are the initial values of small
deviations from the classical trajectory. We define the dis
tance D, in classical phase space between two initially
closed trajectories as
Dai(t)=]|Aa(t)|=[(ReAa)?®+(Im Aa)?]*2  (17)
where the time-dependent quantitx«(t)| is determined
from linearized classical equations of moti¢h4) or from
equivalentequations of motion for the square of linear de-
viations(15). The valueD characterizes the degree of local
instability in the classical system: For chaotic motiop(t)
increases on average exponentially with time and for regul
motion D has only a powerwise time dependef8&]. Us-
ing D (t), one can define the largest Lyapunov exponent a

IND¢(t)

lim

t—oo

(18

If A>0, the motion is chaotic and=0 for regular motion
[31].

We turn again to the quantum dynamics. It is easy to se
that the equations of motiofl1b) and(11¢ for the cumu-
lants are the same as the classical equatibBs except for
the appearance of the nonlinear functigf(z,z*) in Eq.
(11b), which makes the cumulant equatiofisb) and (110

AND JAN PERINA

B=N(Sa* 5a>+%, C=N{((da)?), (19

whereB is real andC is complex. Using Eqg.7), the quan-
tum equations of motioill) may be rewritten in variables
(19) in the form

. 1
iz=(V),+Q(z.2",B,C,C*), (209
 BCCr ot Y% 1 PV -
Q(Z,Z, y oy )—5 E z &a*z
z z
PV (B 1) (205
da* da ) 2)’
. vV oV
iC=2|—| C+2| —| B, (200
Jda da ,
. IV* N
iB=— C+ C*, (20d)
da 7 da*

z

and the corresponding equation 6 (t) that could be ob-
tained from Eq(20¢) by complex conjugation. Initial condi-
tions for the systen(20) are

B(0)=1/2, C(0)=C*(0)=0. (21
Now all variables are of the order of unity and the depen-
dence on the small parameteNlis present explicitly only

in the expression for the quantum correction to classical mo-
tion in Eq. (203.

Compare the set of classical Hamiltonian equatiti®
and equations of motio(iL5) for classical linear fluctuations
with the equations of motio(20) for mean values and quan-
tum cumulants. It is evident that both sets of equations have
the same structure with the following principal differences.
First, the quantum equatiorf20¢) and (200) for the cumu-
lants, in contrast to the classical equatid$), are calcu-
lated near the mean valueand take into account the quan-
tum correctionQ [Egs. (209 and (20b)]. Second, it should

e noticed that it is impossible to obtain the initial conditions

£21) for C andB from the initial conditions for the classical
equations(16). However, if one considers the case of large
N, when the quantum correction is small, the quantum equa-
tions (20) areidentical to the classical equations (18sed in
the definition of the maximum Lyapunov expon&hte same
conclusion on the equivalence of the equations of motion for
low-order cumulants and the equations of motion arising in
the definition of the Lyapunov exponent has been obtained
earlier for the generalized Tavis-Cammings model 28]
and for systems with Hamiltonians consisting of the sum of
kinetic and potential energies [43].

The self-consistent system of equatio2§) completely
describes the dynamics of quantum fluctuations in the first

nonlinear. However, this difference may be overcomed byorder of 1N. We shall use these equations for the description

introducing the new variables

of the dynamics of light squeezing at the transition to quan-
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tum chaos in Sec. IV after a discussion of the validity of ourthe order of 16-100 of the system’s characteristic periods
approach and its comparison with other semiclassical methn, * and thus it looks quite reasonable.

ods. We now compare our approach to the description of the
dynamics of quantum fluctuations with that widely used in

ll. CONDITIONS OF VALIDITY AND COMPARISON quantum optics and called the generalized Gaussian approxi-
WITH OTHER APPROACHES mation[23,38,40—42 This approximation also assumes the

existence of a well-localized, almost Gaussian wave packet
Here we discuss the condition of validity of theN1ex-  throughout the quantum evolution. More precisely, the gen-
pansion(9) and our equations of motio(20) for the mean  eralized Gaussian approximation consists in an assumption
values and cumulants. In analogy to the classical distancgat the Fourier transform of the quantum distribution func-
(17), we introduce the “distance’D for the quantum case tjon, i.e., the quantum characteristic function, is Gaussian for
as any moment of tim¢38]. Such a quantum state corresponds
1 to the superposition of the coherent signal and small quan-
_ T pli2i X112 tum noise[23]. For such a state, only the first- and second-
Dq(t)= N BHO=[(|0al)]™ (22 order cumulants are nonzero. It possesses the expression for
higher-order cumulants in terms of only the first- and
It is easy to see thaD, coincides with the “convergence second-order cumulants and truncation of an infinite-
radius” r=[Re(da)]?+[Im(5a)]? of the 1N expansion hierachy dynamic system for cumulants is possible.
(9). Initially D4(0)=1/N<1, and ifD4(t)<1 during some We compare our systef20) with the dynamic equations
time interval, then the N expansion is well defined in this for the mean values and cumulants obtained within the gen-
time interval. eralized Gaussian approximation for several popular models
When the quantum correction in EROa is small, Egs. of quantum optics: second-harmonic generation described by
(20) are identical to the classical equatidi$) arising in the  the Hamiltonian
definition of the classical Lyapunov exponém8). Thus, for
classically chaotic motion, we have exponential growth of H:wlbibl+ wzbgbz—(Kbib%— H.c), [b,b™]=1,
B(t), C(t), andD(t) as

Dy(t)=D4(0)exp( A wt), (23) wy=2wy, (26)

where is the Lyapunov exponent ang, is the character- thelproblem of nonqegeperate optical three-wave mixing de-
istic frequency in the classical dynamic system. For exampleScribed by the Hamiltonian

wo=g in the model of the Kerr oscillatd5). From the con- .

ditions D4(t)<1 and D4(0)=1/N, we have the following + N

estimate for the time scale of validity of our semiclassical H=§1 wjbjbj—(«bibzbz+H.c),  wz=w;twy,
approach: (27)

t<t*:iInN. (24) and the periodically forced nonlinear oscillator with the
Awo Hamiltonian(4). Considerations of these problems within the
generalized Gaussian approximation are presented in Refs.
In contrast, for classically regular motidd,(t) increases [40-44. For the forced nonlinear oscillator, we found that
with time only powerwise:D(t)=t”, where the indexy  our self-consistent set of equatiofisl) and (12) coincides
=1 depends on the system under study. For exampte,  with the corresponding basic equationg42] up to terms of
for the nonlinear oscillator with the Hamiltonia@®) for & the order of N2, and for the problems of nondegenerate and
=0, as well as for integrable nonlinear oscillators with pow-degenerate optical three-wave mixing, our approach gives
erwise higher-order nonlinearify46]. As a result, the time  equations that are identical to the corresponding equations of
scale of validity of our approach in the case of regular mo-motion obtained within the generalized Gaussian approxima-
tion is tion [40,41,41.
We turn now to the discussion of squeezing at the transi-
t<t* = wg 'NYY (25 tion from regular to chaotic motion.

and it is much greater than E(4) for chaotic motion. The
time scalg* has a very simple physical meaning: During the
time intervalt* we have a localized wave packet with the
center moving along the classical path. Define the general field quadrature X66) =aexp(—i6)
The scale(24) of the well-defined quantum-classical cor- +afexp(6), where ¢ is a local oscillator phase. A state is

respondence for chaotic systems was introducd@2hand  said to be squeezed if there is some phager which the
now it is investigated in detail in different systenff®r a  variance ofX p

review se€16]). The time scalé24) is very short for small

N. However, under the conditions of modern experiments on X2 ={((Sa)2Vexn —i26)+((Sa* ) exai26
light squeezing, where the average number of photdns ((OX)%)=((8a)Tyexpl )F{(8a)")exp(i26)
involved in the nonlinear interaction is 3610, t* is of +2(|8a|?)+ 1IN (28

IV. SQUEEZING AT THE TRANSITION
TO QUANTUM CHAQOS
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is less than the variance for coherent state or the vacuumhere ay is some initial condition |@@o|=1). The same re-
[22]. In variables(19), the condition of squeezing takes the sult could be obtained directly from our semiclassical ap-
form proach neglecting the quantum correction in E20) and
. . combining it with Eq.(31) [46].
S(9)=2B+Cexp—i260)+C*expi20)<1. (29 Making a comparison of squeezing for regular and chaotic

- . _ motion, several comments are necessary.
The minimum of the variance of the general field quadrature (i) Both formulas(32) and (33) are obtained within the

(29 W'th respect to Its dependence on the local c)SC'”"’Horpure classical picture when gquantum corrections are ne-
phased is reached ab,,;,, determined as

glected. The deviations from dependen¢@® and (33) are
expected when quantum corrections become sufficient, espe-
cially att=t*.

(i) Squeezing for chaotic dynamics is exponential only on
average. Actually, the rate of phase volume deformation and,
consequently, the rate of quantum noise ellipse deformation
and squeezing are directly related in the semiclassical limit
(N>1) to the degree of local Lyapunov instabiliBy, [Eq.

(22)] in the system, which at some moments in time may be

different from the maximum Lyapunov expongi8) mea-

squeezingbecause it gives the maximum squeezing measur§ur6d at asymptotics—ce. suich behavior is typlcal,.for In-
stance, for a chaotic trajectory that spends some time near a

abIfe%Shg:)nﬁ%)g;:pgféetﬁggfﬁiii cs of the principal sque o Stable island. In this case, the local instability and statistical

ing for classically regular and chaotic motion. Initially the properties of chaotic motion are weg0). Finally, the tra-

Gaussian wave packet spreads when it propagates throug 'e&tory escapes to a large chaotic sea and the local in_stabilit_y
nonlinear medium. However, there still exists the time inter- .ecqmgstﬁtrong. O,i courTle, :L‘e Lya|c|)tqnov exponer;t IS pé)s"
val of the well-defined quantum-classical correspondencgviénno cfases. girr:na yr’] ti(ranresu Ilndg Bonmogologlcb e
(24) or (25) during which the wave packet’s center follows a P€ Ie ce o sguee dg 0 ftt? cou e;)e EO e;fz y a
path in phase space governed by the semiclassical equati Wy_”vgl_rylng tipen eglce ?c the p_arz;m V{ 9. (32))-

of motion (2039. Moreover, because our equations of motion € will discuss this probiém further in Sec. V.

for cumulantg200) and(20d in fact coincide with the equa- .('") In addition to the W'de class.of integrable systems
tions arising from the definition of the maximum Lyapunov with ste}ble regular dynamics, there IS a small c!ass of Sys-
exponent, we can apply simple physical arguments to thc%ems W|th_regu_lar but un_stable dyqam_ws, for Wh'Ch. the dis-
strong deformation of the classical phase volume at chaos f pncqu given in Eq.(22) increases in time exponentially. In

the prediction of the strong squeezing of the noise ellipse a?uf:h a case the. systems are In the stqte near the bifurcation
quantum chaos in the semiclassical limit point between different dynamic behaviors and they are ex-

Due to the presence of the strofexponential local in- ponentially unstable. The mechanism of enhanced squeezing

stability inherent in the underlying classical chaotic d nam-in uns_table systems with regl_JIar dynamics is very similar to
y ying y Eat discussed at the transition to quantum chaos, and has

Omin= (¢ —m)/2, (30

whereg is the argument of the cumula@G{ C=|C|exp(¢)].
For 0= 6,,i,,, the condition of squeezin@9) is

S=S(min=2(B—|C|)<L1. (3D

The valueS determines the minimum half axis of the quan-
tum noise ellips¢23]. The condition(31) is calledprincipal

ics, a quantum noise ellipse may be strongly stretched in on : . .
direction and squeezed in another direction. As a result, th een d|scus§ed n detail [64_31' .
(iv) Considering squeezing at chaos, we have not dis-

D e . 31 e coTeles cussedyet he fuence ofone of the mai characersics o
average exponentially decreases in time chaos:_ fold_lng of the_phase volume that, in z_iddltlon to
stretching, is present in any bounded Hamiltonian system.
_ _ For strong chaos, strong and multiple folding of the phase
S()=exp(~ A wol). (32 volume appears during the time scale of the well-defined
ufuantum-classical correspondence. The perimeter of the
Hpémse volume increases in time exponentially and eventually
e phase volume envelope gets some fractal-like structure
1]. Moreover, the final shape of the phase volume is very
§ensitive to small changes of the initial conditions and/or
parameters. The complex and unstable evolution of the phase
volume is displayed in the time dependence of squeezing
S(t)=(wgt) %, (33) [28]. For strong chaos and long enough time, squeezing be-
comes strongly dependent on tiny variations of the system’s
e Parameters. Such a regime of squeezing was calldé@8h
unstable squeezindror unstable squeezing, the range of the
local oscillator phase, for which squeezing is possible, be-
comes so narrow that it makes observation of squeezing
practically impossiblg28].
_ 2 24t 4.,2:2\1/ It should be noticed that at the same time when multiple
S(t) =1+ 2] ol G| xol gt (1ol “g°tH) ™) folding of wave packet appears, the quantum-classical corre-
—(6|agl?gt) "L, gt>1 (39 spondence breaks down. For strong chaos this time scale is

The stretching and squeezing of a noise ellipse at quant
chaos is much stronger than for the case of regular and sta
dynamics, when the distance between two initially close
trajectories in phase space increases in time in a powerwi
way resulting in only a powerwise decrease of the principa
squeezing in time

where the constanB=1. As an example of such a tim
dependence, we consider the Kerr oscillater without an
external field €=0). In this case the model is integrable,
and from an exact solution in the limi>1 [49], we get
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very short. In contrast, for weak chaos, the time scale of the
well-defined quantum-classical correspondence and tim
scale of strong folding may be rather long in the semiclassi- & o
cal limit, resulting in stable and enhanced squeezing. The
same arguments should be valid for regular trajectories lo- ™
cated near the chaotic motion in phase space. Actually, dur
ing a finite time interval stability properties of a given tra-
jectory are determined by the time dependence of the
distance(17) or (22) between two initially nearby trajecto-
ries. At a finite time the value dd, for the regular trajectory .
is often practically indistinguishable from the nearby chaotic - 0 !
trajectory[51] resulting in the same degree of squeezing. We
will illustrate a general picture of squeezing at the transition
to quantum chaos through an example of the model of the
kicked nonlinear oscillator in Sec. V.

Concluding this section, let us compare qualitatively the = . m
maximum achievable degree of principal squeezing for regu: Rez n
lar and chaotic motion during the time interval of the well-
defined quantum-classical correspondence. First consider the FIG. 1. Nonlinear dynamics of the kicked classical nonlinear
case Of Squeez|ng at Chaos Prlnc|pa| Squeez|ng on averagé)%:lllator (N—>30) phase portrait and time dependence of the inten-
exponential(32), and at the end of time interval4) it  Sity |z|” for (@) and(b) the regular behavior af=3, (c) and (d)
should be not less thaB(t* ) =exp(—Awgt*)=1/N. For regu- yvggk chao.s. aﬂ'.z 6.4, and(e) and (f) hard chao; af=10. Thg
lar dynamics, the principal squeezing has a powerwise timiitial condition isz,=1; £=0.1 andA=1. Time is measured in
dependence(33) and it should be not less thas(t*)  he number of kicks.
=(wot*) " P=N"F", where constanty=1 and =1, and _ _ _ o
we used the estimaté5) of t* for regular motion. Thus Mally equivalent to choosing=1 in the Hamiltonian(s).
these rough estimates show that the degree of squeezing Hi€ classical equation of motiofl3) obtained from the
time t* is comparable in the cases of regular and chaotidi@miltonian(s) has the form
dynamics, but becausé is much shorter for chaotic dynam-
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ics than for regular, squeezing is much faster in the chaotic 22— Az+ g|z]22+ e 81(1). (36)
systems. dt
V. EXAMPLE: THE KICKED NONLINEAR OSCILLATOR From Eq.(36) and using a standard techniqltl,31, we

have the classical map
Consider a nonlinear oscillator interacting with a time-

periodic field as given in Eqg4) and (5). This model de- 7 .. =F(z,), F(z,)=exd—iT(A+|z,—ie|®)](z,—¢),
scribes, for example, a higQ-cavity filled by a medium 37)
with Kerr nonlinearity and excited by an external laser field
[21]. The same effective Hamiltonian may also govern theyherez, is the value ok just beforenth kick, z,=z(nT—0).
interaction of a laser field with a high-density exciton in a |t may be shown analyticallj54] that the approximate cri-
semiconducto52]. The different variations of the model terion of the transition from regular motion to strong and

discussed are very popular in both quantum ot and  glopal chaos for the maf87) in the limiting cases <1 is
quantum chao§11,42,54 studies.

In this paper we chqose the form B{t) in Eq. (5) as a K=2eT=1 (39)
periodic sequence of kicks

We illustrate the dynamics governed by the nap in Fig.

_ B 1, where phase portraif§-ig. 1(a), 1(c), and Xe)] and the
5T(t)_n:2_w o(t=nT), B9 fime dependence of intensity,|? [Figs. 4b), 1(d), and 1f)]
are shown for the cases of regular motion, weak chaos, and
strong chaos correspondingly.

where 6(t) is the Dirac delta function. In an experiment, a ;
© b _We now turn to the dynamics of quantum cumulants and

sequence of short light pulses can be generated by a mod . X :
locked laser. The use of the sequence of kicks is used t e mean values with quantum corrections. Using the small-

obtain discrete maps instead of differential equations and irges;s of Zlg)l’ Wg tﬁbta;n fr_oml the sermcl?slflca'l equanc?n; of
sufficiently simplifies computations and reduces numerical"° ion (20) and the classical ma37) the following couple

errors, which is especially important when we analyze thg"aps describing the o_lynamics of mean values and cum_ulants
influer,lce of small quantum correctionsl¥1) on the dy- (details of the derivation of these maps are presented in the

namics of squeezing. Appendix:
In what follows we shall use scaled variablés-gt and
A’=A/g measuring time and detuning in the units of the

1
X LD L = +—Q,,
coupling constany and then we omit primes, which is for- Zn1=F(20) N Qn (393
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Chri=exd —i2T(A+|z,—ie|>)){—2(z,—i¢)? 0 a %0 b
3
X(T?|zy—ie|?+iT)By+(1-2iT|z,—ie|?)C, 2 . 20 2
“4 S
—T(z,—ie)?*[(z,—ie)?C} +c.cl}, (39b) g 21 84 1
6
—(9T2y i |4 205 |2 N2 3
Bni1=(2T?|z,—ie|*+1)B,+T?z,—ie|*[(z,—ie)*C} o y . ! ol - =
+c.cl+[—iT(zy—ie)2Ct +c.cl, (390 " "
60
<
whereF(z,) in Eq. (399 is the classical map introduced in 3
Eq. (37) and the quantum correctid®,, in Eq. (3939 has the 040 2
form 5
220
Qn=A1(20,Z5)Ct Ax(2,,2%)CE + Ag(2,, 24 ) (By— 1/2), 1
(409 % 5 100
Ay(Z,,25)= Ee—iT(A+|Zn—ie\2)[_ iT(Z+ie) FIG. 2. Time dependence @) the principal squeezingb) the
2 distance between two initially closed trajectories, écjdthe quan-
X (2—iT|z,~ie|))] (40b) tum correction to the motion of wave-packet center. Curve 1 corre-
n H

sponds to the regular dynamics®t 3, curve 2 to the mild chaos
(T=7), and curve 3 to the hard chadk= 10). The average photon
Ay(z, Z: )= le—iT(AHzn—is\z)[ —Tz(z —j 8)3] number isN = 10°; the initial condition and other parameters are the
' 2 n ' same as in Fig. 1.
(400
The increment of local instability and the corresponding
As(z,,25)= —e‘iT(A”Zn“S‘Z)T(zn—is)(T|zn—is|2+ 2i). degree of squeezing are complex functions of the initial con-
(400) ditions or parameters. As a result, the dependence of squeez-
ing on initial conditions or parameters may be rather com-
Following Eq.(21), the initial conditions for the map&89)  plex. In Fig. 3 we plot the minimum value min lgé of the
are Bp=1/2, C4=0, and arbitraryz, of order unity. The principal squeezing during seven kicks and the degree of
self-consistent set of mag89) and (40) determines the dy- local instability logqd as a function of the kick’s perio@ at
namics of the quantum fluctuations for the kicked nonlineafixed initial conditions,e=0.1, and number of quanthl

oscillator in first order of M. =10°. The regions of parameter values with mainly regular
Now we want to compare the time dependence of the
principal squeezing in Eq. (31), the degree of local insta- 4 . - - « . . .

bility (22), and the quantum correctio® in Eq. (40) for
three characteristic cases of classical dynamics: regular mo-
tion, mild chaos, and hard chaos. To avoid the dependence of

DgonN it is useful to introduce the new normalized distance $
o

d

d = N Dq . Regularity
Phase portraits and time dependences of the intejzftyor
the three characteristic cases of classical dynamics governec
by the map(37) are shown in Fig. 1. The time dependences
of 10g,0S, l0g,d, and logyQ for a large but finite number of
quantaN =10 are shown in Fig. 2, where curves 1, 2, and 3
correspond to the cases of regular motiar=(0) and chaotic
motion with an increasing value of the Lyapunov exponent
\, respectively. As is evident from a comparison of Figs. -, : 5
2(a) and Zb), the strongest local instability determines the T
z:?fg?;;g:?r:etigfnfg;r?sjéneg6:‘t psnr?gilsa?ié?jeegg?nnge(fjot_h?:]g_]e FIG. 3. In the upper part of the figure, the logarithm of the
. . o n . distance between two initially closed classical trajectoriesqtbg
otic motion and regular motion is of several orders during

. . - . after seven kicks is plotted as a function of kicking peffodefined
only several kicks. A powerwise time dependencel ¢Fig. in dimensionless unit&ee the tejt In the lower part, the minimum

2(b), curve 1 is assisted by the corresponding slow growth u the |ogarithm of the principal squeezing min ig8 during seven

in time of the quantum correctiofFig. 2c), curve 1. In  jcks as a function of the kick period is plotted for the average
contrast, for chaotic motion, the growth @fandQ is expo-  photon numbeN=10°. In the center of the figure, big intervals of
nential[curves 2 and 3 in Figs.(B) and Zc)], resulting ina T with primary regular and primary chaotic behavior are marked.
logarithmic dependence of the applicability of the semiclas-The amplitude of perturbation and detuning are fixeek0.1 and
sical approach on the number of quanta in Exf)). A=1. The initial condition is the same as in Fig. 1.

min logo S
A
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FIG. 4. Local Lyapunov rate lggd after nine kicks and the FIG. 6. Time dependence of the principal squeezing for chaotic

minimum of principal squeezing during nine kicks as functions of motion (T=7, ¢=0.1). Cur;/e 1 corresponds to the classical limit
dimensionless perturbation amplitudt fixedT= 1. Other param- N—% and curve 2 taN=10"

eters are the same as in Fig. 3. . . . . .
g result, the squeezing during three kickssat 1.8 [point 1 in

) o . o Fig. 5a)] is greater than foe=2.22[point 2 in Fig. 5a)].
or chaotic motion in the classical limitN—c) are marked  After eight kicks we have the inverse picture: The instability
in the center of the plot. The first large region of chaos befgr . —2 22 is greater than at=1.8[see Fig. )], resulting
gins atT¢,~5.4, which is in good agreement with the ap- jn enhanced squeezing for the parameter’s values of point 1
proximate criterior(38) of the transition to chaos. Of course, i comparison to squeezing for the parameter's values of
there are some singular values of the param@terorre-  point 2.
sponding to regular motion in the range Bfthat is mainly Summarizing our findings from Figs. 3—-5, we see that in
filled by chaotic trajectories. _ _ ~ the semiclassical limit the degree of squeezing has a one-to-

As is evident from Fig. 3, there is a direct correlation gone correspondence to the degree of local instability in the
between the degree of squeezing and the degree of instabilifystem. For a short time of the order of several kicks, the
log;d. Because we present the dependences afdoand  dependence of squeezing on the Lyapunov exponent, which
squeezing off for only seven kicks, the degree of instability s calculated in the limitt—o, is not well pronounced.
and squeezing may be comparable for some points fronyoreover, squeezing for regular motion located near the bor-
regular and chaotic ranges &t However, generally, as it der of the transition to chaos is comparable to squeezing for
follows from Eg. (38), the degree of instability increases weak chaos. The dependence of squeezing on the value of
with increasingT and correspondingly we have an increasethe Lyapunov exponent becomes more pronounced for mod-
of squeezingFig. 3). erate times of the order of ten kicks.

In Fig. 4 we plot loged and the minimum of log,S dur- We compare now the time dependence of principal
ing nine kicks as a function of another parameteand at  squeezing for differeril. The dependence &ont atN—o»
fixed T and initial conditions. Again, the correlation of local (curve 1) and atN=10" (curve 2 is presented in Fig. 6 for
instability and squeezing, and an enhancement of squeeziiBe case of mild chaos. Curves 1 and 2 coincide during seven
at the transition to chaos are visible. The same dependencRrks, which determines the time interval of the well-defined
but for three kicks instead of nine are shown in Figg)5In  quantum-classical correspondence for such a choice of pa-
spite of the correlation between the degree of squeezing an@meters. Moreover, our numerical calculations demonstrate
log;d it is also evident in Fig. & that the increase of that if the number of quanta in two orders increases up to
squeezing at the transition from regular to chaotic motiony=10°, the squeezing is indistinguishable from squeezing at
(e¢r~0.5) is smoothed more than in the case of nine kickay— up to 15 kicks. This finding is well explained by re-
shown in Fig. 4. membering the IIN dependencé24) of the time scale.

As we already mentioned, the degree of local instability Thus we demonstrate that an increase in the average num-
may itself depend on time. This is illustrated in Figbh  per of photonsN results in a corresponding increase of the
where in an interval of 3-8 kicks the instability fore  time interval for the applicability of our description of
=1.8 (curve ) is greater than foe=2.22(curve 2. As a  squeezing dynamics. On the other hand, the number of pho-

tonsN=10 initially pumped to the system is quite realistic
5 for contemporary experiments on light squeeZigg—-25.
Let us now discuss the stability of chaotic squeezing. The

éow 10 2 time dependence of the optimal local oscillator phésg,

" 2 E; - given in Eq.(30) for the cases of regular and mild chaos is

8%'5 N €5 shown in Fig. 7 for two slightly different initial conditions

% Zo=1 andz,=1.001. The deviation of the optimal local os-
. 1 5 . . 0 — cillator phase values related to differery in the case of

" regular dynamics is small throughout the time evolution pre-
sented in Fig. Tsee the dashed and dotted cujv&sr chaos
FIG. 5. (a) Same as in Fig. 4, but after only three kicks instead(T=7, £=0.1), the deviation is sufficient only at the fifth
of nine. Point 1 corresponds to=1.8 and point 2 taa=2.22.(b)  kick (boxes and pluses in Fig).7Thus, for not very strong
Time dependence of the classical local Lyapunov rate. Curves 1 anghaos, there is a time interval during which squeezing is
2 are plotted for the same valuesofas in(a) and atT=1. enhanced and still stable.
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optimal local oscillator phase

3 1 ! 1 ] 1 ] 1

0 1 2 3 4 5 6 7 8
number of kicks

FIG. 7. Time dependence of the optimal local oscillator ph@ggg in the case of mild chaos d=7, ¢=0.1, and for different initial
conditions:zy=1 (boxeg andzy,=1.001(pluses. Compare with the time dependencedyf;, for regular motion afi' =3 ande=0.1 shown
by the dashed line foz,=1 and by the dotted line fa,=1.001.

VI. CONCLUSION cussions. Part of the work was done during the visit of
K. N. A. to the Department of Physics, University of lllinois

the best squeezing device?” The answer foundef28] is at Urbana-Champaign. K. N. A. thanks Professor David
q 9 o . T Campbell for hospitality. K. N. A. also thanks Professor Ju-
based on the fact that “the quantum noise reduction is effec

tive below and above the bifurcation points between dynami-h ani Kurkijavi for hospitality in Abo. This research was

cal regimes.” The reason for enhanced squeezing consists artially supported by the Russian Fund for Basic Research
gimes. - 1 thanced sq g« rant No. 96-02-16564 INTAS (Grant No. 94-2058
the fact that “the same classical linearized equations ar

. .. Academy of Finland(Grant No. 35874 Krasnoyarsk Re-
used to study the stability of the system and to calculate its. . .
qguantum fluctuations’[25]. It should be stressed that only %lonal Science Foundation, Czech Grant Agef@yant No.

integrable or near-integrable systems with regular dynamic202/%/042>’L and the Czech Ministry of Educatid@rant

were discussed if25]. The results of our paper demonstrate Ro. V596028,

that in addition to a very narrow class of integrable systems

near the threshold of instability, there is another wide class APPENDIX
of potentially “the best squeezing devices”: systems at the
transition to quantum chaos operating during the time inter
val of the well-defined quantum-classical correspondence.

In Ref.[25] a fundamental question was asked: “What is

In this appendix we briefly describe the derivation of the
coupled map$39) and(40) for the mean values and second-
order cumulants. We begin with the equations for the mean
Q;alues(SQa). Substituting the Hamiltonian of the nonlinear

o a2
the quantum systems with;ldegrees of freedom and illus oscillator (5) with F(t) given in Eq.(35) by Eq. (208 and

trated our findings on the model of kicked nonlinear o:scnla-using the smallness of the quantum correctton'Q, we

tor. Direct numerl_cal observation of enhanced squeezing 1y, neglect the influence of the quantum correction and find
the model of a kicked quantum rotator at the transition to,

i haoén turbati chill b ted the solution of the classical equations of motion given by the
g;aecvﬂ?rgsg]o onperturbative approatiwill be presente map (37) and then substitute this classical solution into the

expression for the quantum correctiQ(z—z,z* —z)).
Such a perturbative approach is valid during the time interval
(24) of the well-defined quantum-classical correspondence

We would like to thank Boris Chirikov, Claude Fabre, for chaotic systems and the time inter«@b) for systems
Zdené Hradil, Antonn Luks and Vlasta Pénova for dis-  with regular dynamics.
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To find the explicit form of the quantum correcti@h we Dz +l:e—iT(A+|zn—is|2){_iT(Z —ie)[(z,—ie)dZ*
remember that it has the form of the second differential of " " "
z(t) [see Egs(12) and(20b)]. Determiningd®z,. ;, we ob- +(zy +ie)dz,]+dz,}. (A1)

tain the expressiof40) for the quantum correctio.

We now tum to the derivation of the mag89b and From Eq.(Al) we obtain the maps for quadratic variables

_ _ B,=|dz,|? and C,=(dz,)? in the forms(39b) and (390).

(399 for cumulantsB andC. As it has been shown in Sec. Finallly, v!/e suppose that the variables z* included in Egs.

Il, the equations of motion foB andC may be obtained by 39y and(39¢) are calculated, taking into account the quan-
linearization of classical motion equations near the classicg}, correction, i.e., using formuléd9a. The perturbative
trajectory, taking into account the quantum correction, a”dapproach used in the derivation of Eq89b) and (399 is

by using substitution8— |dz|* and C—(d2). We adopt valid during the time interval of the well-defined quantum-
this finding for the derivation of maps f@ andC. Utilizing  classical correspondence when the quantum corrections to
again the perturbative approach, we first find the differentiathe classical equations are small. To avoid misprints we
of the map(399 neglecting the influence of the quantum checked the expressions for our coupled Mm@ and (40)
correction by symbolic computation in the packag@THEMATICA .
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