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Light squeezing at the transition to quantum chaos
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We investigate theoretically the dynamics of squeezed state generation in nonlinear systems possessing a
transition from regular to chaotic dynamics in the limit of a large number of photons. As an example, the model
of a kicked Kerr oscillator is considered. We show that at the transition to quantum chaos the maximum
possible degree of squeezing increases exponentially in time, in contrast to the regular dynamics, where the
degree of squeezing increases only powerwise in time. We demonstrate the one-to-one correspondence of the
degree of squeezing and the value of the local Lyapunov instability rate in the corresponding classical chaotic
system.@S1063-651X~98!12203-1#
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I. INTRODUCTION

In recent years, it was realized that chaos can have us
applications. Among others we mention the diffusive ioniz
tion of a hydrogen atom by a microwave field@1–3#, the
dissociation of polyatomic molecules by laser radiation d
to the transition to chaos@4,5#, the stabilization of chaotic
laser radiation@6# by the controlling chaos method@7#, secret
communications@8# using synchronization of chaotic sys
tems@9#, and the fact that chaos can be used in the gen
tion of music variations and other sequences of conte
dependent symbols@10#. All the applications mentioned
dealt with classical chaos.

Recently the main activity in chaos has been shifting
the studies of quantum chaos, particularly in the behavio
quantum systems that are chaotic in the classical limit@11–
16#. As a rule, quantum effects distort or suppress ‘‘usefu
manifestations of classical chaos. For example, in the m
studied system, a hydrogen atom in a microwave field, qu
tum effects suppress diffusive ionization by the mechan
of quantum localization@17# ~the analog of Anderson local
ization in a solid state@18#! or by the appearance of ‘‘scars
of a wave function@19# in the vicinity of classical unstable
periodic orbits of the corresponding classical model of
atom@20#. The only probable useful application known to
~in particular in the area of quantum optics! for quantum
chaos is the suggestion@21# to utilize the effect of wave
function localization in a one-dimensional quantum chao
system driven by a periodic external field, for the generat
of an electromagnetic field in the Fock state.

In this paper we discuss the possibility of generat
squeezed states of the light@22–25# at the transition to quan
tum chaos. We show that the maximal possible degree
squeezing, achievable during some time interval of meas
ment, for chaotic dynamics is much greater than for regu
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dynamics during the same time interval. We find a dire
correlation between the degree of squeezing and the valu
the local Lyapunov instability rate in the corresponding cla
sical chaotic system.

Our consideration@26# is based on three simple but ge
eral ideas.

~i! A free electromagnetic field is in a coherent state t
is a Gaussian wave packet. A wave packet spreads wh
propagates through a nonlinear medium. However, there
exists a time interval of well-defined quantum-classical c
respondence during which the wave packet follows a pat
phase space closed to the path defined by~semi!classical
equations of motion. During this time interval, localized t
wave packet demonstrates squeezing in one direction
phase space and stretching in another direction. As a re
one of the field quadrature components may be observe
the squeezed state at some time moments. Due to the
ence of the local strong~exponential! instability inherent in
the underlying classical chaotic dynamics@31#, the stretching
and squeezing of the wave packet for quantum chaos is m
stronger than for the case of the regular and stable dyna
ics, when the distance between two initially closed trajec
ries in phase space increases in time only in a powerw
way @31#.

~ii ! The time interval of the quantum-classical correspo
dence depends on the number of quanta involved in the n
linear dynamics: It has a power dependence on the num
of quanta for regular dynamics and this dependence is lo
rithmic for chaotic dynamics@32,11,16#. In spite of the time
interval of the localized wave-packet motion, when enhan
squeezing is expected, for chaotic dynamics that may be v
short, this time scale is quite observable in modern exp
ments on light squeezing@22–25#, where the average numbe
of photonsN involved in the nonlinear interaction is as gre
as 10321012. Moreover, in the conditions of the exper
ments, the time of the localized wave-packet motion and
well-defined quantum-classical correspondence may be
the same order as the time scale when dissipation and o
factors restricting squeezing could be neglected.

~iii ! Along with stretching and squeezing, another inh

d
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ent characteristic of chaos in bounded phase space is fold
For strong chaos there are strong and multiple foldings of
wave packet; therefore, the time intervals of squeezing
come very short and squeezing even becomes unstable@28#.
However, at the same time that strong folding appears,
wave packet becomes delocalized and well-defined quan
classical correspondence, which we understand here a
motion of a wave-packet center along a classical traject
is broken@33#. Therefore, if one studies the dynamics of t
wave packet only on a time scale of well-defined quantu
classical correspondence, the squeezing could be strong
still rather stable for not very strong chaos or even for re
lar trajectories lying in phase space near the chaotic reg

It is already known that light squeezing can be increa
near the bifurcation points between different dynamical
gimes@34,25#. In addition to well-studied parametric med
@34#, such an increase of squeezing was predicted also fo
interaction of the field with two-level atoms inside a high-Q
cavity @35,36#. The explanation of enhanced squeezing n
the bifurcation point has been used@37# and it is very similar
to the arguments presented above that utilize quantum c
for large squeezing: At the transition~bifurcation! between
different dynamic regimes, there should exist some diverg
variable and then the conjugate variable should be stron
squeezed. In spite of the similarity, our suggestion has
significant differences. First, all papers devoted to the st
of enhanced squeezing in the vicinity of the instabil
threshold @25,34–36# dealt with the integrable or near
integrable systems withregular dynamics. Instead, we sug-
gest the use of the transition fromregular to chaoticdynam-
ics. Second, from the general viewpoint, the transition
chaos and chaos itself are frequent phenomena and, as a
they take place for a rather wide region of control para
eters, in contrast to a commonly narrow region of the con
parameter characterizing a bifurcation between different
gimes of regular motion.

In this paper we consider the squeezed light generation
nonlinear nonintegrable optical systems obeying the tra
tion from regular to chaotic dynamics in the classical lim
As for other problems of quantum chaos@11–16#, we deal
with the semiclassical limit when a great number of quant
levelsN@1 are involved in the dynamics. Our considerati
is valid for any nondissipative quantum system with 11

2 de-
grees of freedom, but we demonstrate our main results on
enhanced squeezing for some particular model of the no
tegrable optical system: the nonlinear oscillator periodica
forced by the classical field. To investigate the nonline
dynamics of the systems and the dynamics of squeezin
the semiclassical limit, it is natural to use the cumulant
pansion technique@38# as a variation of the genera
1/N-expansion method@39#. In this paper, we use th
1/N-expansion method suggested in@36#, which is well
adapted for the problems of quantum optics. We show tha
long as the wave packet is localized, its dynamics may
well described by the behavior of the mean values acco
ing for quantum corrections and the lowest-order quant
cumulants. We demonstrate that the equations of motion
the second-order cumulants are essentially the same as
used in the definition of the Lyapunov exponent for the c
responding classical system. This allows us to find a dir
correlation between the degree of light squeezing and
g.
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degree of local instability in the corresponding classical s
tem. We also compare our approach with the generali
Gaussian approximation@23,38#, which is used to find ap-
proximate solutions of many problems of quantum opt
@40–42#, as well as with a similar variation of the cumula
expansion@43# and find good agreement with minor diffe
ences.

Our presentation is organized as follows. In Sec. II, us
the 1/N-expansion method and starting from the Heisenb
equations of motion, we derive the self-consistent set
equations for the mean values and second-order cumu
describing the dynamics of quantum fluctuations in the se
classical limit for an arbitrary quantum system with 11

2 de-
grees of freedom. We show that these equations coin
with the equations used for the calculation of the class
Lyapunov exponent. In Sec. III we discuss the conditions
validity of our basic equations for regular and chaotic d
namics and compare our approach with the results of o
semiclassical techniques used in both quantum optics
quantum chaos studies. We consider the dynamics of l
squeezing at the transition to quantum chaos, and compa
with the dynamics of squeezing for regular and stable mot
in Sec. IV. We illustrate our results on enhanced squeezin
the transition to chaos in the model of a kicked quant
oscillator in Sec. V. Our conclusions are summarized in S
VI.

II. SEMICLASSICAL DYNAMICS OF QUANTUM
FLUCTUATIONS: GENERAL FORMALISM

We begin with a single-mode quantum system descri
by the HamiltonianH(b,b†,t) including an explicit depen-
dence on time, whereb and b† are Bose operators (@b,b†#
51) of the mode. We use normal ordering of operators.
our system include some large parameterN@1. The param-
eter N may represent the number of quanta~photons!
pumped to the system@30# or the number of degrees of free
dom of a quantum system@36#. Because we are interested
semiclassical limitN→`, it is useful to introduce new op
erators for the annihilation and creation of photons

a5b/N1/2, a†5b†/N1/2 ~1!

with the commutation relation

@a,a†#51/N. ~2!

In the classical limit (N→`), one has two commutingc
numbers. The natural quantum states for the consideratio
the quantum system in the semiclassical limit are cohe
states@11,39#. Thus we suppose that our quantum system
initially in the coherent stateua&5exp(Naa†2Na*a)u0& cor-
responding to the mean number of quanta.N. Following
the general scheme of the 1/N-expansion method@39,36#, we
rewrite the HamiltonianH in the form

H5NHN~a,a†,t !, ~3!

where the HamiltonianHN generates the correct classic
equations of motion in the classical limitN→`. In the clas-
sical limit, the operatorsa,a†, following Eq. ~2!, may be
considered asc numbers of order of unity and all quantum
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57 4025LIGHT SQUEEZING AT THE TRANSITION TO QUANTUM CHAOS
corrections being of order of or less than 1/N could be
treated by perturbation theory.

In order to illustrate the representation of the Hamilton
in the form ~3!, consider a particular model of the nonint
grable quantum system: the nonlinear oscillator periodic
driven by the classical field. In the interaction picture, t
Hamiltonian has the form (\51)

H5Db†b1
k

2
b†2b21«N1/2~b1b†!F~ t !, ~4!

whereb andb† describe a single mode of the quantum fie
andk is proportional to the third-order nonlinear susceptib
ity of a nonlinear medium. The last term in Eq.~4! corre-
sponds to a coupling of the oscillator with an external, cl
sical, periodically modulated field containing a large numb
of photonsN@1 @« is a coupling constant,F(t) is a periodic
function of time, andD is a detuning of the mode frequenc
from the carrier frequency of the external field#. Using new
operatorsa,a† given in Eq.~1!, the Hamiltonian~4! may be
represented in the form~3! with

HN5Da†a1
g

2
a†2a21«~a1a†!F~ t !, g5kN. ~5!

It may be shown that in the classical limitN@1, when we
have classical variablesa,a* instead of operatorsa,a† with
uau.1, the dependenceg.N correctly gives the time scal
of the energy oscillation for Kerr nonlinearity@44#. We will
return to the study of the nonlinear oscillator~4! in Sec. V.

We now turn to the general case~3! and derive the equa
tion of motion for mean values and first-order cumulan
From the Heisenberg equations fora,a2 and their Hermitian
conjugated equations, we have the following equations
motion for the averages over coherent states:

i
dz

dt
5^V&, ~6a!

i
d

dt
^~da!2&52^Vda&1^W&, ~6b!

i
d

dt
^da* da&52^V* da&1^da* V&, ~6c!

where we have introduced

V~a,a* !5
]HN

]a†
, W~a,a* !5

1

N

]V

]a†
~7!

and z[^a&, da[a2z, ^(da)2&[^a2&2^a&2, and
^da* da&[^a†a&2^a†&^a&. In the derivation of Eqs.~6! we
used the equalities@45#

@a,M ~a,a†!#5
1

N

]M

]a†
, @M ~a,a†!,a†#5

1

N

]M

]a
, ~8!

which are valid for an arbitrary functionM of operatorsa,a†

@Eq. ~2!#.
y

-
r

.

f

The set of equations~6! is not closed and actually is
equivalent to the infinite-hierarchy dynamical system for m
ments and cumulants. To truncate it we make the substitu
a→z1da, where at least initially the meanz.1 and the
quantum correction uda(t50)u.N21/2!1. We expand
functionsV(a,a* ) andW(a,a* ) around the mean valuez
[^a&,

V5Vz1S ]V

]a D
z

da1S ]V

]a*
D

z

da* 1•••,

W5Wz1S ]W

]a D
z

da1S ]W

]a*
D

z

da* 1•••, ~9!

where the subscriptz means that the values ofV, W, and
their derivatives are calculated at mean valuesz and z* .
Substituting expansions~9! into Eqs.~6! and taking into ac-
count the equality

K ]V

]a L 5K ]2HN

]a]a* L 5K ]V*

]a* L ~10!

resulting from Eqs.~7!, we have in the first order of 1/N the
self-consistent set of equations for mean values and fi
order cumulants

i
d

dt
z5^V&z1q@z,z* ,^~da!2&,^da* da&#, ~11a!

i
d

dt
^~da!2&52S ]V

]a D
z

^~da!2&12S ]V

]a*
D

z

^da* da&1^W&z ,

~11b!

i
d

dt
^da* da&52S ]V*

]a D
z

^~da!2&1S ]V

]a*
D

z

^~da* !2&.

~11c!

The small quantum correctionq.1/N involved in Eq.~11a!
has the form of the second differential ofV:

q5
1

2
d2Vuz5

1

2S ]2V

]a2D
z

^~da!2&1
1

2S ]2V

]a* 2D
z

^~da* !2&

1S ]2V

]a* ]a
D

z

^da* da&. ~12!

The initial conditions for the system ~11! are
^(da)2&(t50)5^da* da&(t50)50 and some arbitrary
z(0) is given, which is of the order of unity.

We now turn to the classical equations of motion. T
classical limit may be obtained from Eq.~11a! by neglecting
the quantum correctionq of order 1/N and then the classica
Hamiltonian equations are

i
dz

dt
5

]HN

]z*
[V~z,z* !, i

dz*

dt
52

]HN

]z
[2V* ~z,z* !.

~13!
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Linearization of the classical equations~13! nearz by means
of the substitutionz→z1Da(uDau!uzu) gives

i
d

dt
Da5

]V

]z
Da1

]V

]z*
Da* ,

i
d

dt
Da* 52

]V*

]z
Da2

]V*

]z*
Da* , ~14!

where all derivatives are taken on the classical traject
found from the Hamiltonian equations~13!. Using the clas-
sical analog of the~10!,

]V

]z
5

]V*

]z*
,

we have from Eqs.~14! the following equations of motion
for quadraticvariables (Da)2 and uDau2:

i
d

dt
~Da!252

]V

]z
~Da!212

]V

]z*
uDau2, ~15a!

i
d

dt
uDau252

]V*

]z
~Da!21

]V

]z*
uDau2, ~15b!

with the initial conditions

~Da!2~0!5@Da~0!#2, uDau2~0!5@Da~0!#@Da* ~0!# ,

~16!

where Da(0) and Da* (0) are the initial values of smal
deviations from the classical trajectory. We define the d
tance Dcl in classical phase space between two initia
closed trajectories as

Dcl~ t !5uDa~ t !u5@~Re Da!21~ Im Da!2#1/2, ~17!

where the time-dependent quantityuDa(t)u is determined
from linearized classical equations of motion~14! or from
equivalentequations of motion for the square of linear d
viations~15!. The valueDcl characterizes the degree of loc
instability in the classical system: For chaotic motionDcl(t)
increases on average exponentially with time and for reg
motionDcl has only a powerwise time dependence@31#. Us-
ing Dcl(t), one can define the largest Lyapunov exponen

l5 lim
t→`

lnDcl~ t !

t
. ~18!

If l.0, the motion is chaotic andl50 for regular motion
@31#.

We turn again to the quantum dynamics. It is easy to
that the equations of motion~11b! and ~11c! for the cumu-
lants are the same as the classical equations~15!, except for
the appearance of the nonlinear functionW(z,z* ) in Eq.
~11b!, which makes the cumulant equations~11b! and ~11c!
nonlinear. However, this difference may be overcomed
introducing the new variables
y

-

ar

s

e

y

B5N^da* da&1
1

2
, C5N^~da!2&, ~19!

whereB is real andC is complex. Using Eqs.~7!, the quan-
tum equations of motion~11! may be rewritten in variables
~19! in the form

i ż5^V&z1
1

N
Q~z,z* ,B,C,C* !, ~20a!

Q~z,z* ,B,C,C* !5
1

2S ]2V

]a2D
z

C1
1

2S ]2V

]a* 2D
z

C*

1S ]2V

]a* ]a
D

z

S B2
1

2D , ~20b!

iĊ52S ]V

]a D
z

C12S ]V

]a*
D

z

B, ~20c!

iḂ52S ]V*

]a D
z

C1S ]V

]a*
D

z

C* , ~20d!

and the corresponding equation forC* (t) that could be ob-
tained from Eq.~20c! by complex conjugation. Initial condi-
tions for the system~20! are

B~0!51/2, C~0!5C* ~0!50. ~21!

Now all variables are of the order of unity and the depe
dence on the small parameter 1/N is present explicitly only
in the expression for the quantum correction to classical m
tion in Eq. ~20a!.

Compare the set of classical Hamiltonian equations~13!
and equations of motion~15! for classical linear fluctuations
with the equations of motion~20! for mean values and quan
tum cumulants. It is evident that both sets of equations h
the same structure with the following principal difference
First, the quantum equations~20c! and ~20d! for the cumu-
lants, in contrast to the classical equations~15!, are calcu-
lated near the mean valuez and take into account the quan
tum correctionQ @Eqs. ~20a! and ~20b!#. Second, it should
be noticed that it is impossible to obtain the initial conditio
~21! for C andB from the initial conditions for the classica
equations~16!. However, if one considers the case of lar
N, when the quantum correction is small, the quantum eq
tions~20! areidentical to the classical equations (15! used in
the definition of the maximum Lyapunov exponent. The same
conclusion on the equivalence of the equations of motion
low-order cumulants and the equations of motion arising
the definition of the Lyapunov exponent has been obtai
earlier for the generalized Tavis-Cammings model in@28#
and for systems with Hamiltonians consisting of the sum
kinetic and potential energies in@43#.

The self-consistent system of equations~20! completely
describes the dynamics of quantum fluctuations in the fi
order of 1/N. We shall use these equations for the descript
of the dynamics of light squeezing at the transition to qu
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57 4027LIGHT SQUEEZING AT THE TRANSITION TO QUANTUM CHAOS
tum chaos in Sec. IV after a discussion of the validity of o
approach and its comparison with other semiclassical m
ods.

III. CONDITIONS OF VALIDITY AND COMPARISON
WITH OTHER APPROACHES

Here we discuss the condition of validity of the 1/N ex-
pansion~9! and our equations of motion~20! for the mean
values and cumulants. In analogy to the classical dista
~17!, we introduce the ‘‘distance’’Dq for the quantum case
as

Dq~ t !5
1

N
B1/2~ t !.@^udau2&#1/2. ~22!

It is easy to see thatDq coincides with the ‘‘convergence
radius’’ r 5@Re(da)#21@ Im(da)#2 of the 1/N expansion
~9!. Initially Dq(0).1/N!1, and if Dq(t)!1 during some
time interval, then the 1/N expansion is well defined in thi
time interval.

When the quantum correction in Eq.~20a! is small, Eqs.
~20! are identical to the classical equations~15! arising in the
definition of the classical Lyapunov exponent~18!. Thus, for
classically chaotic motion, we have exponential growth
B(t), C(t), andDq(t) as

Dq~ t !.Dq~0!exp~lv0t !, ~23!

wherel is the Lyapunov exponent andv0 is the character-
istic frequency in the classical dynamic system. For exam
v05g in the model of the Kerr oscillator~5!. From the con-
ditions Dq(t)!1 and Dq(0).1/N, we have the following
estimate for the time scale of validity of our semiclassi
approach:

t!t* 5
1

lv0
lnN. ~24!

In contrast, for classically regular motionDq(t) increases
with time only powerwise:Dq(t).tg, where the indexg
.1 depends on the system under study. For example,g51
for the nonlinear oscillator with the Hamiltonian~5! for «
50, as well as for integrable nonlinear oscillators with po
erwise higher-order nonlinearity@46#. As a result, the time
scale of validity of our approach in the case of regular m
tion is

t!t* 5v0
21N1/g ~25!

and it is much greater than Eq.~24! for chaotic motion. The
time scalet* has a very simple physical meaning: During t
time interval t* we have a localized wave packet with th
center moving along the classical path.

The scale~24! of the well-defined quantum-classical co
respondence for chaotic systems was introduced in@32# and
now it is investigated in detail in different systems~for a
review see@16#!. The time scale~24! is very short for small
N. However, under the conditions of modern experiments
light squeezing, where the average number of photonN
involved in the nonlinear interaction is 10321012, t* is of
r
h-

ce

f

e,

l

-

-

n

the order of 102100 of the system’s characteristic perio
v0

21 and thus it looks quite reasonable.
We now compare our approach to the description of

dynamics of quantum fluctuations with that widely used
quantum optics and called the generalized Gaussian app
mation @23,38,40–42#. This approximation also assumes th
existence of a well-localized, almost Gaussian wave pac
throughout the quantum evolution. More precisely, the g
eralized Gaussian approximation consists in an assump
that the Fourier transform of the quantum distribution fun
tion, i.e., the quantum characteristic function, is Gaussian
any moment of time@38#. Such a quantum state correspon
to the superposition of the coherent signal and small qu
tum noise@23#. For such a state, only the first- and secon
order cumulants are nonzero. It possesses the expressio
higher-order cumulants in terms of only the first- a
second-order cumulants and truncation of an infini
hierachy dynamic system for cumulants is possible.

We compare our system~20! with the dynamic equations
for the mean values and cumulants obtained within the g
eralized Gaussian approximation for several popular mod
of quantum optics: second-harmonic generation describe
the Hamiltonian

H5v1b1
†b11v2b2

†b22~kb1
2b2

†1H.c.!, @b,b†#51,

v252v1 , ~26!

the problem of nondegenerate optical three-wave mixing
scribed by the Hamiltonian

H5(
j 51

3

v jbj
†bj2~kb1b2b3

†1H.c.!, v35v11v2 ,

~27!

and the periodically forced nonlinear oscillator with th
Hamiltonian~4!. Considerations of these problems within th
generalized Gaussian approximation are presented in R
@40–42#. For the forced nonlinear oscillator, we found th
our self-consistent set of equations~11! and ~12! coincides
with the corresponding basic equations of@42# up to terms of
the order of 1/N2, and for the problems of nondegenerate a
degenerate optical three-wave mixing, our approach gi
equations that are identical to the corresponding equation
motion obtained within the generalized Gaussian approxim
tion @40,41,47#.

We turn now to the discussion of squeezing at the tran
tion from regular to chaotic motion.

IV. SQUEEZING AT THE TRANSITION
TO QUANTUM CHAOS

Define the general field quadrature asX(u)5aexp(2iu)
1a†exp(iu), whereu is a local oscillator phase. A state
said to be squeezed if there is some phaseu for which the
variance ofXu

^~dX!2&5^~da!2&exp~2 i2u!1^~da* !2&exp~ i2u!

12^udau2&11/N ~28!
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is less than the variance for coherent state or the vac
@22#. In variables~19!, the condition of squeezing takes th
form

S~u!52B1Cexp~2 i2u!1C* exp~ i2u!,1. ~29!

The minimum of the variance of the general field quadrat
~29! with respect to its dependence on the local oscilla
phaseu is reached atumin , determined as

umin5~w2p!/2, ~30!

wherew is the argument of the cumulantC@C[uCuexp(iw)#.
For u5umin , the condition of squeezing~29! is

S[S~umin!52~B2uCu!,1. ~31!

The valueS determines the minimum half axis of the qua
tum noise ellipse@23#. The condition~31! is calledprincipal
squeezingbecause it gives the maximum squeezing mea
able by homodyne detection@48,23#.

Let us now compare the dynamics of the principal sque
ing for classically regular and chaotic motion. Initially th
Gaussian wave packet spreads when it propagates throu
nonlinear medium. However, there still exists the time int
val of the well-defined quantum-classical corresponde
~24! or ~25! during which the wave packet’s center follows
path in phase space governed by the semiclassical equ
of motion ~20a!. Moreover, because our equations of moti
for cumulants~20c! and~20d! in fact coincide with the equa
tions arising from the definition of the maximum Lyapuno
exponent, we can apply simple physical arguments to
strong deformation of the classical phase volume at chaos
the prediction of the strong squeezing of the noise ellips
quantum chaos in the semiclassical limit.

Due to the presence of the strong~exponential! local in-
stability inherent in the underlying classical chaotic dyna
ics, a quantum noise ellipse may be strongly stretched in
direction and squeezed in another direction. As a result,
value of principal squeezingS in Eq. ~31!, which correlates
with the minimum half axis of the quantum noise ellipse,
average exponentially decreases in time

S~ t !.exp~2lv0t !. ~32!

The stretching and squeezing of a noise ellipse at quan
chaos is much stronger than for the case of regular and s
dynamics, when the distance between two initially clos
trajectories in phase space increases in time in a power
way resulting in only a powerwise decrease of the princi
squeezing in time

S~ t !.~v0t !2b, ~33!

where the constantb.1. As an example of such a tim
dependence, we consider the Kerr oscillator~5! without an
external field («50). In this case the model is integrabl
and from an exact solution in the limitN@1 @49#, we get

S~ t !5112ua0u2gt@ ua0u2gt2~11ua0u4g2t2!1/2#

→~6ua0u2gt!21, gt@1 ~34!
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wherea0 is some initial condition (ua0u.1). The same re-
sult could be obtained directly from our semiclassical a
proach neglecting the quantum correction in Eq.~20! and
combining it with Eq.~31! @46#.

Making a comparison of squeezing for regular and chao
motion, several comments are necessary.

~i! Both formulas~32! and ~33! are obtained within the
pure classical picture when quantum corrections are
glected. The deviations from dependences~32! and ~33! are
expected when quantum corrections become sufficient, e
cially at t.t* .

~ii ! Squeezing for chaotic dynamics is exponential only
average. Actually, the rate of phase volume deformation a
consequently, the rate of quantum noise ellipse deforma
and squeezing are directly related in the semiclassical l
(N@1) to the degree of local Lyapunov instabilityDq @Eq.
~22!# in the system, which at some moments in time may
different from the maximum Lyapunov exponent~18! mea-
sured at asymptoticst→`. Such behavior is typical, for in-
stance, for a chaotic trajectory that spends some time ne
stable island. In this case, the local instability and statist
properties of chaotic motion are weak@50#. Finally, the tra-
jectory escapes to a large chaotic sea and the local instab
becomes strong. Of course, the Lyapunov exponent is p
tive in both cases. Formally, the resulting nonmonotonic
pendence of squeezing on time could be modeled b
slowly varying dependence of the parameterl @Eq. ~32!#.
We will discuss this problem further in Sec. V.

~iii ! In addition to the wide class of integrable system
with stable regular dynamics, there is a small class of s
tems with regular but unstable dynamics, for which the d
tanceDq given in Eq.~22! increases in time exponentially. I
such a case the systems are in the state near the bifurc
point between different dynamic behaviors and they are
ponentially unstable. The mechanism of enhanced squee
in unstable systems with regular dynamics is very similar
that discussed at the transition to quantum chaos, and
been discussed in detail in@34–37#.

~iv! Considering squeezing at chaos, we have not d
cussed yet the influence of one of the main characteristic
chaos: folding of the phase volume that, in addition
stretching, is present in any bounded Hamiltonian syst
For strong chaos, strong and multiple folding of the pha
volume appears during the time scale of the well-defin
quantum-classical correspondence. The perimeter of
phase volume increases in time exponentially and eventu
the phase volume envelope gets some fractal-like struc
@31#. Moreover, the final shape of the phase volume is v
sensitive to small changes of the initial conditions and
parameters. The complex and unstable evolution of the ph
volume is displayed in the time dependence of squeez
@28#. For strong chaos and long enough time, squeezing
comes strongly dependent on tiny variations of the syste
parameters. Such a regime of squeezing was called in@28#
unstable squeezing. For unstable squeezing, the range of t
local oscillator phase, for which squeezing is possible,
comes so narrow that it makes observation of squeez
practically impossible@28#.

It should be noticed that at the same time when multi
folding of wave packet appears, the quantum-classical co
spondence breaks down. For strong chaos this time sca
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57 4029LIGHT SQUEEZING AT THE TRANSITION TO QUANTUM CHAOS
very short. In contrast, for weak chaos, the time scale of
well-defined quantum-classical correspondence and t
scale of strong folding may be rather long in the semicla
cal limit, resulting in stable and enhanced squeezing.
same arguments should be valid for regular trajectories
cated near the chaotic motion in phase space. Actually,
ing a finite time interval stability properties of a given tr
jectory are determined by the time dependence of
distance~17! or ~22! between two initially nearby trajecto
ries. At a finite time the value ofDq for the regular trajectory
is often practically indistinguishable from the nearby chao
trajectory@51# resulting in the same degree of squeezing. W
will illustrate a general picture of squeezing at the transit
to quantum chaos through an example of the model of
kicked nonlinear oscillator in Sec. V.

Concluding this section, let us compare qualitatively t
maximum achievable degree of principal squeezing for re
lar and chaotic motion during the time interval of the we
defined quantum-classical correspondence. First conside
case of squeezing at chaos. Principal squeezing on avera
exponential~32!, and at the end of time interval~24! it
should be not less thanS(t* ).exp(2lv0t* ).1/N. For regu-
lar dynamics, the principal squeezing has a powerwise t
dependence~33! and it should be not less thanS(t* )
.(v0t* )2b.N2b/g, where constantsg.1 andb.1, and
we used the estimate~25! of t* for regular motion. Thus
these rough estimates show that the degree of squeezi
time t* is comparable in the cases of regular and cha
dynamics, but becauset* is much shorter for chaotic dynam
ics than for regular, squeezing is much faster in the cha
systems.

V. EXAMPLE: THE KICKED NONLINEAR OSCILLATOR

Consider a nonlinear oscillator interacting with a tim
periodic field as given in Eqs.~4! and ~5!. This model de-
scribes, for example, a high-Q cavity filled by a medium
with Kerr nonlinearity and excited by an external laser fie
@21#. The same effective Hamiltonian may also govern
interaction of a laser field with a high-density exciton in
semiconductor@52#. The different variations of the mode
discussed are very popular in both quantum optics@53# and
quantum chaos@11,42,54# studies.

In this paper we choose the form ofF(t) in Eq. ~5! as a
periodic sequence of kicks

dT~ t !5 (
n52`

`

d~ t2nT!, ~35!

whered(t) is the Dirac delta function. In an experiment,
sequence of short light pulses can be generated by a m
locked laser. The use of the sequence of kicks is use
obtain discrete maps instead of differential equations an
sufficiently simplifies computations and reduces numer
errors, which is especially important when we analyze
influence of small quantum corrections (N@1) on the dy-
namics of squeezing.

In what follows we shall use scaled variablest85gt and
D85D/g measuring time and detuning in the units of t
coupling constantg and then we omit primes, which is for
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mally equivalent to choosingg[1 in the Hamiltonian~5!.
The classical equation of motion~13! obtained from the
Hamiltonian~5! has the form

i
dz

dt
5Dz1guzu2z1«dT~ t !. ~36!

From Eq. ~36! and using a standard technique@11,31#, we
have the classical map

zn115F~zn!, F~zn!5exp@2 iT~D1uzn2 i«u2!#~zn2«!,

~37!

wherezn is the value ofz just beforenth kick, zn[z(nT20!.
It may be shown analytically@54# that the approximate cri-
terion of the transition from regular motion to strong a
global chaos for the map~37! in the limiting case«!1 is

K52«T*1. ~38!

We illustrate the dynamics governed by the map~37! in Fig.
1, where phase portraits@Fig. 1~a!, 1~c!, and 1~e!# and the
time dependence of intensityuznu2 @Figs. 1~b!, 1~d!, and 1~f!#
are shown for the cases of regular motion, weak chaos,
strong chaos correspondingly.

We now turn to the dynamics of quantum cumulants a
the mean values with quantum corrections. Using the sm
ness of 1/N, we obtain from the semiclassical equations
motion~20! and the classical map~37! the following coupled
maps describing the dynamics of mean values and cumul
~details of the derivation of these maps are presented in
Appendix!:

zn115F~zn!1
1

N
Qn , ~39a!

FIG. 1. Nonlinear dynamics of the kicked classical nonline
oscillator (N→`): phase portrait and time dependence of the int
sity uznu2 for ~a! and ~b! the regular behavior atT53, ~c! and ~d!
weak chaos atT56.4, and~e! and ~f! hard chaos atT510. The
initial condition is z051; «50.1 andD51. Time is measured in
the number of kicks.
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Cn115exp@2 i2T~D1uzn2 i«u2!#$22~zn2 i«!2

3~T2uzn2 i«u21 iT !Bn1~122iTuzn2 i«u2!Cn

2T2~zn2 i«!2@~zn2 i«!2Cn* 1c.c.#%, ~39b!

Bn115~2T2uzn2 i«u411!Bn1T2uzn2 i«u2@~zn2 i«!2Cn*

1c.c.#1@2 iT~zn2 i«!2Cn* 1c.c.#, ~39c!

whereF(zn) in Eq. ~39a! is the classical map introduced i
Eq. ~37! and the quantum correctionQn in Eq. ~39a! has the
form

Qn5A1~zn ,zn* !Cn1A2~zn ,zn* !Cn* 1A3~zn ,zn* !~Bn21/2!,
~40a!

A1~zn ,zn* !5
1

2
e2 iT~D1uzn2 i«u2!@2 iT~zn* 1 i«!

3~22 iTuzn2 i«u2!#, ~40b!

A2~zn ,zn* !5
1

2
e2 iT~D1uzn2 i«u2!@2T2~zn2 i«!3#,

~40c!

A3~zn ,zn* !52e2 iT~D1uzn2 i«u2!T~zn2 i«!~Tuzn2 i«u212i !.
~40d!

Following Eq. ~21!, the initial conditions for the maps~39!
are B051/2, C050, and arbitraryz0 of order unity. The
self-consistent set of maps~39! and ~40! determines the dy-
namics of the quantum fluctuations for the kicked nonlin
oscillator in first order of 1/N.

Now we want to compare the time dependence of
principal squeezingS in Eq. ~31!, the degree of local insta
bility ~22!, and the quantum correctionQ in Eq. ~40! for
three characteristic cases of classical dynamics: regular
tion, mild chaos, and hard chaos. To avoid the dependenc
Dq onN it is useful to introduce the new normalized distan

d5NDq .

Phase portraits and time dependences of the intensityuzu2 for
the three characteristic cases of classical dynamics gove
by the map~37! are shown in Fig. 1. The time dependenc
of log10S, log10d, and log10Q for a large but finite number o
quantaN5109 are shown in Fig. 2, where curves 1, 2, and
correspond to the cases of regular motion (l50) and chaotic
motion with an increasing value of the Lyapunov expon
l, respectively. As is evident from a comparison of Fig
2~a! and 2~b!, the strongest local instability determines t
highest degree of squeezing. It should be mentioned tha
difference in the magnitude of principal squeezing for ch
otic motion and regular motion is of several orders dur
only several kicks. A powerwise time dependence ofd @Fig.
2~b!, curve 1# is assisted by the corresponding slow grow
in time of the quantum correction@Fig. 2~c!, curve 1#. In
contrast, for chaotic motion, the growth ofd andQ is expo-
nential@curves 2 and 3 in Figs. 2~b! and 2~c!#, resulting in a
logarithmic dependence of the applicability of the semicl
sical approach on the number of quanta in Eq.~24!.
r

e

o-
of

ed
s

t
.

he
-

-

The increment of local instability and the correspondi
degree of squeezing are complex functions of the initial c
ditions or parameters. As a result, the dependence of squ
ing on initial conditions or parameters may be rather co
plex. In Fig. 3 we plot the minimum value min log10S of the
principal squeezing during seven kicks and the degree
local instability log10d as a function of the kick’s periodT at
fixed initial conditions,«50.1, and number of quantaN
5109. The regions of parameter values with mainly regu

FIG. 2. Time dependence of~a! the principal squeezing,~b! the
distance between two initially closed trajectories, and~c! the quan-
tum correction to the motion of wave-packet center. Curve 1 co
sponds to the regular dynamics atT53, curve 2 to the mild chaos
(T57), and curve 3 to the hard chaos (T510). The average photon
number isN5109; the initial condition and other parameters are t
same as in Fig. 1.

FIG. 3. In the upper part of the figure, the logarithm of th
distance between two initially closed classical trajectories log10d
after seven kicks is plotted as a function of kicking periodT defined
in dimensionless units~see the text!. In the lower part, the minimum
of the logarithm of the principal squeezing min log10S during seven
kicks as a function of the kick periodT is plotted for the average
photon numberN5109. In the center of the figure, big intervals o
T with primary regular and primary chaotic behavior are mark
The amplitude of perturbation and detuning are fixed:«50.1 and
D51. The initial condition is the same as in Fig. 1.
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57 4031LIGHT SQUEEZING AT THE TRANSITION TO QUANTUM CHAOS
or chaotic motion in the classical limit (N→`) are marked
in the center of the plot. The first large region of chaos
gins atTcr'5.4, which is in good agreement with the a
proximate criterion~38! of the transition to chaos. Of cours
there are some singular values of the parameterT corre-
sponding to regular motion in the range ofT that is mainly
filled by chaotic trajectories.

As is evident from Fig. 3, there is a direct correlatio
between the degree of squeezing and the degree of insta
log10d. Because we present the dependences of log10d and
squeezing onT for only seven kicks, the degree of instabili
and squeezing may be comparable for some points f
regular and chaotic ranges ofT. However, generally, as i
follows from Eq. ~38!, the degree of instability increase
with increasingT and correspondingly we have an increa
of squeezing~Fig. 3!.

In Fig. 4 we plot log10d and the minimum of log10S dur-
ing nine kicks as a function of another parameter« and at
fixed T and initial conditions. Again, the correlation of loc
instability and squeezing, and an enhancement of squee
at the transition to chaos are visible. The same depende
but for three kicks instead of nine are shown in Fig. 5~a!. In
spite of the correlation between the degree of squeezing
log10d it is also evident in Fig. 5~a! that the increase o
squeezing at the transition from regular to chaotic mot
(«cr'0.5) is smoothed more than in the case of nine kic
shown in Fig. 4.

As we already mentioned, the degree of local instabi
may itself depend on time. This is illustrated in Fig. 5~b!,
where in an interval of 328 kicks the instability for«
51.8 ~curve 1! is greater than for«52.22 ~curve 2!. As a

FIG. 4. Local Lyapunov rate log10d after nine kicks and the
minimum of principal squeezing during nine kicks as functions
dimensionless perturbation amplitude« at fixedT51. Other param-
eters are the same as in Fig. 3.

FIG. 5. ~a! Same as in Fig. 4, but after only three kicks inste
of nine. Point 1 corresponds to«51.8 and point 2 to«52.22. ~b!
Time dependence of the classical local Lyapunov rate. Curves 1
2 are plotted for the same values of« as in ~a! and atT51.
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result, the squeezing during three kicks at«51.8 @point 1 in
Fig. 5~a!# is greater than for«52.22 @point 2 in Fig. 5~a!#.
After eight kicks we have the inverse picture: The instabil
for «52.22 is greater than at«51.8 @see Fig. 5~b!#, resulting
in enhanced squeezing for the parameter’s values of poi
in comparison to squeezing for the parameter’s values
point 2.

Summarizing our findings from Figs. 3–5, we see that
the semiclassical limit the degree of squeezing has a one
one correspondence to the degree of local instability in
system. For a short time of the order of several kicks,
dependence of squeezing on the Lyapunov exponent, w
is calculated in the limitt→`, is not well pronounced.
Moreover, squeezing for regular motion located near the b
der of the transition to chaos is comparable to squeezing
weak chaos. The dependence of squeezing on the valu
the Lyapunov exponent becomes more pronounced for m
erate times of the order of ten kicks.

We compare now the time dependence of princi
squeezing for differentN. The dependence ofS on t at N→`
~curve 1! and atN5107 ~curve 2! is presented in Fig. 6 for
the case of mild chaos. Curves 1 and 2 coincide during se
kicks, which determines the time interval of the well-defin
quantum-classical correspondence for such a choice of
rameters. Moreover, our numerical calculations demonst
that if the number of quanta in two orders increases up
N5109, the squeezing is indistinguishable from squeezing
N→` up to 15 kicks. This finding is well explained by re
membering the lnN dependence~24! of the time scale.

Thus we demonstrate that an increase in the average n
ber of photonsN results in a corresponding increase of t
time interval for the applicability of our description o
squeezing dynamics. On the other hand, the number of p
tonsN>107 initially pumped to the system is quite realist
for contemporary experiments on light squeezing@22–25#.

Let us now discuss the stability of chaotic squeezing. T
time dependence of the optimal local oscillator phaseumin
given in Eq.~30! for the cases of regular and mild chaos
shown in Fig. 7 for two slightly different initial conditions
z051 andz051.001. The deviation of the optimal local os
cillator phase values related to differentz0 in the case of
regular dynamics is small throughout the time evolution p
sented in Fig. 7~see the dashed and dotted curves!. For chaos
(T57, «50.1), the deviation is sufficient only at the fift
kick ~boxes and pluses in Fig. 7!. Thus, for not very strong
chaos, there is a time interval during which squeezing
enhanced and still stable.

f

nd

FIG. 6. Time dependence of the principal squeezing for cha
motion (T57, «50.1). Curve 1 corresponds to the classical lim
N→` and curve 2 toN5107.
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FIG. 7. Time dependence of the optimal local oscillator phaseumin in the case of mild chaos atT57, «50.1, and for different initial
conditions:z051 ~boxes! andz051.001~pluses!. Compare with the time dependence ofumin for regular motion atT53 and«50.1 shown
by the dashed line forz051 and by the dotted line forz051.001.
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VI. CONCLUSION

In Ref. @25# a fundamental question was asked: ‘‘What
the best squeezing device?’’ The answer founded in@25# is
based on the fact that ‘‘the quantum noise reduction is ef
tive below and above the bifurcation points between dyna
cal regimes.’’ The reason for enhanced squeezing consis
the fact that ‘‘the same classical linearized equations
used to study the stability of the system and to calculate
quantum fluctuations’’@25#. It should be stressed that on
integrable or near-integrable systems with regular dynam
were discussed in@25#. The results of our paper demonstra
that in addition to a very narrow class of integrable syste
near the threshold of instability, there is another wide cl
of potentially ‘‘the best squeezing devices’’: systems at
transition to quantum chaos operating during the time in
val of the well-defined quantum-classical correspondenc

In this paper we have presented a semiclassical theor
the quantum systems with 11

2 degrees of freedom and illus
trated our findings on the model of kicked nonlinear osci
tor. Direct numerical observation of enhanced squeezin
the model of a kicked quantum rotator at the transition
quantum chaos~nonperturbative approach! will be presented
elsewhere@55#.
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APPENDIX

In this appendix we briefly describe the derivation of t
coupled maps~39! and~40! for the mean values and secon
order cumulants. We begin with the equations for the m
values~39a!. Substituting the Hamiltonian of the nonline
oscillator ~5! with F(t) given in Eq.~35! by Eq. ~20a! and
using the smallness of the quantum correctionN21Q, we
first neglect the influence of the quantum correction and
the solution of the classical equations of motion given by
map ~37! and then substitute this classical solution into
expression for the quantum correctionQ(z→zcl ,z*→zcl* ).
Such a perturbative approach is valid during the time inte
~24! of the well-defined quantum-classical corresponde
for chaotic systems and the time interval~25! for systems
with regular dynamics.
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To find the explicit form of the quantum correctionQ, we
remember that it has the form of the second differential
z(t) @see Eqs.~12! and ~20b!#. Determiningd2zn11, we ob-
tain the expression~40! for the quantum correctionQ.

We now turn to the derivation of the maps~39b! and
~39c! for cumulantsB andC. As it has been shown in Sec
II, the equations of motion forB andC may be obtained by
linearization of classical motion equations near the class
trajectory, taking into account the quantum correction, a
by using substitutionsB→udzu2 and C→(dz)2. We adopt
this finding for the derivation of maps forB andC. Utilizing
again the perturbative approach, we first find the differen
of the map~39a! neglecting the influence of the quantu
correction
y
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Dzn115e2 iT~D1uzn2 i«u2!$2 iT~zn2 i«!@~zn2 i«!dzn*

1~zn* 1 i«!dzn#1dzn%. ~A1!

From Eq. ~A1! we obtain the maps for quadratic variabl
Bn[udznu2 and Cn[(dzn)2 in the forms ~39b! and ~39c!.
Finally, we suppose that the variableszn ,zn* included in Eqs.
~39b! and~39c! are calculated, taking into account the qua
tum correction, i.e., using formula~39a!. The perturbative
approach used in the derivation of Eqs.~39b! and ~39c! is
valid during the time interval of the well-defined quantum
classical correspondence when the quantum correction
the classical equations are small. To avoid misprints
checked the expressions for our coupled maps~39! and~40!
by symbolic computation in the packageMATHEMATICA .
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