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Interfering resonances in a quantum billiard
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We present a method for numerically obtaining the positions, widths, and wave functions of resonance states
in a two-dimensional billiard connected to a waveguide. For a rectangular billiard, we study the dynamics of
three resonance poles lying separated from the other ones. As a function of increasing coupling strength
between the waveguide and the billiard two of the states become trapped while the width of the third one
continues to increase for all coupling strengths. This behavior of the resonance poles is reflected in the time
delay function, which can be studied experimentally.@S1063-651X~98!14112-0#
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In present-day high-resolution experimental studies,
properties of individual resonance states can be investig
even when the level density is high. As an example, nuc
states have recently been identified and studied experim
tally at very high excitation energy@1#. Collisional damping
at such an energy is the same as at low excitation en
~ground-state domain!. This experimental result, being i
contradiction to the standard statistical theory of nuclear
actions, can be justified by taking into account the interf
ences between resonance states arising from their intera
via the continuum@2#. In atoms, strong laser field effects
the spectral lines of autoionizing states are studied theo
cally as well as experimentally. The coherent coupling
autoionizing states is connected recently to level repulsio
the complex plane and the resulting trapping phenomena
discussed@3#. In these papers, the peculiarities of atom
states manipulated by a strong laser field are taken into
count. The authors of the experimental paper@4# point to the
numerous possible applications of such investigations.

Theoretically, the interferences between resonance s
have been studied for several years, e.g., in nuclei@5#, mol-
ecules@6#, and atoms@3,7#. General questions are consider
in, e.g.,@8,9#. Many quantum systems have a band-structu
spectrum with a high level density inside a band. Examp
are, among others, some mesoscopic systems. Here, th
terferences between individual resonance states play an
portant role@10# and need to be considered in detail. Th
determine the properties of the system as a whole.

One important result of all these investigations is the p
nomenon of resonance trapping, which arises from the in
ference of resonance states coupled to the same decay
nel. As a function of a parameter controlling the coupling
the continuum, the widths of all states increase as long as
states are isolated. At a certain critical value of the param
where the resonance states start to overlap each other
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widths bifurcate: the width of one of the states increa
further while the widths of the other onesdecrease, see, e.g.,
@11#. In other words: one of the states aligns with the chan
and becomes short lived while the other ones decouple f
the channel and become long lived in spite of the stro
coupling to the continuum. This result follows mathema
cally from the fact that the rank of the Hermitian part of th
effective Hamilton operator is equal to the numberN of
states while that of the non-Hermitian part is equal to
numberK of common open decay channels, see, e.g.,@5–11#.
The critical values of the coupling strength to the dec
channels appear usually as avoided crossings of level
resonances. They are connected with the existence of do
or multiple poles of theS matrix. Their relation to the so-
called exceptional points and to quantum chaos is studie
different papers~e.g.,@9# and further references therein!.

The phenomenon of resonance trapping is theoretic
well established but not proven directly up to now in expe
mental studies. In this letter we investigate the behavior
three neighboring resonances in a two-dimensional billi
connected to a single waveguide. As a function of the c
pling between the resonator and the waveguide, we calcu
both the position of the corresponding resonance poles
the Wigner-Smith time delay function. The time delay fun
tion, containing unique information regarding the interfe
ence between the resonance states, can be studied ex
mentally.

The model used is as follows. We consider a tw
dimensional billiard coupled to a waveguide~for instance, a
flat electromagnetic resonator!. We have to solve the equa
tion

~2¹21lV!C5EC, ~1!

whereV is a potential barrier between the billiard and t
attached lead. We use the Dirichlet boundary condition,C
50, on the border of the billiard and of the waveguide. T
waveguide has a widthW and the wave function inside it ha
the asymptotic form

C5@eikx2R~E!e2 ikx# u~y!. ~2!
8001 © 1998 The American Physical Society



g

iv

xt

th

-

s-

n
t
th

tie
of
s
is

us
old

s of

h
r
the

-
s
e-

e

r
oles

8002 PRE 58BRIEF REPORTS
Hereu(y) is the transversal mode in the waveguide,k is the
wave number, andR(E) is the reflection coefficient. It holds
E5k21(p/W)2. We choose the energy of the incomin
wave so that only the first transversal mode in the lead
open, i.e.,

u~y!5sinS p

W
yD . ~3!

Since uR(E)u51, we write R(E)5exp@iQ(E)# with Q(E)
real. A measurable quantity derived fromR is the Wigner-
Smith time delay function,

tw5
dQ

dE
. ~4!

tw is the time the wave spends inside the billiard@8#.
The energies and widths of the resonance states are g

by the poles of the functionR(E) analytically continued into
the lower complex plane. To find the poles we use the e
rior complex scaling method@12#. The general idea is to
study the system after a scaling transformation applied to
x coordinate, see@12,13#: x→ x̃5g(x). The functiong is
chosen as

g~x!5H x, x>x0 ,

u f ~x!, x,x0
~5!

with f (x) such thatg(x) is three times smoothly differen
tiable and the inverse transformationg21( x̃) exists. The at-
tached waveguide extends from2` parallel to thex-axis
and we choosex0 to be localized inside it. The related tran
formation of the wave function reads

C~x,y!→
1

Ag8~ x̃!
C̃~ x̃,y!. ~6!

Using it Eq.~1! becomes

F2
]

] x̃
S 1

g8 2

]

] x̃
D 2

]2

]y2GC̃~ x̃,y!

1S lV~ x̃,y!1
2g8g-25g9 2

4g84 D C̃~ x̃,y!5EC̃~ x̃,y!. ~7!

For a real parameteru, this equation is fully equivalent to
Eq. ~1! since the transformation~6! is unitary. Moreover, the
two equations are fully identical forx.x0 . Since x0 lies
inside the waveguide the shape of the resonator is
changed by the transformation~6!, which only rescales a par
of the x axis related to the waveguide. Moreover, since
waveguide is oriented parallel to thex axis, the transforma-
tion does not change the boundary of the system. Foru com-
plex, Eq.~6! ceases to be unitary and the spectral proper
of Eqs.~1! and~7! are different. The continuous spectrum
Eq. ~1! extends over̂ (p/W)2,`), whereas the continuou
spectrum of Eq.~7! is rotated into the complex plane and
equal to

øn51:`$~np/W!21u22^0,̀ !%. ~8!
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This is a union of half-lines representing the continuo
spectrum starting out from the real axis at every thresh
energy (np/W)2 with an angle22 argu. The rotated con-
tinuous spectrum uncovers additive complex eigenvalue
Eq. ~7!, the positions of which are independent ofu. These
eigenvalues coincide with the resonance poles@12,13#.

In the following we study the time delaytw and the reso-
nance poles of a rectangular billiard of sizeDx3Dy
5233.14 connected to a single waveguide with widthW
50.6. We chooseV as a rectangular potential barrier wit
height 1 located at20.3<x<0. By changing the paramete
l we can tune the coupling between the waveguide and
resonator. We calculatetw by solving Eq.~1! with the Di-
richlet boundary conditionC50, and the asymptotic bound
ary condition~2! imposed atx5213. The resonance pole
are found by the method of exterior complex scaling d
scribed above usingx0522.

In Fig. 1 we show the calculated time delaytw as a func-
tion of l and energy~a! as well as the dependence of th
resonance poles onl ~b!. At large l ~weak coupling to the
waveguide! we see three isolated resonance states. Asl de-

FIG. 1. Contour and surface plot of ln(tw) ~a! for a rectangular
billiard ~for parameters see text!. The darker the plot is, the longe
is the time delay. The motion of the corresponding resonance p
with l ~b!. The positions of the resonance poles forl544 are
denoted by squares and forl523.5 andl50 with large dots. The
energies are given in units of@x#22.
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FIG. 2. The wave functions of three resonance states forl544 ~casea!, l523.5~caseb!, andl50 ~casec!. The energies of the state
at l544 are 38.6~1!, 38.8 ~2!, and 39.8~3!. The location of the potential barrier is marked by a rectangular in the waveguide.
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creases~the coupling to the waveguide increases! the life-
times of all three states decrease. The states attract each
in energy. As the resonances start to overlap, two of th
become trapped while the third one becomes short lived
further decreasedl the lifetimes of the two trapped reso
nance statesincrease. The motion of the poles is reflected i
the time delay function. The lifetime of the short-lived sta
is, at smalll, so short that it practically disappears wh
plotting the time delay. The numerical errors in the distan
among the resonances are so small that the details of en
attraction and resonance trapping are stable.

Using the method of complex scaling we can also stu
the wave functions of the resonance states~Gamow states!.
The interference between the resonances states leads
mixing of their wave functions with respect to the eigenfun
tions of the resonator (l→`). We illustrate this phenom
enon in Fig. 2, where the wave functions of the three re
nance states are shown forl544, 23.5, and 0, i.e., under th
condition when~a! they are isolated,~b! they are very near to
one another, and~c! two of them are trapped while one
short lived.

For l→0, the amplitude of the wave function related
the resonance state that finally evolves into a short-lived s
is very small inside the resonator. This corresponds to a v
small time delay, i.e., to a small probability of staying insi
the billiard. The trapping of the two long-lived resonan
states occurs in two different ways. Both wave functio
correspond to~almost! pure bound states of the billiard a
long asl is large and become mixed when their distance
other
em
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the complex energy plane to the other two states beco
small. At still smallerl one of the resonance states demix
and approaches again its pure shape. In accordance to
its energy for smalll approaches that for largel. The wave
function of the other trapped resonance state remains, h
ever, mixed. Accordingly, its position at smalll differs from
that for largel and its wave function is mixed with that o
the short-lived resonance state.

The analysis presented in this letter shows that open
liards provide an excellent possibility to study the dynam
of resonance poles in detail. A realization can be achieve
means of flat microwave resonators connected to a w
guide where the coupling strength to the channel can be
ied by hand. Such systems allow us therefore to investig
directly the formation of different time scales~resonance
trapping! by tracing the corresponding time delay functio
In particular, it is possible to show and to understand
contraintuitive result that the lifetimes of certain resonan
states increase with increasing coupling to the continu
and that the wave functions of these long-lived states ma
pure in relation to the bound states. The results of th
investigations will help in analyzing high-resolution expe
mental data in various fields of physics.
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