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Interfering resonances in a quantum billiard
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We present a method for numerically obtaining the positions, widths, and wave functions of resonance states
in a two-dimensional billiard connected to a waveguide. For a rectangular billiard, we study the dynamics of
three resonance poles lying separated from the other ones. As a function of increasing coupling strength
between the waveguide and the billiard two of the states become trapped while the width of the third one
continues to increase for all coupling strengths. This behavior of the resonance poles is reflected in the time
delay function, which can be studied experimentdl§1063-651X98)14112-Q

PACS numbsg(s): 05.30—d, 03.65.Nk, 03.80kr, 05.45+b

In present-day high-resolution experimental studies, thevidths bifurcate: the width of one of the states increases
properties of individual resonance states can be investigatddrther while the widths of the other ondscreasesee, e.g.,
even when the level density is high. As an example, nucledrd1]. In other words: one of the states aligns with the channel
states have recently been identified and studied experime@nd becomes short lived while the other ones decouple from
tally at very high excitation energ]. Collisional damping the channel and become long lived in spite of the strong
at such an energy is the same as at low excitation energgoupling to the continuum. This result follows mathemati-
(ground-state domajn This experimental result, being in cally from the fact that the rank of the Hermitian part of the
contradiction to the standard statistical theory of nuclear re€ffective Hamilton operator is equal to the numbérof
actions, can be justified by taking into account the interferstates while that of the non-Hermitian part is equal to the
ences between resonance states arising from their interactiémberk of common open decay channels, see, €55:11.
via the continuuni2]. In atoms, strong laser field effects in The critical values of the coupling strength to the decay
the spectral lines of autoionizing states are studied theoretfhannels appear usually as avoided crossings of levels or
cally as well as experimentally. The coherent coupling offésonances. They are connected with the existence of double
autoionizing states is connected recently to level repulsion i multiple poles of theS matrix. Their relation to the so-
the complex plane and the resulting trapping phenomena af@lled exceptional points and to quantum chaos is studied in
discussed3]. In these papers, the peculiarities of atomicdifferent paperge.g.,[9] and further references thergin
states manipulated by a strong laser field are taken into ac- The phenomenon of resonance trapping is theoretically
count. The authors of the experimental pajpgrpoint to the ~ Well established but not proven directly up to now in experi-

numerous possible applications of such investigations. mental studies. In this letter we investigate the behavior of
Theoretically, the interferences between resonance statédree neighboring resonances in a two-dimensional billiard
have been studied for several years, e.g., in njigleimol- ~ connected to a single waveguide. As a function of the cou-

eculeq 6], and atom$3,7]. General questions are considered pling between the resonator and the waveguide, we calculate

in, e.g.,[8,9]. Many quantum systems have a band-structuredpoth the position of the corresponding resonance poles and

spectrum with a high level density inside a band. Example$he Wigner-Smith time delay function. The time delay func-

are, among others, some mesoscopic systems. Here, the ##n, containing unique information regarding the interfer-

terferences between individual resonance states play an irghce between the resonance states, can be studied experi-

portant role[10] and need to be considered in detail. Theymentally.

determine the properties of the system as a whole. The model used is as follows. We consider a two-

One important result of all these investigations is the phedimensional billiard coupled to a waveguider instance, a

nomenon of resonance trapping, which arises from the intefflat electromagnetic resonajoWe have to solve the equa-

ference of resonance states coupled to the same decay chdfn

nel. As a function of a parameter controlling the coupling to

the continuum, the widths of all states increase as long as the (=VZHA\V)V=EV, (1)

states are isolated. At a certain critical value of the parameter

where the resonance states start to overlap each other, timereV is a potential barrier between the billiard and the
attached lead. We use the Dirichlet boundary conditin,
=0, on the border of the billiard and of the waveguide. The

*Electronic address: persson@mpipks-dresden.mpg.de waveguide has a widttW and the wave function inside it has
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Hereu(y) is the transversal mode in the waveguillés the ®
wave number, an&(E) is the reflection coefficient. It holds e
E=Kk?+(7/W)2. We choose the energy of the incoming (@ ,
wave so that only the first transversal mode in the lead is | :

open, i.e.,
301

u(y)=sin(v—7:/y). 3 2|

Since |R(E)|=1, we write R(E)=exdi®(E)] with O (E)
real. A measurable quantity derived frofiis the Wigner- 15
Smith time delay function,

do o
Tw= d_E . (4)

7w IS the time the wave spends inside the billiéd.
The energies and widths of the resonance states are giver
by the poles of the functioR(E) analytically continued into
the lower complex plane. To find the poles we use the exte-
rior complex scaling methodl12]. The general idea is to
study the system after a scaling transformation applied to the

—_—
o
~

x coordinate, se¢12,13: x—x=g(x). The functiong is . "'-.. Paie @
chosen as 10 e e
B o\ =
X, X=X, i \
= 5
9(x) of(x), x<Xq ©) 102 .

with f(x) such thatg(x) is three times smoothly differen-
tiable and the inverse transformatign () exists. The at-
tached waveguide extends fromeoo parallel to thex-axis 375 38.0 385 39.0 395 40.0
and we choosg to be localized inside it. The related trans- Egq

formation of the wave function reads

1 FIG. 1. Contour and surface plot of kg (a) for a rectangular
W(x,y)— T(x,y). 6) il:;llltlsédﬂgc;r g;:lmeters see textThe darker the plot is, the longer
, ~ y. The motion of the corresponding resonance poles
g9'(x) with X (b). The positions of the resonance poles for44 are
denoted by squares and for=23.5 and\ =0 with large dots. The
energies are given in units k] 2.

Using it Eq.(1) becomes

This is a union of half-lines representing the continuous
spectrum starting out from the real axis at every threshold
energy am/W)?2 with an angle—2 argé. The rotated con-

~ 29'9"—-5¢"?| ~ ~ ~ -~ tinuous spectrum uncovers additive complex eigenvalues of
AV(X,y)+ T a4t V(x,y)=E¥(xy). (7)  Eq.(7), the positions of which are independent@f These
9 eigenvalues coincide with the resonance pdles13.

a1 a) 2] _
ax\ g’ 2 ax] ay?

+

For a real paramete,, this equation is fully equivalent to [N the following we study the time delay, and the reso-
Eq. (1) since the transformatiof) is unitary. Moreover, the nance poles of a rectangular billiard of sizexxAy
two equations are fully identical fox>x,. Sincex, lies =2%3.14 connected to a single waveguide with widkh

inside the waveguide the shape of the resonator is not 0-6- We choose/ as a rectangular potential barrier with
changed by the transformatig®), which only rescales a part height 1 located at-0.3<x=<0. By changing the parameter
of the x axis related to the waveguide. Moreover, since thet We can tune the coupling between the waveguide and the
waveguide is oriented parallel to tixeaxis, the transforma- esonator. We calculate, by solving Eq.(1) with the Di-

tion does not change the boundary of the system.greom-  fichlet bqqndary pond|t|oﬂf=0, and the asymptotic bound-
plex, Eq.(6) ceases to be unitary and the spectral propertiedy condition(2) imposed atx= —13. The resonance poles
of Egs.(1) and(7) are different. The continuous spectrum of areé found by the method of exterior complex scaling de-
Eq. (1) extends oveK(m/W)2,%), whereas the continuous Scribed above using,=—2.

spectrum of Eq(7) is rotated into the complex plane and is  In Fig. 1 we show the calculated time delay as a func-
equal to tion of N and energy(a as well as the dependence of the

resonance poles ox (b). At large A (weak coupling to the
Un=1.0f (NT/W)2+ 07 2(00)}. (8  waveguide we see three isolated resonance statess Alg-
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Resonance 1 Resonance 2 Resonance 3

FIG. 2. The wave functions of three resonance states fo#44 (casea), A =23.5(caseb), and\ =0 (casec). The energies of the states
atA=44 are 38.61), 38.8(2), and 39.8(3). The location of the potential barrier is marked by a rectangular in the waveguide.

creaseqthe coupling to the waveguide increasdise life- the complex energy plane to the other two states becomes
times of all three states decrease. The states attract each otlsenall. At still smallerh one of the resonance states demixes
in energy. As the resonances start to overlap, two of themand approaches again its pure shape. In accordance to that,
become trapped while the third one becomes short lived. Alts energy for smalk approaches that for large The wave
further decreased the lifetimes of the two trapped reso- function of the other trapped resonance state remains, how-
nance statemcrease The motion of the poles is reflected in €ver, mixed. Accordingly, its position at smalldiffers from

the time delay function. The lifetime of the short-lived statethat for largex and its wave function is mixed with that of

is, at small\, so short that it practically disappears whenthe short-lived resonance state.

plotting the time delay. The numerical errors in the distances 1he analysis presented in this letter shows that open bil-
among the resonances are so small that the details of enerE rds provide an excellent possibility to study the dynamics
attraction and resonance trapping are stable resonance poles in detail. A realization can be achieved by

Using the method of complex scaling we can also S,{ud)}neans of flat microwave resonators connected to a wave-
the wave functions of the resonance sta8amow states gwde where the coupling strength to the channel can be_ var-
The interference between the resonances states leads tdeg by hand. Such systems allow us therefore to investigate

mixing of their wave functions with respect to the eigenfunc-?rgeCtih' gtge fgg?ft'?ﬂeoéofﬁggr%ﬂt dit;m(atir'rswza(ljec(;zsofrﬁ?:fiin
tions of the resonatorN—«). We illustrate this phenom- bp y 9 P 9 y '

enon in Fig. 2, where the wave functions of the three resogt FaTICUE ' @ FORSIC  BEOM AnC 0 TREEene 0o
nance states are shown for=44, 23.5, and 0, i.e., under the

condition wher(a) they are isolatedpb) they are very near to states increase with increasing coupling to the continuum
one another, andc) wo of them are trapped while one is and that the wave functions of these long-lived states may be

short lived pure in relation to the bound states. The results of these

For A—0, the amplitude of the wave function related to investigations will help in analyzing high-resolution experi-

the resonance state that finally evolves into a short-lived statré1ental data in various fields of physics.

is very small inside the resonator. This corresponds to a very Valuable discussions with T. Gorin, B. Mirbach, M.
small time delay, i.e., to a small probability of staying inside Muller, J. Nackel, and G. Soff are gratefully acknowledged.
the billiard. The trapping of the two long-lived resonanceThis work has been partially supported by the DFG, SMWK,
states occurs in two different ways. Both wave functionsCzech Grant Agency GAAV under Grant No. 1048804, and
correspond toalmos) pure bound states of the billiard as by the Foundation for Theoretical Physics in Slemeno, Czech
long as\ is large and become mixed when their distance inRepublic.
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