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Strength of Topologically Induced Magnetic Moments in a Quantum Device
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We consider resonant vortices around nodal points of the wave function describing electron transport
through a mesoscopic device. With a suitable choice of the device geometry, the dominating
role is played by single vortices with a preferred orientation. To characterize the strength of the
resulting magnetic moment, we have introduced a “magnetance,” the quantity defined in analogy
with the device conductance. Its basic properties and possible experimental detection are discussed.
[S0031-9007(97)05255-1]
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The topological structure of quantum mechanical waveexpected that there appears a dominating circulating cur-
functions is responsible for many observable phenomenaent in analogy with the classical gas flow. This structure
One of its prominent consequences is the existence of vors thus the natural candidate for an experimental attempt
tices. They have already been observed in macroscopto observe electron vortices.
quantum systems, rotating superfluid helium, and super- The vortices are closely related with the topological
conductors. In general, their existence is connected witktructure of the phase. To be more explicit, let us write
the time reversal symmetry breaking. The first examplehe wave function as
of such a topological effect was already given in the very _ is 2

b =.pe”, )
early days of the quantum theory. It concerns the proba- _ - _ .
bility current density of a single electron defined conven-Where p is the probability density of the particle anl
tionally by is the corresponding phase. The latter is defined modulo

J(F) = (/m") Im [F(F)Ve(P], (1)

which may be nontrivial once the wave functignis e o
complex. In systems with open geometry a nonzerc
probability current refers to an electron transport througt
the system, i.e., from the source to a drain. Dirac [1]
pointed out that the quantum probability current may
exhibit a vortex structure around nodal points (zeros
of the corresponding wave function. The effect was
later discussed by Hirschfelder [2]. Recently it has beer
demonstrated numerically that the current in topologically
nontrivial devices exhibits pronounced vortices the form
and magnitude of which changes quickly with the energy
[3—7] and applied magnetic field [8]. The experimental
evidence of their existence is of particular interest.

The direct consequence of a vortex is a nonzero mac
netic moment, which has to depend on the applied currer X
in a similar way as the device conductance. The nature . i NN

.............

physical quantity representing a vortex structure strengt AL T B

is thus the device “magnetance” given by the ratio of the PRt tsiatatdtaitant
magnetic moment and applied voltage drop. To analyz TIITIIIIIIiiiiciiiITiTITioioiice

the effect of vortices to the electron transport and Mag gk
netance we will limit our consideration to devices with . . .
two-dimensional gas of spinless electrons. Main attentioff!G- 1. The model device geometry with phase cuts (solid

. . . . lines) for the energy indicated in Fig. 2 by the arrow. The
will be payed to the simple device formed by a piece Ofwindz)w between tﬁg wire and the gavity ﬁqua-l@ of the

the one-dimensional wire with tangentially attached circu-wire width w and the cavity radiu® = 5w/3. Corresponding
lar cavity (a quantum dot) as sketched in Fig. 1. It may becurrent density is illustrated by arrows.
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27 and assumes conventionally values in the intervatheory of quantum devices. To establish conductance of a
[0,27). In the two-dimensional case it is possible totwo-terminal device, infinitely long ideal leads are placed
identify the configuration space with a region in thebetween the device (scattering region) and electron reser-
complex plane and to treat a possible multivaluedness ofoirs (source and drain) allowing an explicit asymptotic
S in terms of its analytical structure, especially cuts andiorm of scattering wave functions. The obtained transmis-
branching points corresponding to different Riemanniarsion coefficientl'(E) is used to relate the applied current
sheets of this function. J and the chemical potential difference between reser-
Existence of a branching point on the phase Riemannvoirs Ax. In the limiting case of vanishingsx and at
ian surface implies appearance of a vortex in the correzero temperature the electron transport is determined by
sponding quantum probability flow [2]. Inserting (2) into properties of electrons at the Fermi enelgy, and we
(1) we get have

i) = L p(P¥S(E). © J = STE) . ©

The vectorv = (ﬁ/m*ﬁs can be regarded as a velocity The applied current is responsible for a nonzero an-
of the corresponding probability flow. For a closed curvegular momentum of the system. It can be divided into

I" the vorticity of 7 along I is thus two parts: momentum of the center of mass and the mo-
L= h mentum due to electron motion relative to the center of
.?{r vdl = mt 68§ = 2m R mass. The later one originates in circulating currents giv-

ing rise to a magnetic momem = (0,0, M) represent-
m=0,%L,x2,..., (4) ing their strength. Angular momentum of the center of
where &S is the phase change when winding once aroungnass is controlled by the current density within the ideal
the curve. Since the wave function (2) must be singlgeads only.
valued, the differenceédS can only be equal to a multiple  |n the simplest case of one-dimensional ideal leads
of 2. If the phaseS has no singularities insidd’,  having a common axis the angular momentum of the
the contour can be shrunk into a point in which case theenter of mass can easily be evaluated. It is controlled

vorticity is zero. |If, on the other hand, encircles a py the product T(Er)go(Er)jo(7) with go(Er) and

nodal point of ¢, the phase is ambiguous at this point}o(;) being the density of states and current density,

and the integerm may be nonzero. In this situation respectively, within the system without the scattering
the corresponding probability current exhibits a Vortexregion (the device is replaced by the lead). In this case

centered at the nodal point. _ _ _ . we get the vortex magnetance in the following form:
In quantum devices three basic topological situations .

can occur (see Fig. 1): M(EF) - i/ EAi(F) — T(E E)in(7
(@) A phase cut starts and ends at the boundary of Au 2c (8(Er)j () (Er)go(Er)jo())
the system. This is typical for integrable systems. As a X 7 d°r, )

simple example, consider the transport through a straight _ .
quantum waveguide of the width parallel to thex axis. ~ Whereg(E) denotes the density of states of the considered
If the incident wave is in thenth transverse mode, the system. The magnetance defined in this way characterizes

wave function has the form the vortex structure of the studied device and it is
invariant with respect to coordinate system translations.

Yin(x,y) = [_ o sin ny, (5) The expregsion, Eq. (7), is applicable to the Qevice

sketched in Fig. 1. To stress the effect of the device ge-

where n is the mode number andi?(k>+  ometry the flat potential is assumed within the device area
m’n?/w?)/2m* is the particle energy. In this case demarcated by hard walls. The relevant wave functions
the phaseS = kx is monotonically increasing in the lon- are thus eigenfunctions of the free-electron Schrodinger
gitudinal direction and its cuts are located at the segmentsquation with zero values at the boundaries.

x=2mj/k,j=...,—1,0,1,..., parallel to thex axis. To estimate the magnetance of the considered device,
Their end points lie at the boundasy= 0,w. They are let us first summarize wave function properties of the
physically irrelevant being not branching points. separated circular cavity. In polar coordinates eigenfunc-

(b) The cut starts at the boundary and ends at somtons are determined by zeros of Bessel functidpsat
nodal point inside the system. The internal end point is dhe cavity radius® and we have
branching point which is related to a single vortex. + . +imb

(c) Thg F():ut connects two nodal poi?ﬂs of the wave Pin(r,0) = comImkimr)e=, (8)
function. Both end points are branching points whichwhere k;,, = x;,,/R with x,;, being the/th zero of the
correspond to a pair of vortices rotating in oppositeBessel functionJ,,, and ¢;,, is the normalization factor.
directions. The quantum numbenr (m = 0, 1, 2, ...) represents the

To define the vortex magnetance we will follow the angular momentumt(7i/m*)m which is closely related
scattering approach [9], generally accepted in the transpotd the vorticity defined by Eq. (4). The eigenstates of
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spinless electrons are twofold degenerated with respect @urrents. Corresponding magnetance may be estimated
the sign of the momentum. by choosing a proper value of tha,,(E) entering
Only the azimuthal component of the probability cur- Eq. (9). Inserting the current densify(r), Eq. (9), into
rent density for given eigenenerd@y ,, might be nonzero, the expression for the magnetance, Eq. (7), we get
and it is given as follows: M(ES)
F) _

. h m = ILL* Al,m(EF)mgl,m(EF)’ (10)
jo(r) = Apm Py i I kimr), 9) Au g %

whereA,,, is given by the difference of weight factors, Where up = efi/2m"c is the effective Bohr magneton.
+)|2 (+) Because of the dominating role of the spectral density

— 1,0 ) . .

Atm (_)la”m _ laznl j repre.sentlng_ .amphtudea,,m . gim(E) a resonance character of the magnetance is ex-
and a,,, of elggnfunctlons with positive and negative pected. Since,.(E) is proportional tom* the magne-
values of the orbital momentum, respectively. In the equiygnce is of the phrely topological origin.
librium case the problem has time reversal symmetry re- ag an example, the energy dependence of the magne-
quiring equality of weight factors and the total momentumance and the transmission coefficient close to the reso-
vanishes. _ _ _ nance for/ =1 and m = 3 is shown in Fig. 2. The

Attaching a wire the wave functiong/(r,0) given  corresponding current density distribution @} indi-
by Eq. (8) become modified by a coupling with plane cated by arrows is presented in Fig. 1. Four phase-cut end
waves. Assuming a small window between wire andyoints represent vortex centers. Three of them are located
cavity, much less than R, wave functioge(r,6) will  cjose to the cavity center giving rise to pronounced circu-
be only slightly modified. The main effect will be |ating current. For a fixed window region the broadening
a level broadening represented by the spectral density; cavity levels becomes weaker for larger radRugiving
g1.m(E) with sharp maxima at energigs = E;,,. Wave yise to more pronounced resonances as seen in Fig. 3(a).
functions representing states with the same direction ofgr g > 1.8w a more complicated resonance structure
the probability flow in the window region will be much apnears due to states with different quantum numbers
more easily matched together than those with opposite’ For 5 quite well separated resonance the magnetance
flow directions. In the current currying regime the peak height may be estimated by equality of the current
amplitude of cavity wave functions matchfed W'th_'nc'd‘?ntoriginated in the cavity eigenfunction, Eq. (8), and that
plane wave will be thus enhanced giving rise to circulatingyf the single wire, Eq. (5), in the common region, i.e., in
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FIG. 2. Energy dependence of the magnetaige\ . () and  FIG. 3. MagnetanceM /Au at zero temperature (a) and at
transmission coefficient' (b) in the vicinity of the resonance the temperatur®.05 E,/kp (b) as function of the cavity radius
for I = 1 andm = 3. Device geometry is the same as that for fixed window width 5w/4. The dashed line represents
in Fig. 1 andE; denotes the energy of the lowest transversalestimation for resonance maxima, Eq. (11). The dash-dotted
modeE, = 7w2h?/2m*w?. line is the result of the semiclassical treatment.
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the area of overlapping circular and strip regions. Thisabove, Eq. (11). They also give rise to additional vor-

condition gives tices of the uncontrollable orientation within the wire re-
hig(E,) dr gion. The resulting richer magnetance structure can be
A m(Ey) " f . o Kimr) " very easily smeared out by the temperature. This destruc-
R7

tive effect will be even more effective for wider, multi-
1 1 v i
= sit ZXay, (11) mode, wires. . . e
h 7w Jy_a w In real systems the probability to have impurities within
whered is the width of the common region] = w + the wire region might be lowered by shortening the wire
R — yo, With yo being the distance of the cavity center Ie_ngth. A similar device., but with centrally attached
from the bottom wire edge. This estimation is in goodWwires represented by point contacts, has already been
agreement with the values obtained by direct evaluatiofiealized [11]. The proper design could also allow one to
of Eq. (7), as shown in Fig. 3(a). control cavity area by top gates. To observe resonances
The above amplitude estimation, Eq. (11), assumes alfte energy level separation of the isolated cavity has to
ideal coupling allowing an easy transfer of the incidentbe larger than the thermal energy7. For the device
wave with transmission coefficierit approaching unity. fabricated from a GaA#lGaAs heterostructure it limits
Out of the ideal coupling a reflection will take place andthe cavity radiusR[um] < 0.2/yT[K]. For example,
T will decrease. However, far enough from the resonanc@ssumingR ~ 0.5 um resonances could be indicated by
the mixing of plane waves with eigenfunction of the a fluxmeter allowing measurements with accur&@u s,
separated cavity becomes less effective and transmissia¥hich is in principle within experimental reach [12]. The
will be enhanced. This typical energy dependence igontribution of noncirculating currents cannot be easily

shown in Fig. 2(b). excluded by experimental setup, as has been done in our
At finite temperatures the magnetance is given by théheoretical treatment. Under the standard conditions of
following expression: the fixed applied current it will be, however, responsible
for a monotonic background only.
MpT) _ 1 f 9folE) M(E) dE, (12) The research has been partially supported by the DTP
A Au I Foundation as well as by Grants No. INTAS-RFBR 95—

where fo(E) denotes the Fermi-Dirac distribution func- 657 and No. ACR A1048804. The support obtained
tion andM (E) is the zero temperature magnetic momentfrom the Theoretical Physics Foundation in Slemeno is
given by Eq. (7). The resulting magnetance at a nonzeralso greatly acknowledged.

temperature is shown in Fig. 3(b). For high enough tem-

peratures resonances will fully be smeared out and the

magnetance should approach values obtained by a semi-

classical treatment. Since the averaged density of states

g scales with the cavity areg) = (m"/hii)Er mR* and *Permanent address: Institute of Physics, Academy of
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