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Spontaneous dc Current Generation in a Resistively Shunted Semiconductor Superlattice
Driven by a Terahertz Field
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We study a resistively shunted semiconductor superlattice subject to a high-frequency electric field.
Using a balance equation approach that incorporates the influence of the electric circuit, we determine
numerically a range of amplitude and frequency of the ac field for which a dc bias and current are
generatedspontaneouslyand show that this region is likely accessible to current experiments. Our
simulations reveal that the Bloch frequency corresponding to the spontaneous dc bias is approximately
an integer multiple of the ac field frequency. [S0031-9007(98)05660-9]

PACS numbers: 72.20.Ht, 05.45.+b, 73.20.Dx

In 1928 Bloch demonstrated [1] that electrons in aconsisting of the SSL shunted by an external resistance.
periodic lattice potential with period subject to a dc We observe that the Bloch frequency corresponding to the
electric field Eq. undergo oscillations with characteristic spontaneously generated bias across the SSL is approxi-
frequencywp = eaEq4./h. In naturally occurring solids, mately an integer multiple of the frequency of the external
observations of Bloch oscillations are precluded by theac field and explain the origin of this “phase locking.”
need for very high applied electric fields to reduce the Consider an SSL of spatial periad lengthl, and area
Bloch oscillation period below the dephasing times aris-S that is homogeneously doped with carriers per unit
ing from the ever-present scattering due to impurities andolume. The SSL is shunted by an external measuring
phonons. In 1970, Esaki and Tsu [2] recognized thatlevice of resistanc®& and is exposed to an external ac
due to their longer spatial periods, semiconductor superrelectric field E.:(t) = Eocoslt. We use the standard
lattices (SSLs) can support Bloch oscillations in the teratight-binding dispersion relation for electrons in a single
hertz (THz) domain—comparable to or faster than theminiband, so that(p) = A/2[1 — cog pa/h)], with &
corresponding scattering frequencies—even for modedieing the electron energy, the quasimomentum along
field strengths €1 kV/cm). Thus, not only should the the SSL's axis, and the miniband width. We describe
Bloch oscillations be observable in SSLs, but SSLs couldhe dynamics of electrons by the balance equations [4,9]

also serve as devices to produce THz radiation [2]. When o

. o - . . ’ V = —eE(t ) — v, V,

in addition to the static fieldy., an SSL is subjected to an . eBuo(t)/m(E) = vu

ac field of frequency), the static current-voltage charac- F = —eE()V — v(E — E9), ()
teristic can exhibit structures atg = n{) (wheren is an E. = 47reNV /ey — aEs.

integer) [3,4]. In the presence of dissipation, multiphoton
transitions involving different can lead to a Bloch oscilla- WhereV(z) andE (¢) are the electron velocity and energy
tor capable of producing radiation from almost zero to theaveraged over the time-dependent distribution function
THz frequencies. Recently, experiments involving novelsatisfying the Boltzmann equation, and and vy, are
electromagnetic radiation sources and coupling techniquddienomenological relaxation constants for the average
have revealed additional effects of THz radiation fields orvelocity and energy, respectively. Elastic scattering by
the dc conductivity of an SSL [5—8], including (i) THz impurities, interface roughness, and structural disorder
multiphoton-assisted tunneling [5], (i) ac-field-induced re-contribute toy,; inelastic phonon scattering dominates
duction of the dc current [6], (iipbsolutenegative con- ¥e- The parametef © describes the electron equilibrium
ductance [7], and (iv) resonant changes in conductivity [8]€nergy [4], which is a function of the lattice temperature.
In the present Letter, we examine a question that i#\Iso appearing in (1) is the energy-dependent effective
roughly the converse of the Bloch oscillations in an SSL:massm(E) = mg(1 — 2E/A)~!, wherem, = %. The
namely, can a purely ac external field applied to an approfirst two balance equations, obtained in [4], have been
priately configured (but unbiased) SSL create a dc bias andell studied, while the third equation describing the self-
corresponding dc current? In technical terms, this correeonsistent field—which is discussed below—has only
sponds to a spontaneous breaking of spatial reflection symecently been introduced [9].
metry. Using the methods of nonlinear dynamics, we show The electric field acting on the electronB.(r) =
that the answer to this question is “yes” and find the con£. () + E(t), is the sum of the external ac fieltl(r)
dition for spontaneous dc current generation in the circuiind the self-consistent fielgl. (z), which incorporates the
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influence of the circuit and of the repulsive interactionlower and upper edges of the miniband are not equivalent;
with other electrons on a single electron’s dynamics. Theéhusw-/ — w.

phenomenological constaat describes the relaxation of  Wheny, = y. = 0, Egs. (2) can be transformed [9] to
the self-consistent field [9]. The self-consistent field isthe resistively shunted junction (RSJ) model familiar from
related to the voltagé/ across the SSL b¥,, = U/I.  the theory of Josephson junctions [10]. Since in this limit-
The current density through the SSL consists of twang case symmetry properties have been applied effectively
parts: the displacement currepg,, = i2E. (e is the to characterize and interpret solutions, we expect this also
average dielectric constant for the SSL) and the currertp be true in the present, more general case.

of ballistic electronsj = —eNV, whereV is the solu- The form of the symmetry transformation suggests the
tion to Egs. (1). Kirchoff’s equation for the resistively use of a stroboscopic map of peri@y2 to characterize
shunted SSL,[(EO/477-)ESC — eNV]S + (Eil)/R =0, the solutions of system (2): this amounts to considering
provides the circuit's contribution to the damping of thev, w, JF at discrete times, = nT/2, wheren is an

self-consistent fielda.;; = (RC)™!, C = %Sl; the total integer. We are especially interested in the projection of

damping rate is the sum of the rates from the externalhis stroboscopic phase portrait onto thef" plane. Let
circuit and internal mechanisms. The self-consistent field? () be one of the variables(z) or ¥(s) and denote by
is responsible for the novel nonlinear effects of symmetryt¢) the value of¢ averaged over a large time interval. By
breaking and phase locking that we observe. Introducingnalogy to the RSJ model [10,11], we have the following
the scaled variable§F (1) = eaEy(t)/h, v = mgVa/h, natural classificat_ion for attractors of (2) based on their
andw = (£ — A/2)(A/2)7!, so that the lower (upper) Symmetry properties. _ '
edge of the miniband correspondsito= —1 (w = +1), @M A symmetric limit cyclels a solu_tlon_ thgt obeys
we obtain the self-consistent set of equations the equality—¢(t + Toym/2) = ¢(t), which implies that

. Qrlw — it is periodic with period Ty, = (2n + 1)T; as this

v =[F@) + w,c080rlw = y,v, period is 2n + 1) times the external driving period,
W= —[F() + wycosQt]v — y.(w — w®), (2) this limit cycle is also known as a perio@n + 1)
=, solution. TheT /2-stroboscopic plot consists @i2n +
F=wwv-af. 1) points, and its projection on the-F plane has
Herew, = (eaEo)/h andw, = [(2me>Na®A)/(h%€))]/?,  inversion symmetry about the origin. More importantly,
where w, is a characteristic frequency that can be inter<¢) = 0, and thereforedc current and bias are absent
preted as a miniband plasma frequency [9]. ThroughThe simplest example of a symmetric limit cycle is
out this paper we assume that initially the electrons ina period-1 solution of the formg(r) = Ag4cosQt +
the SSL are at the bottom of miniband(0) = —1, with By sinQz, WhereAd) andBd) are constants.

both current and voltage absemt(0) = F(0) = 0, and (i) For a symmetry-broken limit cyclethe T/2-
that the electrons relax to the bottom of the miniband, i.e.stroboscopic phase portrait in the-F plane lacks
w® = —1, wherew® = (£© — A/2)(A/2)7". inversion symmetry about the origin. The simplest
Since we are here interested primarily in stationaryexample is a period-1 solution of the formp(r) =
solutions of (2), we do not consider transient effects. They, cosQr + B, sinQt + C,/2 with zero harmonic
appearance of a dc current and a dc bias indicates th&yual toCy/2 (A4, B4, andC, are constants). This solu-
presence of the zeroth Fourier harmonic in the stationaryon satisfies the equality ¢ (t + Tsym/2) = ¢(t) — Cy.
solutions forv(z) and F (). Hence, we first establish Actually, there are two symmetry-related conjugate limit
how the existence of these zeroth harmonics relates to thgcles differing from each other only by the sign of the
symmetry properties of (2). Note that the appearance ofonstantC,, and for fixed parameters, a trajectory selects
these zeroth harmonics is accompanied by other (normallyne limit cycle depending on its initial conditions. For
forbidden) even harmonics in the current, e.g., the secongur case with fixed initial conditions, a trajectory can

harmonic. switch to a limit cycle with different symmetry only

The following transformation leaves the system (2)when the parameters are varied. This means toat
invariant: symmetry-broken limit cycles dc current and bias are
v— —v, F - —7F, t—t+ Toym/2, nonzeroand their signs are fixed for fixed values of the

(3)  system parameters.

Toym = (2n + DT, (i) For symmetric chagsthe solutions are aperiodic,
wheren is an integer and’ = 27 /Q is the period of and the T/2-stroboscopic phase portrait has a fractal
the external ac field. Thus, for any solution of systemstructure with an infinite number of points but possesses
@) {v(r),w(r), F(r)}, there exists a symmetry-related inversion symmetry about the origin of coordinates in
“conjugate” solution {—v(r + Tgm/2),w(t + Tym/2), the v-F plane. Such solutions correspond to strange
—F(t + Tym/2)}. Physically, the transformation (3) attractors with{¢) = 0, andno dc current
demonstrates that both signs of electron veloeityand (iv) For asymmetric chagsthe fractal pattern in the
self-consistent field (voltagef are equivalent in an SSL T/2 stroboscopic representatitacksthis v-F inversion
driven by an ac field without dc bias; in contrast, thesymmetry, and one has a symmetry-related conjugate pair
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of strange attractors. For asymmetric chdds, # 0, and  symmetry broken those solutions havihgF)| > Q /4.
dc current is spontaneously generated There exists a small region of asymmetric chaos With
We observe all four types of attractors in our model.and (f) # 0. However, the majority of the symmetry-
The most unusual type of behavior—asymmetric chaos—broken attractors are broken-symmetry limit cycles with
is illustrated in Fig. 1, which shows a stroboscopic phaséiigher even and odd harmonics as well as the zeroth har-
portrait of an attractor lacking inversion symmetry aboutmonic [13]. We also observe some solutions with subhar-
the origin. The symmetry-related conjugate attractormonics, corresponding to period doubling.
exists but isnot depicted in Fig. 1. The dependence of the spontaneously generated bias
The above symmetry-based classification of attractorand dc current on the frequency of the external field
demonstrates that stationary solutions both with and withis indicated in Fig. 3. Recall thatF) is the long-time
out dc current can be realized in our model. To de-averageof the scaledself-consistent field, i.e., it reflects
termine where in parameter space the different types ahe dc component of the spontaneously generated electric
attractors exist, we have undertaken numerical simulafield in the SSL and is in fact equal to the “induced”
tion of system (2), holding the dissipation rates fixed butBloch frequency ¢ = eaEq. /i = (F)). We observe
varying the external field strength and frequency. Forffrom Fig. 3 that(f) is approximately equal to an integer
modern SSLs, the velocity relaxation times range frommultiple of (2. This “mode locking” is the analog of the
tens of femtoseconds up to picoseconds. If we takevell-known zero-bias ac Josephson steps in a Josephson
y,' = 0.35ps [8], then atA = 22 meV, a = 42 nm, junction (compare in particular our Fig. 3 and Fig. 1
N =12 X 10" cm™3, and ¢y = 13 (GaAs), we have from [10]). But in contrast to the RSJ model, the mode
v»/w. = 0.1. As arule, the relaxation time for energy is locking in our case is only approximate—the exact value
an order of magnitude longer than for velocity [12]; there-of (F) depends weakly on the field strength,. We
fore we takey./w. = 0.01. We choosex/w. = 0.01,  observe mode locking for periodic limit cycles as well as
which corresponds to a resistance Bf= 5.4 k() and for asymmetric chaos. The efficiency of ac to dc field
an SSL self-capacitance 6f = 0.64 fF (S = 10~7 cn?,  conversion, i.e., the ratiawg/w,; = |Eq./Eol, is often
I =40 X a = 1.68 X 107* cm). For these parameters, in the range 0.6—0.67, and the maximal efficiency we
the locations of broken-symmetry attractors are shown imbserved is=0.9. Therefore, a resistively shunted SSL
the Q—w, plane in Fig. 2. To distinguish genuine symme- could be an effective THz ac field to dc current converter.
try breaking from long transients and rounding errors, we From Egs. (2) it follows that forperiodic solutions
take advantage of the observed phase locking and mark &) = aw_2(F). Therefore,f the bias is phase locked
(F)=nQ (n is an integer),then the dc current is
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FIG. 1. Projection of the half-period stroboscopic phase por-

trait on the velocity—self-consistent field plane for asym-FIG. 2. A plot of region of symmetry-broken motion in the

metric chaos aQ)/w. = 047, w,/w. = 0.78, y,/w. = 0.1, external field frequencyl)-external field strengtlaf;) plane.

Ye/we = a/w. = 0.01. vo/w. =01,y /0. = a/w, = 0.01.
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20 ‘ ‘ ' corresponds to transport in doped and/or current-injected
SSLs, in which only electrons are present; if the carriers
are photogenerated, so that for each electron a hole is also
10 : created, then excitonic binding energy effects, known to
‘ be important in other contexts (see, e.g., [16]), must be
o incorporated. How these will alter the situation is the mat-
ter of a separate major study. Third, we should distin-
guish our results from a recent study by Ignagbal. [17],
who pointed out that absolute negative conductance in the
voltage-current characteristic of an SSL irradiated by an
ac field of frequency) could cause an instability of the
zero bias-zero current state, resulting in the switching to a
new state with dc voltage per SSL period closdifd/e.
20,5 02 o8 2 6 These studies apply tolsasedSSL operating in the high
Q/w, frequency regime, in which there can be no chaos. In
FIG. 3. Dependence of the spontaneously generated bia]((:sontrast,_our studies apply .to MblasedSSL.at Iower.
(F)/w. on the external field frequendy /w, at w,/w, = 1.5, requencies and lower amplitudes of the ac field and in a
Yo/we = 0.1, ys/w. = a/w, = 0.01. regime where chaotic behavior may occur.
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