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Spontaneous dc Current Generation in a Resistively Shunted Semiconductor Superlattice
Driven by a Terahertz Field
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We study a resistively shunted semiconductor superlattice subject to a high-frequency electric field.
Using a balance equation approach that incorporates the influence of the electric circuit, we determine
numerically a range of amplitude and frequency of the ac field for which a dc bias and current are
generatedspontaneouslyand show that this region is likely accessible to current experiments. Our
simulations reveal that the Bloch frequency corresponding to the spontaneous dc bias is approximately
an integer multiple of the ac field frequency. [S0031-9007(98)05660-9]

PACS numbers: 72.20.Ht, 05.45.+b, 73.20.Dx
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In 1928 Bloch demonstrated [1] that electrons in
periodic lattice potential with perioda subject to a dc
electric fieldEdc undergo oscillations with characteristic
frequencyvB  eaEdcyh̄. In naturally occurring solids,
observations of Bloch oscillations are precluded by th
need for very high applied electric fields to reduce th
Bloch oscillation period below the dephasing times ari
ing from the ever-present scattering due to impurities a
phonons. In 1970, Esaki and Tsu [2] recognized th
due to their longer spatial periods, semiconductor sup
lattices (SSLs) can support Bloch oscillations in the ter
hertz (THz) domain—comparable to or faster than th
corresponding scattering frequencies—even for mod
field strengths (,1 kVycm). Thus, not only should the
Bloch oscillations be observable in SSLs, but SSLs cou
also serve as devices to produce THz radiation [2]. Whe
in addition to the static fieldEdc, an SSL is subjected to an
ac field of frequencyV, the static current-voltage charac
teristic can exhibit structures atvB  nV (wheren is an
integer) [3,4]. In the presence of dissipation, multiphoto
transitions involving differentn can lead to a Bloch oscilla-
tor capable of producing radiation from almost zero to th
THz frequencies. Recently, experiments involving nov
electromagnetic radiation sources and coupling techniqu
have revealed additional effects of THz radiation fields o
the dc conductivity of an SSL [5–8], including (i) THz
multiphoton-assisted tunneling [5], (ii) ac-field-induced re
duction of the dc current [6], (iii)absolutenegative con-
ductance [7], and (iv) resonant changes in conductivity [8

In the present Letter, we examine a question that
roughly the converse of the Bloch oscillations in an SS
namely, can a purely ac external field applied to an app
priately configured (but unbiased) SSL create a dc bias a
corresponding dc current? In technical terms, this cor
sponds to a spontaneous breaking of spatial reflection sy
metry. Using the methods of nonlinear dynamics, we sho
that the answer to this question is “yes” and find the co
dition for spontaneous dc current generation in the circ
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consisting of the SSL shunted by an external resistan
We observe that the Bloch frequency corresponding to
spontaneously generated bias across the SSL is appr
mately an integer multiple of the frequency of the extern
ac field and explain the origin of this “phase locking.”

Consider an SSL of spatial perioda, lengthl, and area
S that is homogeneously doped withN carriers per unit
volume. The SSL is shunted by an external measur
device of resistanceR and is exposed to an external a
electric field Eextstd  E0 cosVt. We use the standard
tight-binding dispersion relation for electrons in a sing
miniband, so that́ spd  Dy2f1 2 cosspayh̄dg, with ´

being the electron energy,p the quasimomentum along
the SSL’s axis, andD the miniband width. We describe
the dynamics of electrons by the balance equations [4,9

ÙV  2eEtotstdymsE d 2 gyV ,
ÙE  2eEtotstdV 2 g´sE 2 E s0dd , (1)

ÙEsc  4peNVye0 2 aEsc ,

whereV std andE std are the electron velocity and energ
averaged over the time-dependent distribution functi
satisfying the Boltzmann equation, andgy and g´ are
phenomenological relaxation constants for the avera
velocity and energy, respectively. Elastic scattering
impurities, interface roughness, and structural disord
contribute togy; inelastic phonon scattering dominate
g´. The parameterE s0d describes the electron equilibrium
energy [4], which is a function of the lattice temperatur
Also appearing in (1) is the energy-dependent effecti
massmsE d  m0s1 2 2E yDd21, wherem0 ; 2 h̄2

Da2 . The
first two balance equations, obtained in [4], have be
well studied, while the third equation describing the se
consistent field—which is discussed below—has on
recently been introduced [9].

The electric field acting on the electrons,Etotstd 
Escstd 1 Eextstd, is the sum of the external ac fieldEextstd
and the self-consistent fieldEscstd, which incorporates the
© 1998 The American Physical Society 2669



VOLUME 80, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 23 MARCH 1998

t;

-
ly

so

e

g

f

ir

t

t

s

l
s

e

air
influence of the circuit and of the repulsive interactio
with other electrons on a single electron’s dynamics. T
phenomenological constanta describes the relaxation o
the self-consistent field [9]. The self-consistent field
related to the voltageU across the SSL byEsc  Uyl.
The current density through the SSL consists of tw
parts: the displacement currentjdisp 

e0

4p
ÙEsc (e0 is the

average dielectric constant for the SSL) and the curr
of ballistic electronsj  2eNV , where V is the solu-
tion to Eqs. (1). Kirchoff ’s equation for the resistively
shunted SSL, fse0y4pd ÙEsc 2 eNV gS 1 sEscldyR  0,
provides the circuit’s contribution to the damping of th
self-consistent field,acir  sRCd21, C 

e0S
4pl ; the total

damping rate is the sum of the rates from the extern
circuit and internal mechanisms. The self-consistent fie
is responsible for the novel nonlinear effects of symme
breaking and phase locking that we observe. Introduc
the scaled variablesF std  eaEscstdyh̄, y  m0Vayh̄,
and w  sE 2 Dy2d sDy2d21, so that the lower (upper)
edge of the miniband corresponds tow  21 (w  11),
we obtain the self-consistent set of equations

Ùy  fF std 1 vs cosVtgw 2 gyy ,

Ùw  2fF std 1 vs cosVtgy 2 g´sw 2 ws0dd , (2)
ÙF  v2

cy 2 aF .

Herevs  seaE0dyh̄ andvc  fs2pe2Na2Ddysh̄2e0dg1y2,
wherevc is a characteristic frequency that can be inte
preted as a miniband plasma frequency [9]. Throug
out this paper we assume that initially the electrons
the SSL are at the bottom of miniband,ws0d  21, with
both current and voltage absent,ys0d  F s0d  0, and
that the electrons relax to the bottom of the miniband, i.
ws0d  21, wherews0d  sE s0d 2 Dy2d sDy2d21.

Since we are here interested primarily in stationa
solutions of (2), we do not consider transient effects. T
appearance of a dc current and a dc bias indicates
presence of the zeroth Fourier harmonic in the station
solutions for ystd and F std. Hence, we first establish
how the existence of these zeroth harmonics relates to
symmetry properties of (2). Note that the appearance
these zeroth harmonics is accompanied by other (norm
forbidden) even harmonics in the current, e.g., the seco
harmonic.

The following transformation leaves the system (
invariant:

y ! 2y, F ! 2F , t ! t 1 Tsymy2 ,

Tsym ; s2n 1 1dT ,
(3)

where n is an integer andT  2pyV is the period of
the external ac field. Thus, for any solution of syste
(2) hystd, wstd, F stdj, there exists a symmetry-relate
“conjugate” solution h2yst 1 Tsymy2d, wst 1 Tsymy2d,
2F st 1 Tsymy2dj. Physically, the transformation (3)
demonstrates that both signs of electron velocityy and
self-consistent field (voltage)F are equivalent in an SSL
driven by an ac field without dc bias; in contrast, th
2670
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lower and upper edges of the miniband are not equivalen
thusw!y 2 w.

Whengy  g´  0, Eqs. (2) can be transformed [9] to
the resistively shunted junction (RSJ) model familiar from
the theory of Josephson junctions [10]. Since in this limit
ing case symmetry properties have been applied effective
to characterize and interpret solutions, we expect this al
to be true in the present, more general case.

The form of the symmetry transformation suggests th
use of a stroboscopic map of periodTy2 to characterize
the solutions of system (2): this amounts to considerin
y, w, F at discrete timestn  nTy2, where n is an
integer. We are especially interested in the projection o
this stroboscopic phase portrait onto they-F plane. Let
fstd be one of the variablesystd or F std and denote by
kfl the value off averaged over a large time interval. By
analogy to the RSJ model [10,11], we have the following
natural classification for attractors of (2) based on the
symmetry properties.

(i) A symmetric limit cycleis a solution that obeys
the equality2fst 1 Tsymy2d  fstd, which implies that
it is periodic with period Tsym  s2n 1 1dT ; as this
period is s2n 1 1d times the external driving period,
this limit cycle is also known as a periods2n 1 1d
solution. TheTy2-stroboscopic plot consists of2s2n 1

1d points, and its projection on they-F plane has
inversion symmetry about the origin. More importantly,
kfl  0, and thereforedc current and bias are absent.
The simplest example of a symmetric limit cycle is
a period-1 solution of the formfstd  Af cosVt 1

Bf sinVt, whereAf andBf are constants.
(ii) For a symmetry-broken limit cycle, the Ty2-

stroboscopic phase portrait in they-F plane lacks
inversion symmetry about the origin. The simples
example is a period-1 solution of the formfstd 
Af cosVt 1 Bf sinVt 1 Cfy2 with zero harmonic
equal toCfy2 (Af, Bf, andCf are constants). This solu-
tion satisfies the equality2fst 1 Tsymy2d  fstd 2 Cf.
Actually, there are two symmetry-related conjugate limi
cycles differing from each other only by the sign of the
constantCf, and for fixed parameters, a trajectory select
one limit cycle depending on its initial conditions. For
our case with fixed initial conditions, a trajectory can
switch to a limit cycle with different symmetry only
when the parameters are varied. This means thatfor
symmetry-broken limit cycles dc current and bias are
nonzeroand their signs are fixed for fixed values of the
system parameters.

(iii) For symmetric chaos, the solutions are aperiodic,
and the Ty2-stroboscopic phase portrait has a fracta
structure with an infinite number of points but possesse
inversion symmetry about the origin of coordinates in
the y-F plane. Such solutions correspond to strang
attractors withkfl  0, andno dc current.

(iv) For asymmetric chaos, the fractal pattern in the
Ty2 stroboscopic representationlacks this y-F inversion
symmetry, and one has a symmetry-related conjugate p
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of strange attractors. For asymmetric chaos,kfl fi 0, and
dc current is spontaneously generated.

We observe all four types of attractors in our mode
The most unusual type of behavior—asymmetric chaos
is illustrated in Fig. 1, which shows a stroboscopic pha
portrait of an attractor lacking inversion symmetry abo
the origin. The symmetry-related conjugate attract
exists but isnot depicted in Fig. 1.

The above symmetry-based classification of attracto
demonstrates that stationary solutions both with and wi
out dc current can be realized in our model. To d
termine where in parameter space the different types
attractors exist, we have undertaken numerical simu
tion of system (2), holding the dissipation rates fixed b
varying the external field strength and frequency. F
modern SSLs, the velocity relaxation times range fro
tens of femtoseconds up to picoseconds. If we ta
g21

y  0.35 ps [8], then atD  22 meV, a  42 nm,
N  1.2 3 1016 cm23, and e0 ø 13 (GaAs), we have
gyyvc  0.1. As a rule, the relaxation time for energy is
an order of magnitude longer than for velocity [12]; there
fore we takeg´yvc  0.01. We chooseayvc  0.01,
which corresponds to a resistance ofR  5.4 kV and
an SSL self-capacitance ofC  0.64 fF (S  1027 cm2,
l  40 3 a  1.68 3 1024 cm). For these parameters
the locations of broken-symmetry attractors are shown
theV–vs plane in Fig. 2. To distinguish genuine symme
try breaking from long transients and rounding errors, w
take advantage of the observed phase locking and mark

FIG. 1. Projection of the half-period stroboscopic phase po
trait on the velocity–self-consistent field plane for asym
metric chaos atVyvc  0.47, vsyvc  0.78, gyyvc  0.1,
g´yvc  ayvc  0.01.
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symmetry broken those solutions havingjkF lj . Vy4.
There exists a small region of asymmetric chaos withkyl
and kF l fi 0. However, the majority of the symmetry-
broken attractors are broken-symmetry limit cycles with
higher even and odd harmonics as well as the zeroth ha
monic [13]. We also observe some solutions with subha
monics, corresponding to period doubling.

The dependence of the spontaneously generated b
and dc current on the frequency of the external field
is indicated in Fig. 3. Recall thatkF l is the long-time
averageof the scaledself-consistent field, i.e., it reflects
the dc component of the spontaneously generated elect
field in the SSL and is in fact equal to the “induced”
Bloch frequency (vB ; eaEdcyh̄  kF l). We observe
from Fig. 3 thatkF l is approximately equal to an integer
multiple of V. This “mode locking” is the analog of the
well-known zero-bias ac Josephson steps in a Josephs
junction (compare in particular our Fig. 3 and Fig. 1
from [10]). But in contrast to the RSJ model, the mode
locking in our case is only approximate—the exact valu
of kF l depends weakly on the field strength,vs. We
observe mode locking for periodic limit cycles as well as
for asymmetric chaos. The efficiency of ac to dc field
conversion, i.e., the ratiovByvs  jEdcyE0j, is often
in the range 0.6–0.67, and the maximal efficiency we
observed isø0.9. Therefore, a resistively shunted SSL
could be an effective THz ac field to dc current converter

From Eqs. (2) it follows that forperiodic solutions
kyl  av22

c kF l. Therefore,if the bias is phase locked
kF l ø nV (n is an integer),then the dc current is

FIG. 2. A plot of region of symmetry-broken motion in the
external field frequency(V)-external field strength(vs) plane.
gyyvc  0.1, g´yvc  ayvc  0.01.
2671
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FIG. 3. Dependence of the spontaneously generated b
kF lyvc on the external field frequencyVyvc at vsyvc  1.5,
gyyvc  0.1, g´yvc  ayvc  0.01.

also proportional tonV. Although this formula cannot
rigorously be defined for aperiodic motion, we observe
the same dependence for asymmetric chaos, at least du
our simulation time of17 3 103 v21

c . To understand
the origin of this phase locking, we recall that the
wave functions of a time-periodic Hamiltonian with
period T can be written as Floquet functions, where
csx, td  exps2ıetyh̄duc sx, td, e is the quasienergy, and
uc is periodic in time with periodT [14]. Further,
as shown by Krieger and Iafrate [15], when an electr
field is applied to a perfect lattice, the Bloch wave
functions evolve as Houston functions until tunnelin
to higher bands occurs. Therefore, in our single-ban
model in the absence of scattering,the electrons would
evolve as Houston functions indefinitely. But Zak ha
demonstrated [14] that for a Houston function to b
a Floquet state, the dc component of the electric fie
must satisfy the relationeEdca  2pnh̄yT , for an integer
n. In scaled units, this equation becomes precise
the phase-locking conditionkF l  nV; intuitively, this
corresponds to resonant photon absorption between St
ladder levels separated by an integer multiple of th
photon energy. Our results demonstrate that this pictu
generally continues to be valid with the inclusion o
scattering, when the Stark levels broaden and the pha
locking condition is only approximately satisfied. In
our situation of an SSL without external bias, the sel
consistent field leads to the spontaneous formation of
Stark ladder with suitable spacing.

We conclude with three comments. First, we estima
the size of the spontaneously generated current correspo
ing to present experimental parameters. ForV  0.9 THz
(Vyvc ø 0.2) and for the typical SSL parameters and dis
sipation constants mentioned above, we find thatIdc ;
seNSDay2h̄d kyl . 28 mA skyl ø 0.002d at field strength
E0 $ E

scrd
0 ø 4 kVycm (v

scrd
s yvc ø 1), which should be

within the parameter range of current experiments [5–8
Second, we stress that the physical situation we consid
2672
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corresponds to transport in doped and/or current-injecte
SSLs, in which only electrons are present; if the carrier
are photogenerated, so that for each electron a hole is a
created, then excitonic binding energy effects, known t
be important in other contexts (see, e.g., [16]), must b
incorporated. How these will alter the situation is the mat
ter of a separate major study. Third, we should distin
guish our results from a recent study by Ignatovet al. [17],
who pointed out that absolute negative conductance in th
voltage-current characteristic of an SSL irradiated by a
ac field of frequencyV could cause an instability of the
zero bias-zero current state, resulting in the switching to
new state with dc voltage per SSL period close toh̄Vye.
These studies apply to abiasedSSL operating in the high
frequency regime, in which there can be no chaos. I
contrast, our studies apply to anunbiasedSSL at lower
frequencies and lower amplitudes of the ac field and in
regime where chaotic behavior may occur.
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