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The problem of the spectrum of magnetopolaron states of a strongly correlated conducting canted
antiferromagnet is solved. The approach used to study the spectrum is based on an atomic
representation and a diagram technique for Hubbard operators. This approach makes it possible
to include strong intra-ion interactions in a first-principles way, and to obtain the dispersion
equation for the magnetopolaron spectrum for arbitrary values of the magnitude of the spin,
temperature, and magnetic field. In the vicinity of the spin-flip transition an analytic
expression is obtained for the spectrum of magnetopolaron states that goes beyond the framework
of the quasiclassical approximation. ©1998 American Institute of Physics.
@S1063-7834~98!03302-4#

In the course of their experimental studies of the desume that the width of the filled valence band is small co
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Haas-van Alphen effect in the heavy-fermion compou
CeCu2Si2, Hunt et al.1 observed an abrupt change in the fr
quency of de Haas-van Alphen oscillations as they scan
through the spin-flip point. In its normal phase, CeCu2Si2 has
antiferromagnetic order with a low value of the Ne´el tem-
perature. Therefore, in the range of strong magnetic fie
and low temperatures, the de Haas-van Alphen effect
coexist with a spin-flip phase transition.

The role of antiferromagnetic order in the de Haas-v
Alphen-effect was discussed in Refs. 2 and 3. Howev
these papers do not predict any change in the period of
oscillations. In Ref. 4 we used a simple model that includ
s2d( f )-exchange coupling between spin moments of
collectivized and localized electrons to demonstrate that
frequency of de Haas-van Alphen oscillations in a condu
ing antiferromagnet could be different on different sides
the spin-flip point. The results of Refs. 2–4 show that it
important to take into account both antiferromagnetism a
the exchange coupling between collectivized and locali
subsystems when attempting to understand experimenta
Haas-van Alphen-oscillation data from first principles.

The latter is also important for strongly correlated sy
tems having low concentrations of current carriers. Examp
of systems that belong to this new class of strongly co
lated systems are, e.g., the rare-earth pnictides~R! with the
general formula RX, where X5Bi, Sb, As, P. The unusua
nature of their galvanomagnetic and thermodynamic prop
ties has led to the formulation of new concepts for constru
ing the ground state of these compensated RX semime
among them the concepts of magnetopolaron liquids
crystals.5,6 Many-body effects play a key role in generatin
these scenarios for electronic structures as well as the p
ence of long-range antiferromagnetic order.

In order to describe the magnetopolaron states of
valence band, we can use the ideas developed in the pa
by Nagaev.7 Here, in keeping with the known peculiarities o
the band structure of rare-earth monopnictides, we will
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pared with the characteristics2 f -interaction energy. In
these narrow-band antiferromagnets, it is well known tha
magnetopolaron narrowing of the band takes place.7 This
phenomenon has been well studied for the collinear ge
etry.

In this paper we find the spectrum of magnetopolar
states of a strongly correlated antiferromagnet under co
tions of large canting of the magnetic sublattices. The use
Hubbard operators8–10 and diagram techniques for them11–16

allow us to derive the required dispersion equation for
spectrum for arbitrary values of temperature, magnetic fie
and spin. In the low-temperature regime we obtain an a
lytic expression for the energies of magnetopolaron state
the neighborhood of the spin-flip transition.

1. HAMILTONIAN OF A STRONGLY CORRELATED
NARROW-BAND ANTIFERROMAGNET

Let us consider a strongly correlated narrow-band a
ferromagnet with hole-type current carriers. We will descri
this system within the framework of thes2d( f )-exchange
model.17 The physics of the narrow-band variant of th
model has been described in detail in Ref. 7. Strong sin
site correlations are conveniently taken into account by
troducing an atomic representation8–10 and the diagram tech
nique for the Hubbard operators.11–16

Let us write the Hamiltonian of the model in the form

H5Hh1Hsd1Hm . ~1!

Here the first term describes the band current carriers
order to describe the antiferromagnetic phase we introd
two sublatticesF andG. Then within the Wannier represen
tation, and taking into account the Hubbard repulsion o
single site, we have
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f f 8 f f 8 B f s f 8s

1(
f gs

t f g~cf s
1 dgs1h.c.!1 (

gg8s

@ tgg82dgg8

3~2mBHs2m!#dgs
1 dg8s

1(
f

Unf↑nf↓1(
g

Ung↑ng↓ , ~2!

where the labelsf , f 8, and g,g8 enumerate sites on theF-
and G-sublattices respectively, and the operatorscf s(cf s

1 )
and dgs(dgs

1 ) describe the processes of annihilation~cre-
ation! of Wannier-representation holes in theF- and
G-sublattices.

The second term of the Hamiltonian~1! describes the
coupling between band carriers and localized spin mom
via thes2d( f )-exchange interaction17

Hsd52A(
f

~Sfsf !2A(
g

~Sgsg!, ~3!

whereA is thes2d( f )-exchange parameter,Sf is a vector
operator for a localized spin on sitef , and sf is a vector
operator for the spin moment of a hole in the Wannier r
resentation for theF sublattice. An analogous definition ca
be made for theG sublattice.

The last term in Eq.~1! describes the Heisenberg inte
action in the subsystem of localized spins, and also its Z
man energy.

When a magnetic field is applied to an isotropic antif
romagnet, its sublattices become canted.18,19 In order to de-
scribe this effect it is convenient to change to local coor
nates so that for each sublattice the equilibriu
magnetization vector is oriented along a new axisOz. We
presented a detailed derivation of the Hamiltonian in lo
coordinates in Ref. 4, along with rules for transforming t
Fermi and spin operators. Using these rules, it is not diffic
to write down the HamiltonianH8. In this case

Hh85 (
f f 8s

t f f 8cf s
1 cf 8s1 (

gg8s

tgg8dgs
1 dg8s

1(
f gs

t f g~cosucf s
1 dgs12s sin ucf s

1 dgs1h.c.!

1(
f s

$mBH sin ucf s̄
1

cf s2~2mBH cosus2m!

3cf s
1 cf s%1(

f
Unf↑nf↓2(

gs
$mBH sin udgs

1 dgs

12~mBH cosus2m!dgs
1 dgs%1(

g
Ung↑ng↓ .

~4!

The Hamiltonian for thes2d( f )-exchange interaction re
mains unchanged:Hsd8 5Hsd . For the subsystem of localize
spin moments the transformed operator is given by the
pression
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2gmBHH(
f

Sf
z~u!1(

g
Sg

z~u!J
1(

f g
K f g$cos 2u~Sf

xSg
x1Sf

zSg
z!1Sf

ySg
y

1sin 2u~Sf
zSg

x2Sf
xSg

z!%. ~5!

It is clear from Eq.~4! that the noncollinear phase is chara
terized not only by au-dependent effective overlap integr
but also by an additional operator term corresponding f
mally to a hole hopping from site to site, accompanied b
change in the projection of the spin moment.

2. THE NARROW-BAND ANTIFERROMAGNET IN ITS
NONCOLLINEAR PHASE IN THE ATOMIC
REPRESENTATION

In studying narrow-band antiferromagnets it is assum
that the following inequality holds between th
s2d( f )-exchange constant and the overlap integr
ut f gu!uAu. Therefore, thes2d( f ) coupling between local-
ized and collectivized subsystems must be taken into acc
exactly.7,12 To this end, we separate out terms from the to
HamiltonianH8 that contain only single site operators:

H ion5(
f

$2A~Sfsf !2H̄Sf
z2hs f

z2h's f
x1Unf↑nf↓%

1(
g

$2A~Sgsg!2H̄Sg
z2hsg

z1h'sg
x1Ung↑ng↓%,

~6!

where the effective fieldH̄ includes the self-consistent field

H̄5gmBH cosu1I 0R2K0 cos 2uR, R5
1

N (
f

^Sf
z&.

~7!

Here I 0 and K0 are Fourier transforms of the exchange p
rameters for zero quasimomentum. The longitudinal a
transverse components of the magnetic field acting on a
are determined by the expressions

h52mBH cosu, h'522mBH sin u. ~8!

In what follows we will assume that the Hubbard repulsion
so strong that we can neglect states of two holes on a si
site. Since in reality the inequalitiesuAu@H̄, uAu@h, uh'u
hold, the Schroedinger problem of finding eigenstates of
single-site operator in the noncollinear phase can be so
by following a simple kind of perturbation theory.

As is well known,17 the s2d( f )-exchange operato
2A(Ss) has two eigenstates with energiesEa52AS/2
when the total momentJ5S11/2 andEb5A(S11)/2 when
J5S21/2. For narrow-band magnets we can limit our d
cussion to only those single-site states that correspond to
smaller energy.7 For A,0, the states of interest ar
(n51, 2, . . . , 2S)
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If we treat the remaining terms of the single-ion Hamiltoni
by perturbation theory, it is not difficult to construct a bas
of single-ion statesucn&. In this case the energy spectrum
the one-hole states can be written in the form

En5«11«~n21!1
2n22S21

~2S11!2 S v2

« D , n51, 2, . . . , 2S,

«15
A~S11!

2
2H̄S S2

1

2S11D1
h

2

2S21

2S11
,

«5
2S12

2S11
H̄2

h

2S11
, v5mBH sin u. ~10!

Knowing the solution to the single-ion problem, it is n
difficult to write down a representation for the Fermi ope
tors cf s andcgs in terms of the Hubbard operatorsXf

a .11–14

cf s5(
nM

^M ucf sucn&Xf
Mn[(

a
gs~a!Xf

a . ~11!

Here the labelalpha identifies the transition of an ion from
stateucn& to a stateuM & corresponding to the ion without
hole with spin moment projectionM . For theG sublattice
the representation can be written in the form

cgs5(
a

ḡs~a!Xg
a . ~12!

In this description we have included the fact that the sing
ion problem for theG sublattice differs from the same prob
lem for theF sublattice only by a change in the sign of th
angleu. It is obvious that the parameters of the represen
tion gs(a) are in reality functions of the angleu. For brevity
we will use the following written forms:gs(u,a)[gs(a),
ḡs(a)[gs(2u,a).

Using Eqs.~11! and~12!, we find the following form for
the total Hamiltonian in the atomic representation:

H85H ion8 1H int , ~13!

where

H ion8 5(
f M

EMXf
MM1(

gM
EMXg

MM1(
f n

~En2m!Xf
nn

1(
gn

~En2m!Xg
nn . ~14!

The operatorH ion8 differs from H ion in Eq. ~6!. First of all,
H ion8 is written in the atomic representation; secondly, inH ion8
we used a truncated basis corresponding to states of the
est multiplet.

In Eq. ~14! the first two terms take into account th
single-ion states without holes with energiesEM52H̄M ,
M5S, S21, . . . , 2S. The remaining terms in Eq.~14! cor-
respond to inclusion of states with a single hole.

Let us write the interaction operator in a form that
convenient for applying the diagram technique for Hubb
operators:
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Here, in the interest of abbreviating the description, we h
denoted summation over the sublattices as sums overA and
A8, where the variablesA andA8 can take on two values:F
and G. The matrix elements of the interaction operator a
defined by the expressions

Vs
ab~ f , f 8!5t f , f 8gs~a!gs~b!,

Vs
ab~g,g8!5tg,g8ḡs~a!ḡs~b!,

Vs
ab~ f ,g!5t f ,g@cosugs~a!ḡs~b!

12s sin ugs~a!ḡs̄~b!#,

Vs
ab~g, f !5t f ,g@cosuḡs~a!gs~b!

12s sin uḡs̄~a!gs~b!#. ~16!

3. GREEN’S FUNCTIONS AND DISPERSION EQUATION

In order to compute the spectrum of Fermi-type, we
troduce into the discussion the Matsubara Green’s func
in its atomic representation:

Gab
AA8~ l t,l 8t8!52^TtX̃l

a~t!X̃l 8
2b

~t8!&, ~17!

where the lattice labell ( l 8) takes on a set of values corre
sponding to theA(A8) sublattice. The remaining notation
are standard and are contained in Refs. 11 and 16. The
lowing graphical equation can be written for the Four
transformsGabAA8(k,vn) in the simplest approximation:

~18!

In this graphical equation, a thin lineA/a corresponds to the
intra-ion propagator

Ga~vn!5@ ivn1aE#21, vn5~2n11!pT, ~19!

in which the scalar product of the root vectora and the
vector E is determined by the equatio
aE[a(M ,n)E5EM2En . Because the sublattices are ide
tical and the values of single-ion energy levels for them
the same,Ga(vn) does not depend on the sublattice lab
When the diagrams are written out in analytic form, t
wavy lines correspond to the Fourier transform of the int
action matrix element~16! summed over values of the spi
moment projection. The specific values that label the int
action matrix elements are determined by the labels of
Green’s function lines that join with the wavy line. For e
ample, in Eq.~18! for A5F andA15G the interaction lines
represent the expression

Gq
aa15(

s
Gq@cosugs~a!gs~a1!

12s sin ugs~a!ḡs~a1!#,
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If, however,A5F, A15F, the wavy line corresponds to th
following analytical description:

tq
aa15(

s
tqgs~a!gs~a1!,

tq5
1

N (
f 8

t f f 8 exp$ iq~Rf2Rf 8!%. ~21!

The remaining notations are standard and are discusse
detail in Refs. 11 and 15.

From Eq. ~18! there follows a system of equations
analytic form

Gab
FF~k,vn!5dabGa~vn!1Ga~vn!b~a!

3$tk
aa1Ga1b

FF ~k,vn!1Gk
aa1Ga1b

GF ~k,vn!%,

~22!

Gab
GF~k,vn!5Ga~vn!b~a!H tk(

s
ḡs~a!ḡs~a1!Ga1b

GF ~k,vn!

1FGk cosu(
sa1

ḡs~a!gs~a1!

1Gk sin u(
sa1

2sḡs~a!gs~a1!GGa1b
FF ~k,vn!J .

~23!

In solving this system of equations, it is very useful to no
that the nature of the interaction matrix element leads
separability with respect to the labels of the root vect
a,a1 . This separability is quite evident from Eqs.~20! and
~21!. Using the methods for solving equations with separa
kernels,13,14we find that the dispersion equation can be w
ten in the form

05@~12tkL↑↑!
22Gk

2M ↑↑
2 #@~12tkL↓↓!

22Gk
2M ↓↓

2 #

1Gk
4M ↑↓

2 M ↓↑
2 12~Gk

2M ↑↓M ↓↑2tk
2L↑↓

2 !@~12tkL↑↑!

3~12tkL↓↓!2Gk
2M ↑↑M ↓↓#12tkGk

2L↑↓

3~M ↑↓2M ↓↑!~M ↑↑2M ↓↓!1tk
2L↑↓

2 @ tk
2L↑↓

2

2Gk
2~M ↑↓

2 1M ↓↑
2 !#, ~24!

where

Lss1
~v!5(

a
ḡs~a!ḡs1

~a!Ga~v!b~a!,

Mss1
~v!5Lss8~v!cosu1~2s1!Lss̄1

~v!sin u. ~25!

In studying the de Haas-van Alphen-effect it is the lo
temperature regime that is of primary interest to us. T
regime is defined mathematically by the inequalityT!TN . It
is well known that occupation numbers for single-ion sta
are distributed according to atomic statistics. Therefore
the temperature range of interest to us, only the numbersN1

and NS are interesting, while the others are exponentia
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tions that participate in forming the collective quasipartic
spectrum, and simplifies the form of the dispersion equat
In fact, whenT!TN contributions come only from thos
transitions in which at least one of the low-lying states of t
multiplets participates, with a hole or without one.

Another factor that allows us to simplify the structure
the dispersion equation is the existence of the small par
eter (n/«). We will carry all calculations out to quadrati
accuracy in this parameter. The need to do calculation
this level of accuracy is dictated by considerations involvi
effects that are;u2 in the neighborhood of the transitio
from the canted to the collinear phase.

4. SPECTRUM OF HOLES IN A NEIGHBORHOOD OF THE
SPIN-FLIP TRANSITION

After calculating the functionsLs1s2
and Ms1s2

to the
specified accuracy, we obtain the dispersion equation in
following form:

~12Gk
2M ↑↑

2 !~12Gk
2M ↓↓

2 !12Gk
2M ↑↓M ↓↑

3~12Gk
2M ↑↑M ↓↓!50, ~26!

where we assume that analytic continuation has already b
done. For simplicity we assume that the only nonzero ma
elements are thoset l 8 which correspond to hopping of
charge carrier between nearest neighbors.

Solving Eq.~26!, we find the branch of Fermi excitation
of interest to us:

E~k!5
A~S11!

2
1

H̄

2S11
1

h

2

2S21

2S11
2

2S

2S11
uGkucosu

1N1H 2S21

~2S11!3 S v
« D 2

uGku

1
2~2S21!

~2S11!2 S v sin u

« D uGku2
2S21

~2S11!2 S v2

« D
2

sin2 u

2S11
uGkuJ . ~27!

It is clear that forH5Hc , whenu50 this spectrum become
the polaron spectrum obtained previously by Nagaev.7

These expressions for the spectrum of magnetopola
states of an antiferromagnet in the canted phase are fu
mental for studying many kinetic and galvanomagnetic p
nomena in conducting antiferromagnets in a magnetic fie
This statement is especially true for the de Haas-van Alp
effect in these systems. Limitations of space have not
lowed us to discuss studies of the influence of magneto
laron states on magnetic moment oscillations in a quantiz
magnetic field here. The corresponding results based on d
vations in this work will be published in a separate artic
We note here, however, that the expressions obtained
allow us to follow the temperature evolution of magnetop
laron states. This information is necessary, for examp
when temperature behavior of magnetoresistance in cond
ing antiferromagnets is investigated.
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