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The problem of the spectrum of magnetopolaron states of a strongly correlated conducting canted
antiferromagnet is solved. The approach used to study the spectrum is based on an atomic
representation and a diagram technique for Hubbard operators. This approach makes it possible
to include strong intra-ion interactions in a first-principles way, and to obtain the dispersion

equation for the magnetopolaron spectrum for arbitrary values of the magnitude of the spin,
temperature, and magnetic field. In the vicinity of the spin-flip transition an analytic

expression is obtained for the spectrum of magnetopolaron states that goes beyond the framework
of the quasiclassical approximation. €98 American Institute of Physics.
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In the course of their experimental studies of the desume that the width of the filled valence band is small com-
Haas-van Alphen effect in the heavy-fermion compoundpared with the characteristis— f-interaction energy. In
CeCuySi,, Huntet al® observed an abrupt change in the fre- these narrow-band antiferromagnets, it is well known that a
guency of de Haas-van Alphen oscillations as they scanneaiagnetopolaron narrowing of the band takes pladdis
through the spin-flip point. In its normal phase, Ce8ighas phenomenon has been well studied for the collinear geom-
antiferromagnetic order with a low value of the &lgem-  etry.
perature. Therefore, in the range of strong magnetic fields In this paper we find the spectrum of magnetopolaron
and low temperatures, the de Haas-van Alphen effect wilbtates of a strongly correlated antiferromagnet under condi-
coexist with a spin-flip phase transition. tions of large canting of the magnetic sublattices. The use of

The role of antiferromagnetic order in the de Haas-varHubbard operatofs'®and diagram techniques for thétn'®
Alphen-effect was discussed in Refs. 2 and 3. However@llow us to derive the required dispersion equation for the
these papers do not predict any change in the period of the&Pectrum for arbitrary values of temperature, magnetic field,
oscillations. In Ref. 4 we used a simple model that includecnd spin. In the low-temperature regime we obtain an ana-
s—d(f )-exchange coupling between spin moments of thdytic expression for the energies of magnetopolaron states in
collectivized and localized electrons to demonstrate that théhe neighborhood of the spin-flip transition.
frequency of de Haas-van Alphen oscillations in a conduct-
ing antiferromagnet could be different on different sides of
the spin-flip point. The results of Refs. 2—4 show that it is
important to take into account both antiferromagnetism and
the exchange coupling between collectivized and localized- HAMILTONIAN OF A STRONGLY CORRELATED
subsystems when attempting to understand experimental JQURROW-BAND ANTIFERROMAGNET

Haas-van Alphen-oscillation data from first principles. . .
b P b Let us consider a strongly correlated narrow-band anti-

The latter is also important for strongly correlated sys- ) A . .
P gy y ferromagnet with hole-type current carriers. We will describe

tems having low concentrations of current carriers. Exampleg.. .
g . P ﬁms system within the framework of the-d(f )-exchange
of systems that belong to this new class of strongly corre-

lated systems are, e.g., the rare-earth picti@swith the model!” The physics of the narrow-band variant of this
WS ) model has been described in detail in Ref. 7. Strong single-
general formula RX, where %Bi, Sb, As, P. The unusual

. : . site correlations are conveniently taken into account by in-
nature of their galvanomagnetic and thermodynamic proper- . . ’ .
. ; troducing an atomic representatiotf and the diagram tech-
ties has led to the formulation of new concepts for construct- . 16
: . nique for the Hubbard operatots.
ing the ground state of these compensated RX semimetals, : o .

Let us write the Hamiltonian of the model in the form

among them the concepts of magnetopolaron liquids and

crystals>® Many-body effects play a key role in generating H=Hp+Hgeq+Hp. (1)
these scenarios for electronic structures as well as the pres-
ence of long-range antiferromagnetic order. Here the first term describes the band current carriers. In

In order to describe the magnetopolaron states of therder to describe the antiferromagnetic phase we introduce
valence band, we can use the ideas developed in the papeveo sublatticed= andG. Then within the Wannier represen-
by NagaeV. Here, in keeping with the known peculiarities of tation, and taking into account the Hubbard repulsion on a
the band structure of rare-earth monopnictides, we will assingle site, we have
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where the labeld,f’, andg,g’ enumerate sites on tHe-  Itis clear from Eq.(4) that the noncollinear phase is charac-
and G-sublattices respectively, and the operators(c;,) terized not only by af-dependent effective overlap integral
and dgu'(dg(r) describe the processes of annihilatitere- but also by an addit'ional oper.ator term corresponding for-
ation) of Wannier-representation holes in the- and Mmally to a hole hopping from site to site, accompanied by a
G-sublattices. change in the projection of the spin moment.

The second term of the Hamiltonigid) describes the
coupling between band carriers and localized spin moments

via thes—d(f )-exchange interactidf 2. THE NARROW-BAND ANTIFERROMAGNET IN ITS
NONCOLLINEAR PHASE IN THE ATOMIC
REPRESENTATION
Hsd=—AZ @«n)—A% (Sy05), &)

In studying narrow-band antiferromagnets it is assumed
that the following inequality holds between the
s—d(f )-exchange constant and the overlap integral:
ltegl<|A|. Therefore, thes—d(f ) coupling between local-
ized and collectivized subsystems must be taken into account
exactly/'2 To this end, we separate out terms from the total

HamiltonianH’ that contain only single site operators:

whereA is thes—d(f )-exchange paramete®; is a vector
operator for a localized spin on sife and o is a vector
operator for the spin moment of a hole in the Wannier rep
resentation for thé& sublattice. An analogous definition can
be made for thé& sublattice.

The last term in Eq(1) describes the Heisenberg inter-
action in the subsystem of localized spins, and also its Zee- _
man energy. Hion= Z {=A(Sto1) —HS{—hof—h, of+Ungn }

When a magnetic field is applied to an isotropic antifer-
romagnet, its sublattices become cantétf.In order to de-
scribe this effect it is convenient to change to local coordi-
nates so that for each sublattice the equilibrium
magnetization vector is oriented along a new iz We (6)

presented a detailed derivation of the Hamiltonian in localyhere the effective fieldH includes the self-consistent field:
coordinates in Ref. 4, along with rules for transforming the

Fermi and spin operators. Using these rules, it is not di||iCU|li | 1 v4
= H cos 6+ 1,R—K, cos %R, R E S).
gug 0 0 - < f)

+§ {—A(Sy05) —HS;—hof+h, of+Ungng },

to write down the Hamiltoniand’. In this case N
)
Hf= E tisCl Crpt 2 tgg,dg(,dg,(, Herel, andK, are Fourier transforms of the exchange pa-
fi'o 9’ rameters for zero quasimomentum. The longitudinal and
. . ) transverse components of the magnetic field acting on a hole
+ fE tg(COS OCt,dg,+ 20 sin 6c¢,dg,+h.c) are determined by the expressions
go
h=2ugH cosd, h,=—2ugH sin 6. (8)
. +
+ fE {mgH sin oc, ¢, —(2ugH cosfo—u) In what follows we will assume that the Hubbard repulsion is

so strong that we can neglect states of two holes on a single

site. Since in reality the inequalitigd\|>H, |A|>h, |h,|

hold, the Schroedinger problem of finding eigenstates of the

single-site operator in the noncollinear phase can be solved

by following a simple kind of perturbation theory.

As is well known!’ the s—d(f )-exchange operator
4) —A(So) has two eigenstates with energiég=—AS2
when the total moment= S+ 1/2 ande,= A(S+1)/2 when

The Hamiltonian for thes—d(f )-exchange interaction re- J=S—1/2. For narrow-band magnets we can limit our dis-

mains unchangedi = Hgq. For the subsystem of localized cussion to only those single-site states that correspond to the

spin moments the transformed operator is given by the exsmaller energy. For A<O0, the states of interest are

pression (n=1,2, ..., 5

xcrgcfg}+2 Unanu—; {ugH sin 6dg,dg,
g

9
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o . ) _ . Here, in the interest of abbreviating the description, we have
If we treat the remaining terms of the single-ion Hamiltonian yenoted summation over the sublattices as sums Avard
by perturbation theory, it is not difficult to construct a basisAr, where the variablea andA’ can take on two values
of single-ion stategy/,). In this case the energy spectrum of gnq G. The matrix elements of the interaction operator are

the one-hole states can be written in the form defined by the expressions
2n—2S-1 (v? aBig 1
= — - = = V(1) =t 1 ve(@) vo(B),
E,=e;te(n—1)+ (25+1)2 (8), n=12, ..., %5,
ap N — N o
A(S+1) ﬁs 1 ) h2S—1 V(9,9 ) =ty 4 ve(a) vo(B),
g1=——F—— - > ) —
R 2S+1) 225+1 VEE(f,g) =ty 4[COS 07,(@) 7, ()
2S+2 — h . —
_ _ _ ; +20 sin Oy (a) Yy, (B)],
e=5g71 H 2577 v=meH sind. (10 Yol@) ¥o(B)]

. . . . L af = ™
Knowing the solution to the single-ion problem, it is not Vo (9:f )=trglcOSOy,(a)y,(B)
difficult to write down a representation for the Fermi opera- L=
tors ¢, andcg, in terms of the Hubbard operatoxg’ .4 20 sin Gy, (@) y.(B)]. (16)

Cuﬁ% <M|Cfa|¢n>x$ﬂn52 yo(@)XE. (11) 3. GREEN’S FUNCTIONS AND DISPERSION EQUATION

" ¢ In order to compute the spectrum of Fermi-type, we in-
Here the labehlphaidentifies the transition of an ion from troduce into the discussion the Matsubara Green’s function
state|¢,,) to a statgM) corresponding to the ion without a in its atomic representation:

hole with spin moment projectioM. For theG sublattice , o

the representation can be written in the form Gha (Inl'7")= —(TXMDX (7)), 17

where the lattice labdi(l’) takes on a set of values corre-
sponding to theA(A’) sublattice. The remaining notations

. i . . tandard and tained in Refs. 11 and 16. The fol-
In this description we have included the fact that the smgle-are standard and are contained In Rets an €10

) . . lowing graphical equation can be written for the Fourier
ion problem for theG sublattice differs from the same prob- / : : P

. . . transformsG , ;AA’ (k, th lest tion:
lem for theF sublattice only by a change in the sign of the ransiormsqp (K, y) in the simplest approximation

I3

Coo= % Yol@)XE. (12)

angle 6. It is obvious that the parameters of the representa- 4 4 _ A \'4 o + '4 AV 4 7\'1 .
tion v, () are in reality functions of the angle For brevity a /3 o /3 a a B

we will use the following written formsy (6, a)=vy,(«a),

Yol@)=v,(—0,a). (18)

Using Eqgs.(11) and(12), we find the following form for
the total Hamiltonian in the atomic representation:

H'=Hipnt Hings (13)

on

In this graphical equation, a thin lin® « corresponds to the
intra-ion propagator

G wy)=[lw,+aE]"Y, w,=2n+1)=T, (19

where . .
in which the scalar product of the root vectarand the

vector E is determined by the equation
aE=a(M,n)E=Ey —E, . Because the sublattices are iden-
tical and the values of single-ion energy levels for them are
+> (En_M)Xgn- (14) the same,Ga_(wn) does not d_epend on the sub!attice label.
gn When the diagrams are written out in analytic form, the

Hi’on:% EMX?AM"_QEM EMX'E\;AM—’_% (En_M)X?n

The operatoH ... differs from Hy, in Eq. (6). First of all wavy lines correspond to the Fourier transform of the inter-

' is written in the atomic representation; secondlykif, action matrix elemen(16) summed over values of the spin

fon . . moment projection. The specific values that label the inter-
we used a truncated basis corresponding to states of the low- . . .
est multiplet. action matrix elements are determined by the labels of the

In Eq. (14) the first two terms take into account the Greeng function lines 1hat jomn W'_th the wavy Ilng. Fpr ex-
) i , , , — ample, in Eq(18) for A=F andA;=G the interaction lines
single-ion states without holes with energieg=—HM,

o ; represent the expression
M=S, S—1,...,—S. The remaining terms in Eq14) cor-
respond to inclusion of states with a single hole. way
Let us write the interaction operator in a form that is I _g e[ cos Oyq(a)yo(ay)
convenient for applying the diagram technique for Hubbard o
operators: +20 sin Oy (a)y.(a1)],
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1 _ small. This greatly decreases the number of intra-ion transi-
] > trg explia(Ri—Ry)}. (200 tions that participate in forming the collective quasiparticle
g spectrum, and simplifies the form of the dispersion equation.
If, however,A=F, A;=F, the wavy line corresponds to the In fact, whenT<Ty contributions come only from those

following analytical description: transitions in which at least one of the low-lying states of the
multiplets participates, with a hole or without one.
tgalz 203 tqYo(@) Vo(ar), Another factor that allows us to simplify the structure of

the dispersion equation is the existence of the small param-
1 eter (v/e). We will carry all calculations out to quadratic
tq:N >t expliq(Re—R¢r)}. (21)  accuracy in this parameter. The need to do calculations to
f! this level of accuracy is dictated by considerations involving
The remaining notations are standard and are discussed @ifects that are~ 6% in the neighborhood of the transition
detail in Refs. 11 and 15. from the canted to the collinear phase.
From Eq.(18) there follows a system of equations in
analytic form
4. SPECTRUM OF HOLES IN A NEIGHBORHOOD OF THE
Geup(Ki0n) = 80gGal @) +Gofwn)b(a) SPIN-FLIP TRANSITION

aa FF aa GF
X{t Gy gk @n) + TG p(K, 0n)}, After calculating the functions., ,, andM, , to the

(22) specified accuracy, we obtain the dispersion equation in the
following form:

GSE(k.wn>=Ga<wn>b<a>[tkE Yol @) Yol @) GST5(K, @p) (1-T2M2)(1-T2M?)+2T2M M |,

X(1-TiM ;M )=0, (26)

I’ cos 021 Yol@)yolas) where we assume that analytic continuation has already been

done. For simplicity we assume that the only nonzero matrix
GFF (K, )]_ elements are thosg: which correspond to hopping of a
@i charge carrier between nearest neighbors.
23) Solving Eq.(26), we find the branch of Fermi excitations

of interest to us:
In solving this system of equations, it is very useful to note

+

+T sin 02, 207y,(@) ye(ar)

ogaq

that the nature of the interaction matrix element leads tq. || _ A(S+1) N H +E23—1 25 I\ Jcos 6
separability with respect to the labels of the root vectors 2 2S+1 22S+1 2S+1'° K
a,aq. This separability is quite evident from Eq20) and 5 ’
(21). Using the methods for solving equations with separable +N, S—1 3 2) IT,|
kernelst*'*we find that the dispersion equation can be writ- (25+1)°\ e
ten in the form N 2(25-1) (U sin 0)|r | 25-1 (v2>
0=[(1-t,L;)2=TEMZ I[(1—t,L|)>-TiM? ] (25+1)?\ ¢ K (2s+1)%\ ¢
+TEM? MT+2(TEM M —tEL2 )[(1—tyLy ) _sir? 0|r | -
2S+1" M-

Itis clear that foH=H_, when#=0 this spectrum becomes

2 2 2) 2
XMy =M )My =M )+ L7 [l the polaron spectrum obtained previously by Nagaev.

—Fﬁ(M%ﬁMfT)], (24) These expre_ssions for thg spectrum of magnetopolaron
states of an antiferromagnet in the canted phase are funda-

where mental for studying many kinetic and galvanomagnetic phe-
L nomena in conducting antiferromagnets in a magnetic field.

Lwl(w)= 2 yg(a)ygl(a)Ga(w)b(a), This statement is especially true for the de Haas-van Alphen

effect in these systems. Limitations of space have not al-
Mwl(w)=Lwr(w)cos0+(201)Lagl(w)sin 0. (25 lowed us to discuss stgdies of the in_flue_nce _of magnet_o_po—
laron states on magnetic moment oscillations in a quantizing
In studying the de Haas-van Alphen-effect it is the low- magnetic field here. The corresponding results based on deri-
temperature regime that is of primary interest to us. Thisvations in this work will be published in a separate article.
regime is defined mathematically by the inequalitg Ty . It ~ We note here, however, that the expressions obtained will
is well known that occupation numbers for single-ion statesallow us to follow the temperature evolution of magnetopo-
are distributed according to atomic statistics. Therefore, idaron states. This information is necessary, for example,
the temperature range of interest to us, only the numNers when temperature behavior of magnetoresistance in conduct-
and Ng are interesting, while the others are exponentiallying antiferromagnets is investigated.
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