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Dimer state in the two-dimensional anisotropic alternated-exchange Heisenberg model
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An analysis is made of the two-dimensional Heisenberg model withS51/2, anisotropic
exchange interaction between nearest neighbors, and alternating exchange in two directions,@100#
and @010# ~corresponding to condensation of the (p,p) mode! and in one direction@100#
~corresponding to condensation of the (p, 0) mode!. The quantum Monte Carlo method is used
to calculate the thermodynamic characteristics and the spin correlation functions which are
used as the basis to determine the boundary of stability of an anisotropic antiferromagnetic with
respect to alternation of exchanged5(12Jx,y/Jz)0.4 in the (p,p) model andd5(1
2Jx,y/Jz)0.31 in the (p,0) model. In the (p,0) model a disordered quantum state exists in the
range (12Jx,y/Jz)0.31,d,~0.3–0.35!. The energy (E20.68)50.36d1.80(6) and
0.21d2.0(5), the energy gap between the ground and excited statesHc(d)51.96d2.(1), 1.8(1)
„d20.35(3)…0.67(2) were determined as a function of the alternation of exchange in the (p,p)- and
(p,0) models, respectively. ©1998 American Institute of Physics.@S1063-7834~98!02506-4#
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Dimerization of the lattice caused by electron–phon
interaction and leading to a spin–Peierls transition in o
dimensional systems has been analyzed in detail in
literature.1,2 Following the discovery of high-temperature s
perconductors, the Peierls instability was investigated us
the two-dimensional half-filled Hubbard model.3,4 In the
strong-attraction limit (U/t)@1 of the adiabatic approxima
tion, an exact diagonalization method5 was used to analyze
the alternating-exchange model which corresponds to
(p,p)- and (p,0) phonon modes. According to these calc
lations, dimerization takes place in the@100# direction.

The region of stability of antiferromagnetic orderin
with respect to exchange alternation was calculated by
merically solving a system of equations for the spin ope
tors in the Schwinger representation using a 40340 lattice6

in the inhomogeneous Hartree–Fock approximation.7,8 In all
cases, the long-range antiferromagnetic order disappear
a critical dimerization of the lattice, which corresponds to
50% change in volume, when the alternation is;0.5J. For
quasi-two-dimensional magnets CuGeO3 ~Ref. 9! and
Cs3Cr2Br9 ~Ref. 10!, in which a transition takes place to th
dimer state, these estimates are not realistic. Possibly
cause of these high estimates of exchange alternation, i
est in studies of two-dimensional alternating exchange m
els has declined.

Three problems are solved here. The first involves de
mining which phonon mode, (p,p) or (p,0), gives the larg-
est magnetic energy per alternated bond. The second
volves studying the stability of the antiferromagne
ordering relative to exchange alternation as a function of
volume anisotropy. The third involves identifying whether
disordered quantum state exists or whether the antiferrom
net is converted directly to the dimer state as the excha
9861063-7834/98/40(6)/5/$15.00
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alternation parameter increases. A quantum Monte C
method based on a trajectory algorithm is used to solve th
problems.11 The basic idea of the algorithm is to transfor
the quantum D-dimensional problem to a classica
D11-dimensional one by introducing ‘‘time’’ cutoffs in the
imaginary time space 0,t,1/T and implementing a Monte
Carlo procedure in the ‘‘imaginary time–coordinate’’ spac

MODEL AND GROUND STATE OF THE TWO-DIMENSIONAL
HEISENBERG MODEL WITH ALTERNATING EXCHANGE

We consider a two-dimensional lattice with the spi
S51/2 localized at lattice sites. Exchange alternation will
considered using two models. In the first case, alterna
takes place in one of the directions of the lattice~for ex-
ample,@100#! and according to the notation used in Ref. 5,
caused by condensation of the (p,0) phonon mode. In the
second case, alternation takes place in two directions an
caused by condensation of the (p,p) mode, i.e.,Jl ,l 115J0

1d, Jl 11,l 125J02d ~Fig. 1!. This exchange inhomogeneit
may be caused by distortion of the latticeJl ,l 11

c 2Jl 11,l 12
c

5l8(ul2ul 11), where u is the displacement of an atom
from the equilibrium position, or by anharmonicity of th
vibrations. The Hamiltonian in the (p,0) model has the form

H52
1

2 (
i , j 51

L

$Ji , j
z~010!Si

zSj
z1Ji , j

x,y~010!~Si
1Sj

21Si
2Sj

1!/2%

3
1

2 (
i , j 51

L

$„Ji , j
z~100!1~21! jdz

…Si
zSj

z1„Ji , j
x,y~100!

1~21! jdx,y
…~Si

1Sj
21Si

2Sj
1!/2%2(

i 51

N

hzSi
z ,
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and in the (p,p) model

H52
1

2 (
i , j 51

L

$„Ji , j
z 1~21! jdz

…Si
zSj

z1„Ji , j
x,y1~21! jdx,y

…

3~Si
1Sj

21Si
2Sj

1!/2%2(
i 51

N

hzSi
z ,

where Jz,x,y,0 is the anisotropic interaction,Jz.Jx,y,
D512Jx,y/Jz, dz(x) is the exchange alternation paramet
H5hz/J is the external magnetic field, andL is the linear
dimension of the lattice (N5L3L) ~Fig. 1a!.

The algorithm and Monte Carlo method were describ
in detail in Ref. 12. The Hamiltonian is divided into cluste
of four spins per square whose commutation is taken
account using the Trotter equation. Here periodic bound
conditions in the Trotter direction and along the lattice a
used in the Monte Carlo procedure. The linear dimension
the lattice isL540, 48, 64 andm516, 24, 32. The numbe
of Monte Carlo steps per spin varied between 3000
10 000. One Monte Carlo step is determined by the flip of
spins on aL3L34m lattice.

We shall determine the order parameter of the dim
from the four-spin correlation function̂S0

zS1
zSr

zSr 11
z & whose

dependence on distance is oscillatory and has a differe
between the minimum and the maximum of^S0

zS1
zSr

zSr 11
z &

2^S0
zS1

zSr 11
z Sr 12

z &. We calculate the pairwise spin–spin co
relation functions for the longitudinal and transverse com
nents of the spins, between which a relation must be satis
at distancer 51 to establish a singlet state.

We determine the region of stability of the antiferroma
netic and dimer states from the spin–spin correlation fu
tions, the dimerization parameter, and the correlation rad
calculated for three temperaturesT/J50.1, 0.15, and 0.2 as
function of the exchange alternation parameter for vari

FIG. 1. Distribution of bonds on the lattice in two models: (p,p) ~a! and
(p,0) ~b!, the arrows indicate a soliton~c!, and the line segments corre
sponds to spin pairs in the singlet state — dimers~d!.
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values of the exchange anisotropyD50, 0.01, 0.05, 0.1,
0.15, 0.2, 0.25, 0.3, 0.4, and 0.5. The critical exchange a
nation dc for which the long-range antiferromagnetic ord
disappears, is determined from the spin–spin correla
functions ^S0

zSr
z&→0 at the distancer 5L/2 calculated for

different lattice dimensions.
Figure 2 gives the spin correlation functions for thr

values of the exchange anisotropy parameterD50, 0.05,
0.25, calculated using the two models of exchange alte
tion. The exchange alternation corresponding to the poin
inflection of the dimerization parameterq(d) and the forma-
tion of a dimer state coincides with the critical valuedc for
which antiferromagnetic order is impaired in both the (p,p)
and (p,0) models for the exchange anisotropyD.0.02. For
the isotropic Heisenberg model, the dependenceq(d) is lin-
ear and passes through the origin for (p,p) dimerization
~Fig. 2b! and intercepts thed axis atdc'0.3 for (p,0) ~Fig.
2a!. The spin correlation functions between the near
neighbors along the longitudinal and transverse compon
of the spin do not vary significantly as the exchange alter
tion increases for (p,p) and (p,0) dimerization in the@100#
direction since an isotropic two-dimensional antiferromag
is in the singlet state.13,14 In an anisotropic antiferromagne
in the direction of exchange alternation the correlation fu
tion along the transverse components increases, which
indicates dimer formation, whereas in the@010# direction in
the (p,0) direction,^S0

1S1
2& decreases with increasingd.

The correlation radius in the dimer state diverges follo
ing a power law as the critical valuedc is approached~Figs.
2c and 2d!. For (p,p) dimerization the relationj51/(d
2dc)

b is satisfied, where the exponent decreases with
creasing exchange anisotropy. In the isotropic case, the
relation radius is well approximated byj51/d2.(15) in the
(p,p) model and byj54.(5)/„d20.33(3)…0.70(4) in the
(p,0) model with the critical valuedc50.33(3). Thecorre-
sponding interpolated dependences are given by the da
lines in Figs. 2c and 2d, and to within the calculation error
;10% do not depend on the lattice dimensions as show
the figure forL 5 48 and 64. The calculated dependenc
q(d), j(d), and ^S0

z,1S1
z,2&(d) indicate that alternation o

exchange in two directions in the two-dimensional Heise
berg model is accompanied by the formation of a dimer s
and an anisotropic antiferromagnetic is converted to
dimer state at a certain critical value of the exchange al
nation parameter. A correlation in terms of longitudinal sp
components exists between the dimers in a region of dim
sions;j2, shown in Fig. 1c. In the (p,0) model an ordered
dimer state is formed at the critical valuedc 5 0.3–0.35. The
energy of an isolated dimer isE/J53/2(11d). When two
dimers commute in the@010# direction, as shown in Fig. 1d
the energy is reduced byDE/J53d. If this energy is lower
than the triplet excitation energyDE/J51, then ford,dc

51/3 no ordered dimer state exists. In the (p,0) model the
correlation radius is anisotropic and has a maximum in
@100# direction.

The energy calculated by the Monte Carlo method
the two models, (p,p) and (p,0), and different exchange
anisotropies is accurately fitted by the power depende
„E2E(0)…5Ada, where the exponenta increases with in-
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FIG. 2. Correlation function at the dis
tancer 522 ~5, 6!, 30 ~1!, the dimerization
parameterq ~2–4, 7! for the exchange an-
isotropy D50 ~7!, 0.05 ~1–3, 5!, 0.25
~4, 6! on a lattice L564 ~1, 2, 7!, 48
~3, 5, 6!, and the correlation radiusj for
D50 ~1!, 0.05 ~2, 4!, 0.25 ~3! on 64364
~1, 2! and 48348 ~3, 4! lattices as a func-
tion of the exchange alternation in th
(p,0) ~a, c! and (p,p) ~b, d! models.
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creasing exchange anisotropy. In the isotropic limit in t
(p,p) and (p,0) models, the interpolated dependences
spectively have the form (E20.68)50.36d1.80(6) and
0.21d2.0(5). For d'0.50(4) the energies calculated using t
two dimerization models and normalized to the number
alternated bonds are the same. Ford,0.50(4), the dimer
state energy normalized to the number of alternated bo
has a higher absolute value in the (p,p) model compared to
the (p,0) model, and ford.0.50(4) we find E(p,p)
,E(p,0). In a spin-Peierls transition, the increase in t
magnetic energy achieved by dimerization should exceed
energy loss in the elastic system 0.36d1.80(6)>Ku2/2 or l1.8

>1.4Ku0.2, wherel is the spin–phonon interaction constan
K is the modulus of elasticity,u5uui2uj u is the change in
the distance between nearest neighbors, i.e., as a resu
interaction between the elastic and magnetic subsystem
d,0.5J, dimerization of the magnetic structure takes pla
preferentially in two directions. For large spin–phonon int
action constants, dimers may be formed along one of
translation vectors of the lattice. Calculations made for sm
lattices5 indicate that (p,0) dimerization predominates. Th
may be caused by the finite dimensions of the 434 lattice.
For example, the linear dimension of the lattice is equa
the correlation radius ford50.7, and for this exchange alte
nation the Monte Carlo calculations give (p,0) dimerization.

The boundary of stability of long-range antiferroma
netic order is accurately approximated by the power dep
dence d5(12Jx,y/Jz)0.4 in the (p,p) model andd5(1
2Jx,y/Jz)0.31 in the (p,0) model. In the (p,0) model a dis-
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ordered quantum state exists in the range of parame
d,dc50.2720.33 andD<0.02.

2. DETERMINATION OF THE SEQUENCE OF DIMER
STATE–QUANTUM DISORDERED STATE–PARAMAGNETIC
TRANSITIONS

Calculations of the specific heat and susceptibility a
function of temperature reveal two critical regions and tw
characteristic transition temperatures:Tc1 and Tc2. Below
Tc1 the temperature dependence of the specific heat and
susceptibility is accurately approximated by an exponen
dependence which indicates that there is an energy gap in
excitation spectrum. In the rangeTc1,T,Tc2 the behavior
of C(T) obeys a power law. At low temperaturesT,Tc1 an
ordered dimer state is conserved in both models. The dim
ization parameterq, the correlation radius, and the correl
tion functions along the longitudinal spin components at d
tancer 51 depend fairly weakly on temperature forT,Tc1

~Fig. 3!. This is because the excitations are spinons~a con-
cept introduced by Anderson13!, i.e., the dimer breaks down
into two spins separated by a certain distance. This t
of excitation may be represented as a soliton, as show
Fig. 1c. At Tc1 soliton percolation occurs and in the rang
Tc1,T,Tc2 a soliton gas forms. With increasing temper
ture, the soliton density increases, the average distance
tween them decreases, and the correlation radius is there
reduced. NearTc2 the temperature dependence of the cor
lation radiusj(T) may change from exponential to a pow
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FIG. 3. Temperature dependences of the dimerization parameterq in the @100# direction, the correlation radiusj in the @010# direction for D50.05,
d50.65 ~1!, D50.0, d50.5 ~2, 3! for L564 ~1, 2!, 48 ~3! and the static magnetic structure factorSz(Q) for Q5p in the @010# ~1, 3!, and @100# ~1, 2!
direction forD50.05,d50.65 ~2, 3!, andD50.0, d50.35 ~1! in the dimer state for the (p,0) model.
e
im e is
dependence~Fig. 3!. The correlation function̂ S0
z,1S1

z,2&,
and the static magnetic structure factorSz(Q) at Q5p have
two points of inflection caused by a transition from the dim
state to a disordered quantum state having short range d
order and topological excitations~solitons! ~QD! and by a
r
er

quantum disorder–paramagnetic~QD–PM! transition. For
d50.3 in the (p,0) model,Sz(Q) has a single point of in-
flection atTc2 ~Fig. 3!.

The dependence of the DS–QD transition temperatur
accurately described by the power lawTc150.7(d
FIG. 4. MagnetizationM ~a!, correlation radiusj ~inset!, dimerization parameterq ~b!, and spin–spin correlation function atr 51 along the longitudinal (z)
~1, 2! and transverse (1,2) ~3! components of the spin̂S0

z,1S1
z,2& in the (p,0) model,D50.05,d50.65~1! and in the (p,p) model,D50.0,d50.45~2, 3!

~c! as a function of the external field. d — Phase diagram of the dimer state~DS!, the spin flip phase~SF! on the field–exchange alternation plane in the (p,p)
~1! and (p,0) ~2! models for isotropic exchangeD50.
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2dc)
0.50(4) in the (p,0) model, where the parameterdc

shows good agreement with the critical values of excha
alternation in the isotropic casedc50.33(2). For (p,p) al-
ternation of exchangeTc1(d)51.10(7)d2.0(7).

The energy gap between the ground and excited stat
determined from the dependence of the magnetization on
external magnetic field perpendicular to the lattice plane.
example, for the critical fieldHc the magnetization is
MÞ0, and the correlation radius and dimerization parame
decrease abruptly with increasing field in both models~Fig.
4!. The correlation functions for the transverse compone
vary negligibly. Here we can also identify a range of fiel
Hc,H,H* , in which an inhomogeneous magnetic state
ists which disappears whenj→0. The dependenceM (H) is
linear in this range of fields. In fieldsH.H* a classical spin
flip state is formed. Figure 4 gives the critical fields as
function of the exchange alternation for the two models
the isotropic case. In the (p,p) and (p,0) models these
dependences are power lawsHc51.96d2.(1) and Hc

51.8(1)„d20.35(3)…0.67(2), respectively. When exchang
alternates in two directions, the ratioHc /Tc1>1.78 does not
depend on the exchange alternation and in the (p,0) model a
dependence ond is observed which can be approximate
estimated asHc /Tc1;(d20.34)0.17. Thus, this is related to
the anisotropy of the correlation radius. Asd increases, the
magnetic quasi-one-dimensionality increases and the de
of states of the singlet and triplet excitations becomes re
tributed, which is observed as a temperature shift of
maximum specific heat and susceptibility. In the tw
dimensional Heisenberg model we findTCmax/Txmax'0.5,
and in the one-dimensional modelTCmax/Txmax'0.76. In the
ranged'0.5, where the dimer state energies in the two m
els are the same, the energy gaps are also the same.

Thus, asymptotic dependences on the exchange alte
tion of the energies (E20.68)50.36d1.80(6) and 0.21d2.0(5),
e
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and the energy gap between the ground and triplet st
Hc(d)51.96d2.(1) and 1.8(1)„d20.35(3)…0.67(2) were ob-
tained for exchange alternation along two translation vec
or along one of these. The boundaries of stability of an
isotropic antiferromagnet relative to exchange alternationd
5(12Jx,y/Jz)0.4 in the (p,p) model and d5(1
2Jx,y/Jz)0.31 in the (p,0) model were determined. The en
ergy per alternated bond has a higher absolute value in
(p,p) model compared to the (p,0) model for d,0.5.
When exchange alternates along one of the translation
tors, an anisotropic antiferromagnet with the anisotro
D,0.02 is transferred to the dimer state via a disorde
quantum state. This state exists at temperatures betwee
and PM.
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