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An analysis is made of the two-dimensional Heisenberg model 84tl/2, anisotropic

exchange interaction between nearest neighbors, and alternating exchange in two difd€@ns,
and[010] (corresponding to condensation of the, ) mode and in one direction100]
(corresponding to condensation of the,(0) modg. The quantum Monte Carlo method is used
to calculate the thermodynamic characteristics and the spin correlation functions which are
used as the basis to determine the boundary of stability of an anisotropic antiferromagnetic with
respect to alternation of exchange= (1—J*Y/J3%)%#in the (r,7) model ands=(1

—J%Y13%)%3%in the (,0) model. In the r,0) model a disordered quantum state exists in the
range (1-J*Y/3%)%3%< §<(0.3-0.35. The energy E—0.68)=0.3658%®) and

0.2152%0), the energy gap between the ground and excited skhtes) =1.965>(%), 1.8(1)
(6—0.35(3)%¢"( were determined as a function of the alternation of exchange inthe)¢ and
(7r,0) models, respectively. €998 American Institute of Physid$1063-783#08)02506-4

Dimerization of the lattice caused by electron—phononalternation parameter increases. A quantum Monte Carlo
interaction and leading to a spin—Peierls transition in onemethod based on a trajectory algorithm is used to solve these
dimensional systems has been analyzed in detail in theroblemst! The basic idea of the algorithm is to transform
literature® Following the discovery of high-temperature su- the quantum D-dimensional problem to a classical
perconductors, the Peierls instability was investigated using T 1-dimensional one by introducing “time” cutoffs in the
the two-dimensional half-filled Hubbard modé.In the 'Maginary ime space<07j<1fl" and |.mplement|.ng a Monte
strong-attraction limit U/t)>1 of the adiabatic approxima- Carlo procedure in the “imaginary time—coordinate” space.
tion, an exact diagonalization metttodtas used to analyze
the alternating-exchange model which corresponds to the

(7r,7)- and (7,0) phonon modes. According to these calcu-
MODEL AND GROUND STATE OF THE TWO-DIMENSIONAL

lations, dimerization takes place in the0Q] direction.
: o . : . HEISENBERG MODEL WITH ALTERNATING EXCHANGE
The region of stability of antiferromagnetic ordering

with respect to exchange alternation was calculated by nu-  \ye consider a two-dimensional lattice with the spins
merically solving a system of equations for the spin operas=1/2 |ocalized at lattice sites. Exchange alternation will be
tors in the Schwinger representation using &40 lattic€  considered using two models. In the first case, alternation
in the inhomogeneous Hartree—Fock approximafidm all  takes place in one of the directions of the lattier ex-
cases, the long-range antiferromagnetic order disappears fample,[100]) and according to the notation used in Ref. 5, is
a critical dimerization of the lattice, which corresponds to acaused by condensation of ther,0) phonon mode. In the
50% change in volume, when the alternation~i€.5). For ~ second case, alternation takes place in two directions and is
quasi-two-dimensional magnets CuGe@Ref. 9 and caused by condensation of the @) mode, i.e.J; . 1=Jo
Cs;Cr,Br, (Ref. 10, in which a transition takes place to the & Ji+11+2=Jo— & (Fig. 1). This exchange inhomogeneity
dimer state, these estimates are not realistic. Possibly b&2Y be caused by distortion of the lattioR; , 1 = 7y 142
cause of these high estimates of exchange alternation, inteTr:-A (u|—u,+1.)., vyhereu IS the displacement O.f an atom
est in studies of two-dimensional alternating exchange mod o f[he eqU|I|br|um_ po_smo_n, or by anharmonicity of the
els has declined. vibrations. The Hamiltonian in then(,0) model has the form
Three problems are solved here. The first involves deter-
mining which phonon mode, =) or (7,0), gives the larg-
est magnetic energy per alternated bond. The second in-
volves studying the stability of the antiferromagnetic
ordering relative to exchange alternation as a function of the
volume anisotropy. The third involves identifying whether a N
dlso-rdered quantum state exists qr whether the antiferromag- H(—1)IEY)N(STS +S S/ — Z h?s?,
net is converted directly to the dimer state as the exchange ! ! i=1

L
1 f— —
H=—3 X {(I7P0SS+ 3 ™0(s's +575)/2)

i,j=1
L
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4 values of the exchange anisotrogy=0, 0.01, 0.05, 0.1,

I8 T8 (g, ) (w,0)  l[o10] 0.15, 0.2, 0.25, 0.3, 0.4, and 0.5. The critical exchange alter-
I+ 8 [700) nation 6. for which the long-range antiferromagnetic order
disappears, is determined from the spin—spin correlation
7 functions (S{S/)—0 at the distance =L/2 calculated for

different lattice dimensions.
Figure 2 gives the spin correlation functions for three
bl values of the exchange anisotropy parametet0, 0.05,

=_
0.25, calculated using the two models of exchange alterna-

tion. The exchange alternation corresponding to the point of

inflection of the dimerization parametg(s) and the forma-

tion of a dimer state coincides with the critical valég for

which antiferromagnetic order is impaired in both the, )

and (r,0) models for the exchange anisotrafpy-0.02. For

the isotropic Heisenberg model, the dependeg(@® is lin-

ear and passes through the origin far,{) dimerization

(Fig. 2b and intercepts thé axis até,~0.3 for (7,0) (Fig.

[ | 2a). The spin correlation functions between the nearest

c neighbors along the longitudinal and transverse components

o o of the spin do not vary significantly as the exchange alterna-

FIG. 1. Distribution of bonds on the lattice in two modelsz, ¢r) (a) and

(77,0) (b), the arrows indicate a solitoft), and the line segments corre- tlf)n m_crea;es fort’w) an,d (77'0) _dlme“_zatlon |n.the§100]
sponds to spin pairs in the singlet state — dimehs direction since an isotropic two-dimensional antiferromagnet

is in the singlet stat&®>*In an anisotropic antiferromagnet

in the direction of exchange alternation the correlation func-
tion along the transverse components increases, which also
indicates dimer formation, whereas in tf@&10] direction in

ol 11

and in the ¢r,7) model

1 & _ _ the (,0) direction,(S; S; ) decreases with increasing
H=—3 > {QF+(=DIHSIS + 3V +(—1)8Y) The correlation radius in the dimer state diverges follow-
R ing a power law as the critical valu®, is approachedFigs.
N 2c and 2¢. For (,7) dimerization the relationé=1/(8
X(S|+Sj_+si_sj+)/2}_izl h*st, —8.)# is satisfied, where the exponent decreases with in-

creasing exchange anisotropy. In the isotropic case, the cor-

where J?*Y<0 is the anisotropic interaction)>J*Y,  relation radius is well approximated b§=1/5>(1 in the
A=1-JY3% 6 is the exchange alternation parameter,(,7) model and by&=4.(5)/(5—0.33(3)°7°*) in the
H=h?J is the external magnetic field, ard is the linear (7,0) model with the critical valu&.=0.333). Thecorre-
dimension of the latticeN=L X L) (Fig. 1a. sponding interpolated dependences are given by the dashed

The algorithm and Monte Carlo method were describedines in Figs. 2c and 2d, and to within the calculation error of
in detail in Ref. 12. The Hamiltonian is divided into clusters ~10% do not depend on the lattice dimensions as shown in
of four spins per square whose commutation is taken intahe figure forL = 48 and 64. The calculated dependences
account using the Trotter equation. Here periodic boundarg(s), £(8), and (S§"S;~)() indicate that alternation of
conditions in the Trotter direction and along the lattice areexchange in two directions in the two-dimensional Heisen-
used in the Monte Carlo procedure. The linear dimension oberg model is accompanied by the formation of a dimer state
the lattice isL =40, 48, 64 andn=16, 24, 32. The number and an anisotropic antiferromagnetic is converted to the
of Monte Carlo steps per spin varied between 3000 andlimer state at a certain critical value of the exchange alter-
10 000. One Monte Carlo step is determined by the flip of allnation parameter. A correlation in terms of longitudinal spin
spins on aL XL X4m lattice. components exists between the dimers in a region of dimen-

We shall determine the order parameter of the dimersions~ £2, shown in Fig. 1c. In the#,0) model an ordered
from the four-spin correlation functio(S8{S;S;Sr. ;) whose  dimer state is formed at the critical valdg = 0.3—0.35. The
dependence on distance is oscillatory and has a differenanergy of an isolated dimer &/J=3/2(1+ 8). When two
between the minimum and the maximum (&{S{S{S;.,)  dimers commute in thE010] direction, as shown in Fig. 1d,
—(S§S1SF, 1S »)- We calculate the pairwise spin—spin cor- the energy is reduced byE/J=334. If this energy is lower
relation functions for the longitudinal and transverse compothan the triplet excitation energ&E/J=1, then for 6< 4,
nents of the spins, between which a relation must be satisfied 1/3 no ordered dimer state exists. In the,@) model the
at distance =1 to establish a singlet state. correlation radius is anisotropic and has a maximum in the

We determine the region of stability of the antiferromag-[100] direction.
netic and dimer states from the spin—spin correlation func- The energy calculated by the Monte Carlo method for
tions, the dimerization parameter, and the correlation radiuthe two models, f,7) and (7,0), and different exchange
calculated for three temperaturesl=0.1, 0.15, and 0.2 as a anisotropies is accurately fitted by the power dependence
function of the exchange alternation parameter for variousE—E(0))=Ad“, where the exponent increases with in-
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creasing exchange anisotropy. In the isotropic limit in theordered quantum state exists in the range of parameters
(7r,7) and (7,0) models, the interpolated dependences red<45,=0.27—0.33 andA<0.02.

spectively have the form H—0.68)=0.366%®) and

0.215%95), For §~0.50(4) the energies calculated using the

two dimerization models and normalized to the number oé‘T i?E-Egﬂfﬁ;&%ND?gOLHDEEzigUSET'\ACTE OP';\E%\EEGNEHC
alternated bonds are the same. B310.50(4), the dimer

) TRANSITIONS
state energy normalized to the number of alternated bonds

has a higher absolute value in the,¢) model compared to Calculations of the specific heat and susceptibility as a
the (7,0) model, and for5>0.50(4) we find E(,) function of temperature reveal two critical regions and two
<E(w,0). In a spin-Peierls transition, the increase in thecharacteristic transition temperaturel;; and T.,. Below
magnetic energy achieved by dimerization should exceed th€;; the temperature dependence of the specific heat and the
energy loss in the elastic system 0536°®=Ku?/2 orA*®  susceptibility is accurately approximated by an exponential
=1.4Ku%2 where\ is the spin—phonon interaction constant, dependence which indicates that there is an energy gap in the
K is the modulus of elasticitw=|ui—uj| is the change in excitation spectrum. In the range;<T<T., the behavior
the distance between nearest neighbors, i.e., as a result of C(T) obeys a power law. At low temperaturés<T.; an
interaction between the elastic and magnetic subsystems fordered dimer state is conserved in both models. The dimer-
6<0.5J, dimerization of the magnetic structure takes placeization parameteq, the correlation radius, and the correla-
preferentially in two directions. For large spin—phonon inter-tion functions along the longitudinal spin components at dis-
action constants, dimers may be formed along one of théancer =1 depend fairly weakly on temperature for< T,
translation vectors of the lattice. Calculations made for smal(Fig. 3). This is because the excitations are spintmgon-
lattices indicate that ¢r,0) dimerization predominates. This cept introduced by Anderso, i.e., the dimer breaks down
may be caused by the finite dimensions of the# lattice.  into two spins separated by a certain distance. This type
For example, the linear dimension of the lattice is equal taof excitation may be represented as a soliton, as shown in
the correlation radius fof=0.7, and for this exchange alter- Fig. 1c. At T.; soliton percolation occurs and in the range
nation the Monte Carlo calculations give-0) dimerization. T <T<T_, a soliton gas forms. With increasing tempera-
The boundary of stability of long-range antiferromag- ture, the soliton density increases, the average distance be-
netic order is accurately approximated by the power depertween them decreases, and the correlation radius is therefore
dence 6= (1—J%Y/J%)%4* in the (m,7) model andé=(1 reduced. Neall ., the temperature dependence of the corre-
—JY13%%3in the (7,0) model. In the ¢,0) model a dis- lation radiusé(T) may change from exponential to a power
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FIG. 3. Temperature dependences of the dimerization parargeterthe [100] direction, the correlation radiug in the [010] direction for A=0.05,
6=0.65(1), A=0.0, 6=0.5(2, 3) for L=64 (1, 2), 48 (3) and the static magnetic structure fac&Q) for Q= in the [010] (1, 3), and[100] (1, 2
direction forA=0.05,5=0.65(2, 3}, andA=0.0, 5=0.35(1) in the dimer state for thes{,0) model.

dependencedFig. 3. The correlation functionS5*S7~),  quantum disorder—paramagneti@D—PM) transition. For
and the static magnetic structure fac&(Q) atQ== have  §=0.3 in the ¢r,0) model,S(Q) has a single point of in-
two points of inflection caused by a transition from the dimerflection atT,, (Fig. 3).

state to a disordered quantum state having short range dimer The dependence of the DS—QD transition temperature is
order and topological excitationsolitong (QD) and by a accurately described by the power law. ;=0.7(5
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FIG. 4. MagnetizatiorM (a), correlation radiug (insey, dimerization parametey (b), and spin—spin correlation function st 1 along the longitudinalz)
(1, 2 and transverse+,—) (3) components of the spiB5 ™Sy ™) in the (7,0) model,A=0.05,5=0.65(1) and in the ¢r,7) model,A=0.0,5=0.45(2, 3
(c) as a function of the external field — Phase diagram of the dimer stéf¥S), the spin flip phas€SH on the field—exchange alternation plane in thex)
(1) and (7,0) (2) models for isotropic exchangke=0.
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—6.)%%°™) in the (7,0) model, where the parametéf,  and the energy gap between the ground and triplet states
shows good agreement with the critical values of exchangeéls(8)=1.965>(1) and 1.8(1)5—0.35(3)°¢"() were ob-
alternation in the isotropic cas®&=0.332). For (7,7) al-  tained for exchange alternation along two translation vectors
ternation of exchang@.;(8)=1.10(7)5>%". or along one of these. The boundaries of stability of an an-

The energy gap between the ground and excited states iisotropic antiferromagnet relative to exchange alternation
determined from the dependence of the magnetization on the (1—J*¥/J%)%4 in the (m,m) model and §=(1
external magnetic field perpendicular to the lattice plane. For-J%Y/J%)%3%in the (7,0) model were determined. The en-
example, for the critical fieldH. the magnetization is ergy per alternated bond has a higher absolute value in the
M # 0, and the correlation radius and dimerization paramete¢s,7) model compared to the=n(,0) model for §<0.5.
decrease abruptly with increasing field in both modéig.  When exchange alternates along one of the translation vec-
4). The correlation functions for the transverse componentsors, an anisotropic antiferromagnet with the anisotropy
vary negligibly. Here we can also identify a range of fieldsA<0.02 is transferred to the dimer state via a disordered
H.<H<H?*, in which an inhomogeneous magnetic state ex-quantum state. This state exists at temperatures between DS
ists which disappears whefi~0. The dependendd (H) is  and PM.
linear in this range of fields. In fieldd>H* a classical spin
flip state is formed. Figure 4 gives the critical fields as a
function of the exchange alternation for the two models in
the isotropic case. In then{ ) and (7,0) models these L. N. Bulaevskii, A. I. Buzdin, and D. I. Khomskii, Solid State Commun.
depend ' lawll = 1.96® and H 21, 501978,
eponTences 2 0%32’2“)” AWBe= . and Hc 2y c. cross and D. S. Fisher, Phys. Revi8 402 (1979.
=1.8(1)6—0.35(3)™ , respectively. When exchange 3s. A Kivelson, D. S. Rokhsar, and J. P. Sethna, Phys. Re35, 865
alternates in two directions, the ratit,/T;;=1.78 does not  (1987. (1987

; ; J. E. Hirsch, Phys. Rev. B5, 8726(1987.

depend on the ex.change alternat!on and in th@®) model a  sg Tang and J. E. Hirsch, Phys. Rev3B 9546(1988.
dependence om is observed which can b? gpproxmately A. Feiguin, C. J. Gazza, A. E. Trumper, and H. A. Ceccatto, J. Phys.
estimated a$d /T~ (6—0.3417. Thus, this is related to  Condens. Mattes, L503 (1994.
the anisotropy of the correlation radius. Asincreases, the 7K1-9\égnemitsuy A. R. Bishop, and J. Lorenzana, Phys. Rev7B8065
magnetic quaS|-qne-d|menS|qnaI|ty increases and the dengltJN. Read and S. Sachdev. Phys. Revi 4568 (1990.
of states of t_he s_mglet and triplet excitations becomes redissp;. Nishi, O. Fujita, and J. Akimitsu. Tech. Rep. ISSP Ser2259 1
tributed, which is observed as a temperature shift of the (1993.
maximum Speciﬁc heat and Suscept|b|||ty In the two- lOJ. R. Fletcher, S. S. Kazmi, K. J. Maxwell, and J. R. Owers-Bradey,

. ) . . _ Physica B165-166, 173 (1990.
dimensional Heisenberg model we fifiktkmax/Tymax=0.5, 114 Raedt and A. Lagendijk, Phys. Re}27, 233 (1985.

and in the one-dimensional MOdBt mau/ Tymax=0.76. In the 125 s Aplesnin, Fiz. Tverd. TeléSt. Petersbung38, 1868 (1998 [Phys.
ranges~ 0.5, where the dimer state energies in the two mod- Solid State38, 1031(1996].

13
els are the same, the energy gaps are also the same. P. W. Anderson, Mater. Res. BuB, 153(1973.

. p_ de Vri H. De Raedt, Phys. Rev4B 7929(1993.
Thus, asymptotic dependences on the exchange alternal- 9¢ Vries and H. De Raedt, Phys. RevaB 7929(1993

tion of the energiesH—0.68)=0.366"8%®) and 0.25%%5),  Translated by R. M. Durham



