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It is shown that in semimetallic, low-temperature antiferromagnetic materials located in a
quantizing magnetic field, the part of the band magnetizatlonwhich oscillates irH can have

a nonmonotonic temperature dependence. This non-Fermi liquid behavior will show up
experimentally in the form of quantum temperature fluctuations of the magnetization when the
decrease with rising temperature is oscillatory, rather than the usual monotonic decrease.

It is shown that the magnetization from an individual spin electmrhole subband has the form

of weakly damped periodic oscillations as a functioriTéf This result makes it possible to

develop an efficient method for studying the electronic structure of antiferromagnetic semimetals
based on an examination of the quantum temperature fluctuations. Calculations show that
quantum temperature fluctuations can be observed, for example, in the cerium monopnictides CeP
and CeAs, which are strongly correlated, antiferromagnetic, compensated semimetals with

low Neel temperatures. €998 American Institute of Physids$$1063-783%8)02409-5

Studies of the electronic structure of strongly correlatectures (T,~1-10 K). Then the reduction in the spontaneous
systems have stimulated experimental studies of the de Haagragnetization will be fairly strong over a small temperature
van Alphen effect in compounds with mixed valence, heavyinterval and the number of spikes in the quantum tempera-
fermions; ™3 and high-temperature superconductbtsThe  ture fluctuations will be large. In this regard, the cerium
class of strongly correlated systems includes compoundsonopnictides are extremely promising. For th&g=7 K
with a low current-carrier concentration. The cerium monop-and the de Haas-van Alphen effect shows up quite well.
nictides CeX, with X=Sb, Bi, As, and P are striking repre- Since these compounds have an antiferromagnetic order, and
sentatives of this type of compoufi® The presence of a the antiferromagnetic sublattices become tapered in strong
long-range antiferromagnetic order in these compounds hasagnetic fields, there is some interest in analyzing the quan-
led to the creation of the concept of magnetopolaron liquidsum temperature fluctuations in the antiferromagnetic semi-
and crystal$for describing the ground state of the electronic metals taking this tapering into account.
system. This has made it possible to explain the features of In this paper we examine the quantum temperature fluc-
the de Haas-van Alphen effect in CeXs. tuations in the magnetization of antiferromagnetic materials

In addition to the ordinary de Haas-van Alphen effect,theoretically under conditions such that the quantizing mag-
which involves a fluctuating magnetic field dependence ohetic field causes a reordering of the ground state. Taking the
the magnetization of band charge carriers, experimental studtrong tapering of the antiferromagnetic sublattices into ac-
ies have recently been madef a new type of fluctuations count in a spin-wave approximation, we study the low-
in the magnetization. These involve a nonmonotonic variatemperature thermodynamics of a localized subsystem and
tion in the magnetization as the temperature is changedietermine the dependence of the magnetic-order parameters
They have been referred to, therefore, as quantum temperan the magnetic field and temperature. It is shown that, even
ture fluctuations. The degenerate magnetic semiconduct@t the low temperatures where the spin-wave approximation
n-HgCrLX, has been chosen for testing. A theoreticalis justified, a change in the temperature leads to a large num-
analysid? of quantum temperature fluctuations showed thaber of spikes in the fluctuating magnetization of the band
the major factors determining the possibility of observingelectrons. The contributions from individual electron- and
guantum temperature fluctuations are the existence of strorfgple-spin subbands to the quantum temperature fluctuations
single-site correlations, magnetic ordering, ars-d  are analyzed and it is found that these contributions are
coupling between localized and collectivized electrons. Theveakly damped functions periodic #. This makes it pos-
principal sources of the motion of the Landau levels, as th&ible to use Fourier analysis to study quantum temperature
temperature is varied, were ttse-d-exchange interaction, fluctuations and to develop an effective technique for testing
along with a change in the average magnetization. Since thé&e electronic structure of antiferromagnetic semimetals.
Curie temperature is quite higi (=130 K), it was not pos-
sible to observe many spikes in the magnetizatmefore the
fluctuations were damped Qut

Quantum temperature fluctuations are evidently best ob- Before considering quantum temperature fluctuations in
served using materials with low magnetic ordering temperaantiferromagnetic semimetals such as CeP, CeAs, and CeSb,

1. MODEL HAMILTONIAN AND SPECTRUM OF FERMI
QUASIPARTICLES
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let us recall the general properties of their electronic strucelsewheré? Thus, here we only give the final expression for
ture. The cerium monopnictides have an NaCl cubic structhe lower branches of the spectrum for the electrons (
ture. Low-energy states of the conduction band lie asthe =e) and holes x=h),

points of the Brillouin zone. The top of the valence band lies 3R 12

at thel’ pom_t. A sll.ght overla}p of these bands is responsible EM(K)=gM+t, — ” (,uBH+cos49 A_”

for the semimetallic properties of these compounds. At low 2
temperature$Ty=7 and 10.5 K for CeAs and CeP, respec- J,R|2) 12

tively), a long-range antiferromagnetic order develops in the +sir? 0(—) ] , 2
subsystem of localized electronic states. The antiferromag- 2

netic sublattices undergo tapering in the presence of a magynere

netic fieldH, influencing the energy spectrum of the current

carriers through an interaction between the electrons in lo- N A .

calized and collectivized states. The major features of these ¢ :tk:; tir exp{—ik(R—=R¢ )},

interactions are modelled by the following hamiltonian for
an antiferromagnetic semimetal:

Fﬁ=§ t}y exp{ —ik(R¢—Ry)}.

T= 2, Ath, = 81/ (2ougH+ 1))} it Cortr o The angle# defines the orientatioR of the equilibrium
Mi'o magnetization of the sublattice relative to theaxis along
. which the external magnetic field is directed. FoH=0,
+ > {tgg Oggr(2omgH+ 1)) }Cyg,Crgr o 6=m/2, while at the spin-flip transition poirt=0. We are
rgg' o interested in the fairly high magnetic fields when the tapering
of the antiferromagnetic sublattices is largex(7/4). In this
N (A~ +
+)\ng()' Frg(Crtolrgo drgaCrto) T fzg Kio(StSy) case, the lower energy states have energies given by the sim-
pler expressions
E L (S1Sp) = E | ggrr(SySy) ( JR| 72?2
2 5 ' ES(k)=+ H+cosf — | + ,
99 B 2 2m,
—2 gueHST— 2 gueHS;— 2 I\(Stom) . IR| 2P
f g fx EX(k)=—AF| ugH+cosO — |+ ——, (©))
2 2mh
- 2 W(Sgog)- (1) in which the effective masses are related to the jump param-
9 eters by the following equations
Here the first three terms describe the free-electron-hole sub- hz 2 2,3 5
system in the Wannier representation. To describe effects 2m tfg(Rf Rg)“+ 5 L (Ri—=Rg)%t .
associated with the antiferromagnetic order in the localized @)
subsystem, one performs the conventional separation into
two sublatticesF and G. The Fermi operatoc,;,, annihi-  Here the cubic structure of the lattice is taken into account.

lates an electron fok=e or hole forA=h at site f with In Eq. (3), the choice of reference scale for the energy is such
projectiono (o= +1/2) of the spin angular momentum. The that, in the paramagnetic phase w0, the bottom of the
operatord, 4, corresponds to the same kind of process, buconduction band corresponds to zero energy. Then the de-
for siteg from the sublatticé&s. For electronsu,= « and for ~ gree of overlap of the valence band with the conduction band
holes u,= — u. The next group of operators in E(l) de- is determined by the paramet&r>0. In order to determine
scribes the Heisenberg interaction among the spin anguldhe temperature dependence of this energy spectrum it is nec-
momenta of the localized electronic states, which bringsssary to study the low-temperature thermodynamics of this
about an antiferromagnetic order, as well as an interaction gfystem and to calculate the temperature dependence of
the spin angular momenta with the magnetic field Here ~ Rcos# in a noncolinear geometry.

we have included both the interaction within the sublattices

and the interaction among spin angular momenta fronfthe

andG sublattices. Finally, the last two .terms account for thez_ TEMPERATURE EVOLUTION OF THE SUBLATTICE

s—f exchange coupling among the spin angular momenta ofjscNETIZATION

the localized and collectivized states.

The energy spectrum of the electrons and holes in the The parameters which determine the magnetic structure
tapered antiferromagnetic phase is conveniently found bwf the localized subsystefR and cosd) can be calculated in
first going to local coordinate systems for theand G sub-  our case using an exchange hamiltonian. In local coordinates
lattices. The procedure for transforming to local coordinateghis hamiltonian is obtained by rotation through an angle
and obtaining the electron and hole spectra in the noncofor the F sublattice and by an angle 8 for the G sublattice.
linear geometry of this problem has been described in detailhen (for details, see Ref. 13
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1 1 we use the ideology of the two-time temperature Green
Hinz=—5 Z Le (S5Spr) — > E lggr (S5Syr) functions**° For this purpose, we introduce the following
ff 99 four functions into the discussion:

+fE Krg{cOS 2(S{S:+ SISt ((bg(Dbg (1)),  ((ag(t)[bg (1)),
g
(b y(D)bg (1)), ((@Zq(t)]bg (t'))).

+S{Sy+sin 20(S{Sy— SiSy)}
A closed system of equations for the Fourier transforms of

—gugH cos 0( Z S?JFE Sé) these functions can be written in the form
’ (0= eq){{bg|bg )) =14 re{(aglby Mt &q((aZ by ).,
cquat sind| S -3 ). §) (e {(agbi)u= (0] (D7

+ be b)) =—ve({al by )y — Eql{aqglbg ),
For examining the low-temperature thermodynamics in the(w eq){(bZglbg }) 0=~ vq{(aZqlbq )0 = &al(aglby ))e

localized subsystem we use the Dyson—Maleev representam +&q){(a’ by )) .= = v4((bZ by )) 0= E((Dglbg ) -
tion, a

Sf+=\/2—8(af—af+afaf), S = \/Z_Saf+, From this system we obtain a dlspers_lon. equation for the
energy spectrum of the elementary excitations,

Sf=S—-afa;, S)=12S(by—bybyby),

w—gq —Vq —&q 0
Sy=V2Shy, Sj=S-byb,, ©) PR 0 TR 12
wte v
wherea; (a;) are the annihilatior(creation operators for d a a
excitation at sitef for sublatticeF. For theG sublattice the 0 &q vg  wteg
corresponding operators are denotecbgy(by ). On solving Eq.(12), we find two branches of the energy
Substituting Egs(6) in the Hamiltonian(5), taking the  spectrum,
Fourier transform, and proceeding as usdake obtain the .
Hamiltonian in the second quantization representation. The —@1(Q)=V(gq—vg)“— &G,
uadratic form is given b
q gren sy 02(Q)= \(oq+ vg) P~ £ (13
HQZE {e4(ag aq+ by by + vo(asby+blay) Given Egs.(8) and (9), the expressions for the spectrum in
q d d a d the noncollinear phase, whe#e>0, can be written in the

form

+E&q(agblytb_qag)}, (7)
w1(q) =S{(1o— 14+ Ko—Kg)(Ig— 4+ Ko—Kq cos 1)}

where we have introduced the following notation;
wx()=S{(Ig— 4+ Ko+ Kg)(Ig— 4+ Ko+ K, cos )2,
eq=gugH oS —SKy cos B+ S(Io—1 ), 2AW=S{(lo~1q+ Kot Ko)(lo~ It Kot Kq )}(14)

vq=SK, cog 6, £4=—SK, Siré 6. (8) Itis clear that the lower branch is gapless, consistent with the
. . Goldstone theory. The exchange Hamiltonian is invariant
Here the Fourier transforms of the exchange integrals argith respect to rotation by an arbitrary angle aboutzlais,

given in the form while the ground state of the system in the tapered phase
does not have this invariance. This explains the presence of
Kq:% Kig exp{—ig(Ri— Ry}, the Goldstone boson in the system.

The second branch of the spectrum has an activation
character. The energy gap for this branch is given by

|q=; lts exp{—iq(Ri—Ry)}. A=w,(0)=2SK, cos f=gugH. (15)

. S n In the right-hand neighborhood of the spin-flip transition,
In order to write down the Hamiltonian in the,, 8y , b S\{vhen 0=0 and the subsystem of localized spins undergoes a

+ . . .
and bq. operator representation, we equa}te the terms in fir transformation to the colinear phase, the two branches of the
order in these operators to zero and obtain a condition for the

equilibrium angled, Spectrum obey
wl,Z(q):gMBH+S(|O_Iq)_S(KOqu)- (16)
Solving the system of Eq$11), we find the Green function

cos f=qugH/2SK,. (9

To find the equilibrium magnetization

TS Gk it G

1 1 + 2_ 2 2_ 2 '
R:N§<S§>:S_N%<bqbcﬁ (10) [0~ 01(q) ][0~ w3(q)] an
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which allows us to obtain the desired expression for the equi- a0l
librium magnetization, :
R=S-6S(0)— 6S(T), (19 i
whereS(0) is a term which reduces the magnetization owing "B
to the zero-point quantum fluctuations, with 5 .
1 1 Eq—V eqtv 3
8S(0)=-——— > {—2—d4 a4 19 s
0737 4 [ w01 @ ws(Q) 19 i
The temperature reduction in the magnetization is given by
1

_ 1 €q~ Vq gqt Vg ~0.10 1 ] !
5S(T)_m% [wl(q) Ma™ o (e M) (20 o ! z J #

7, K
where FIG. 1. Quantum temperature fluctuations of an antiferromagnetic semi-
niq={exp[wi(q)/T}— 1}71, i=1,2. metal. One electron and one hole subband are populated.

These equations will be used to study the temperature depen-
dence of the band magnetization in a quantizing magnetic For low current-carrier concentrations and relatively

field. large splitting of the electron- and hole-spin subbands, Fermi
quasiparticles lie within the confines of spin subbands with a
3. QUANTUM TEMPERATURE FLUCTUATIONS single spin polarization. This situation occurs when the fol-
lowing inequalities are satisfied:
Landau quantization takes place in a strong magnetic a2 -
field.X® In order to find the thermodynamic potential of the 4 (MeAe) n<f (MpAn) (24
electrons and holes, whose spectrum is given by(8qit is 3 7S 3 whd

sufficient to transform to the Landau representation and su
over the quantum numbers of this representatiofi.Then
the fluctuating part of the magnetization from the collectiv-
ized electrons is given by

TVhwg(me)¥?

e _ _

e 2 e

Wheren is the concentration of electrotand holes per unit
volume and

2

1
Ae=’,u,BH + - J.R cosé

. (29

1
Ap=|pgH+ > JnR cos 6

(-n° sin{anﬁeU/hwng Deo)
=1 n sin (27 nT/hodl '

(2D From the condition of electrical neutrality in the main ap-
proximation, we obtain

where my,

Me

Me

Ach, ﬁh:— Achs

bop=2maMIMy— /4, Mg+ my Me+my,

my is the free-electron mass, aad=eH/mcc is the cyclo- R cos# . )

tron frequency for the conduction electrons. The importanften=A4+ ——— (|3l +13n)) + gH(sign(Je) + sign(Jp)).
feature of this expression fé1¢ is that, instead of a chemi- (26)
cal potential that depends weakly on the temperature and
magnetic field in the ordinary Fermi-liquid case, HG1)
includes the renormalized chemical potential

The above expressions for the Fermi energies of the
electrons and holes determine their strong temperature and
field dependences. Here the absolute changes in these quan-
Heoe=p+o(2ugH+ IR cos ), (22)  tities depend, in particular, on the ratio of their effective

which, because of the ternxR cos6, can vary rather masses. Thus, for example, in the case of heavy holes, for

strongly as the temperature and magnetic field are changefyiCh Mh=>me, only the electron Fermi energy can change
if the s— f-exchange interaction parameter is sizeable. The&'dnificantly. In this case, the quantum temperature fluctua-

strongT dependence o, , therefore, lies at the basis of tions will be determined only by the conduction-electron

the quantum temperature fluctuation phenomenon in thes%UbSyStem'
d P P For concrete calculations, we shall use E@, (17)—

antiferromagnetic semimetals. Before proceeding to a direc 0), and (23). Figure 1 shows the results of a numerical

analysis of the quantum temperature fluctuations, we notcalculation of the quantum temperature fluctuations for an

that the contribution of the holes to the fluctuating part of the_ . . . . .
T : antiferromagnetic semimetal with equivalent electron and
magnetization is given by an expression analogous to E

. : Yiole bands. Here the following system parameters were used:
frzhlé,nwnh the subscripe for the electrons replaced Hy. J,=J3,=0.2 eV, m,=m,=m,, andTy=10 K. The concen-

' tration of band carriers corresponded to the semimetal case
Uhe=—m+A+0c(2ugH~+ IR cosb). (23 and equalled 0.035 per lattice siMd._(T) was calculated for
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FIG. 3. Quantum temperature fluctuations of a low-temperature antiferro-
temperaturesT=0.5-3.5 K, where, as noted above, the magnetic semimetal as a function 4.
spin-wave approximation is valid. It is quite clear from Fig.
1 that for these system parameters there are a substantial

number of temperature fluctuations. lated to the contribution of the second branch of the spin-
Let us analyze the results on quantum temperature fluGyaye perturbations and to the presence of Brillouin zone

tuations shown in Fig. 1. In the spin-wave approximation théxtfects which were neglected in EQ7).

drop in the magnetization owing to temperature is given by e equation for the phase shift implies that the period

b3 1 1 \2/T\2 of the oscillations with respect 6 is given by
5S(T):(@ (sin 0) 2K e <§) ’ @7 P_(Zsin 0)( m0> 12SK, KOS)2 0
whereb is the magnetic cell parameter in the antiferromag- 9 Men/ | el + | Jnl /| ke
netic phase and the spin-wave rigidity is where kg is the Boltzmann constant. This equation can be
1 used to derive an important relationship among the param-
a=— {E |0fR%+z KOgRS]- (28)  eters of the electronic structure of this antiferromagnetic
67 9 semimetal from experimental data on quantum temperature

fluctuations(after plotting the fluctuating part of the magne-
tization in theM _ , T? plane and measuring the periédof
the oscillations

1 T\? Here we note two other features which are immediately
o3(T)= 3sing/\KyS evident from Eq(30). First, with other conditions the same,
) the period of the oscillations decreaseskgswhen the ex-

These equations show that as the temperature changgg,ange integral decreases. Given that the temperature range

the phase shift in the argument of the sine in E20) is i, \hich the spin-wave approximation is applicable de-
determined by creases linearlyas the Neel temperature, itselis K, be-

In the nearest-neighbor approximation, where: K,b?/8,
we have

STe(T) g\ { Men) ([ 3e] +] 30| 1 T \2 comes smaller, we conclude t_hat the number of ;pikes in th_e
—=—\3/l=— . = quantum temperature fluctuations increases rapidly for anti-
ho 2)/\ mg 4SKy 3sin 8]\ KoS . . .
¢ ferromagnetic semimetals with lower Neel temperatures.
S1un(T) This feature is illustrated in Fig. 3. In calculating the quan-
= Aol (29 tum temperature fluctuation curve shown in this figure, the

¢ Neel temperature was taken to be JiKstead of 10 K, as in

where mg, is the reduced electron-hole mass),, the earlier casg¢swhile all the other characteristic param-
=mem;,/(mg+m,). Equation(29) yields an important result eters were unchanged.

for practical application of quantum temperature fluctuations.  The second feature is related to the dependence of the
If we construct the part of the magnetization that oscillateperiod of the quantum temperature fluctuations on the taper
with changing temperature as a functionTdf then a plot of of the antiferromagnetic sublattices. As the spin-flip-
“damped” but still periodic oscillations is obtained. Figure 2 transition point is approached, the period of the oscillations
shows the results of such a construction using the same vallecreases: sinf. Then, by measuring the perio&s andP,

ues as in Fig. 1. Clearly, in the new coordinatesglecting  of the oscillations for two values of the external magnetic
the drop in amplitude of the oscillationthe curve is indeed field H;<H,<H,, it is possible to obtain the field for the
periodic in T2. Small deviations in this periodicity are re- spin-flip transition from the simple relation
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P1H,)?—(P,H,)? ok
H§=( 1H2)*=(P3Hy) . (31) 0.0_ a
(P1—=P2)(P1+Py) 0
A more complicated situation arises in the case where -0.10%
Fermi quasiparticles occupy subbands with opposite polar- -
izations in the spin angular momentum. For example, let 0'05“ \ /\ NN A A NP

electrons occupy both spin subbands, while holes, as before, " ~0.02| VvV VvV

lie only in the lower spin subband. This occurs when the
following conditions are satisfied:

0.04- ¢
0 Oﬁﬁvﬁvavwv‘%%‘
4 (mglAy)%? 4 (myA,)3? S -0.04F

, &/cm
Ll

3 %S T3 A%l (32 o2
then it is easy to find expressions for the temperature depen- g.7+-
dences of the Fermi energies for the two electron and one d
hole bands by solving the equation for electrical neutrality. g
Calculating the temperature phase shifts in the usual way, we -afb
obtain the three periods ifi for the oscillations: ) ] ] I ! 1 1 ] !
_ e e ) 0 01 0.3 0.5 0.7
PE_(Zsm 0)(m0)( 12SKy(gS +9° +gp) )(K05> 12 K
Tl g Jime)\ 292 (3¢ +g"(| 3¢ +[3nD) /| ks

FIG. 4. Quantum temperature fluctuations of an antiferromagnetic semi-

2 sin m 125 € 1%+ K-S\ 2 metal. Two electron subbands and one hole subband are occipiegl.
= ( 0) (_0) ( = KO(g+h 9 gh) ~o- Contributions of the electron and hole subban(dstotal fluctuating part of
g Mg 2g+|‘]e|_g (|Jh|_|\]e|) kB

the magnetization.
I:)h:(ZSin 6)<m0)< 12SKq(g% +9° +gp) )

9 M/ % ([Jel + 130D +92 (| 3n = [Jeh) oscillating magnetization is made up, in general, of four
KoS| 2 functions that are periodic ifi2. The proposed method for
x(k—> , (33 analyzing the experimental data is effective in this case, as

B well. We do not give concrete expressions for the four peri-
whereg® andg® are the densities of electronic states on theods of the oscillations here in order to save space.
Fermi surface for the two spin subbands afids the density In conclusion, we summarize the main results of this
of hole states on the Fermi surface fb=0. When the dif- study. The main conclusion of this work is a proof of the
ference in effective masses is relatively small, the amplitudepossible existence of a new type of oscillations, quantum
of the oscillations will be of the same order of magnitude fortemperature fluctuations, in antiferromagnetic semimetals.
the electrons and holes. In this case, the resulting magnetFhe conditions for a distinct experimental observation of
zation M _ is obtained by adding three periodic functions quantum temperature fluctuations ai@:relatively low Neel
and, therefore, is generally periodic TR. This is illustrated temperatures T,<1-10 K); (b) the existence of an ex-
in Fig. 4. In these calculations the effective masses of thehange coupling between the spin angular momenta of the
electrons and holes were chosen to be different, with  current carriers and localized electrons; atal,samples of
=my/2 and m,=my. The concentration of electrongnd sufficiently good quality. At present, choosing solid-state
holeg per lattice site was chosen to be 0.06. The remainingompounds which satisfy these requirements presents no dif-
parameters were the same as in the calculation of the quafieulties. As an example, we note the already-mentioned ce-
tum temperature fluctuations shown in Fig. 3. Curaesare  rium monopnictides. These compensated semimetals have
guantum temperature fluctuations that are periodic with reantiferromagnetic order with a Neel temperatuig
spect toT? and originate from the two electron- and one ~5—7 K. The high quality of the single crystals is con-
hole-spin subbands. The total fluctuating part of the magnefirmed, in particular, by the intense signals from the de Haas-
tization is shown in the lowest curve of this figure. It is this van Alphen effedf in CeAs. Given that the order of magni-
form of quantum temperature fluctuations that is observedude of the amplitude of the quantum temperature
experimentally. Thus, the method proposed here for analyZluctuations is the same as that of the de Haas-van Alphen
ing the experimental data and based on the above results, éffect, we may hope for good observations of quantum tem-
of special importance. In fact, plotting thd . curve as a perature fluctuations in these antiferromagnetic materials.
function of T2 and then Fourier analyzing it makes it pos- It should be noted that studies of quantum temperature
sible to isolate the periodic contributions from quasiparticledluctuations are of interest, both from the standpoint of ob-
in the different spin subbands. After determining the periodsserving the effect itself and in order to obtain additional in-
of the oscillations for the different components and comparformation on the electronic structure. The predicted contri-
ing them with the values obtained from E®3), we obtain  butions from the individual spin subbands to the quantum
numerical relations for the electronic structure parameters. temperature fluctuations periodic T provide a large infor-

Analogous results can be obtained easily even when botiation input to studies on quantum temperature fluctuations,
electrons and holes occupy both spin subbands. Then thehich is, to a substantial extent, similar in its possibilities to

Pe
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