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Quantum temperature fluctuations in the magnetization of antiferromagnetic semimetals
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It is shown that in semimetallic, low-temperature antiferromagnetic materials located in a
quantizing magnetic field, the part of the band magnetizationM; which oscillates inH can have
a nonmonotonic temperature dependence. This non-Fermi liquid behavior will show up
experimentally in the form of quantum temperature fluctuations of the magnetization when the
decrease with rising temperature is oscillatory, rather than the usual monotonic decrease.
It is shown that the magnetization from an individual spin electron~or hole! subband has the form
of weakly damped periodic oscillations as a function ofT2. This result makes it possible to
develop an efficient method for studying the electronic structure of antiferromagnetic semimetals
based on an examination of the quantum temperature fluctuations. Calculations show that
quantum temperature fluctuations can be observed, for example, in the cerium monopnictides CeP
and CeAs, which are strongly correlated, antiferromagnetic, compensated semimetals with
low Neel temperatures. ©1998 American Institute of Physics.@S1063-7834~98!02409-5#
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Studies of the electronic structure of strongly correla
systems have stimulated experimental studies of the de H
van Alphen effect in compounds with mixed valence, hea
fermions,1–3 and high-temperature superconductors.4,5 The
class of strongly correlated systems includes compou
with a low current-carrier concentration. The cerium mono
nictides CeX, with X5Sb, Bi, As, and P are striking repre
sentatives of this type of compound.6–8 The presence of a
long-range antiferromagnetic order in these compounds
led to the creation of the concept of magnetopolaron liqu
and crystals9 for describing the ground state of the electron
system. This has made it possible to explain the feature
the de Haas-van Alphen effect in CeAs.10

In addition to the ordinary de Haas-van Alphen effe
which involves a fluctuating magnetic field dependence
the magnetization of band charge carriers, experimental s
ies have recently been made11 of a new type of fluctuations
in the magnetization. These involve a nonmonotonic va
tion in the magnetization as the temperature is chang
They have been referred to, therefore, as quantum temp
ture fluctuations. The degenerate magnetic semicondu
n-HgCr2X4 has been chosen for testing. A theoretic
analysis12 of quantum temperature fluctuations showed t
the major factors determining the possibility of observi
quantum temperature fluctuations are the existence of st
single-site correlations, magnetic ordering, ands2d
coupling between localized and collectivized electrons. T
principal sources of the motion of the Landau levels, as
temperature is varied, were thes2d-exchange interaction
along with a change in the average magnetization. Since
Curie temperature is quite high (Tc5130 K), it was not pos-
sible to observe many spikes in the magnetization~before the
fluctuations were damped out!.

Quantum temperature fluctuations are evidently best
served using materials with low magnetic ordering tempe
1521063-7834/98/40(9)/7/$15.00
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tures (Tc;1 – 10 K). Then the reduction in the spontaneo
magnetization will be fairly strong over a small temperatu
interval and the number of spikes in the quantum tempe
ture fluctuations will be large. In this regard, the ceriu
monopnictides are extremely promising. For themTN.7 K
and the de Haas-van Alphen effect shows up quite w
Since these compounds have an antiferromagnetic order,
the antiferromagnetic sublattices become tapered in str
magnetic fields, there is some interest in analyzing the qu
tum temperature fluctuations in the antiferromagnetic se
metals taking this tapering into account.

In this paper we examine the quantum temperature fl
tuations in the magnetization of antiferromagnetic mater
theoretically under conditions such that the quantizing m
netic field causes a reordering of the ground state. Taking
strong tapering of the antiferromagnetic sublattices into
count in a spin-wave approximation, we study the lo
temperature thermodynamics of a localized subsystem
determine the dependence of the magnetic-order param
on the magnetic field and temperature. It is shown that, e
at the low temperatures where the spin-wave approxima
is justified, a change in the temperature leads to a large n
ber of spikes in the fluctuating magnetization of the ba
electrons. The contributions from individual electron- a
hole-spin subbands to the quantum temperature fluctuat
are analyzed and it is found that these contributions
weakly damped functions periodic inT2. This makes it pos-
sible to use Fourier analysis to study quantum tempera
fluctuations and to develop an effective technique for test
the electronic structure of antiferromagnetic semimetals.

1. MODEL HAMILTONIAN AND SPECTRUM OF FERMI
QUASIPARTICLES

Before considering quantum temperature fluctuations
antiferromagnetic semimetals such as CeP, CeAs, and C
3 © 1998 American Institute of Physics
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let us recall the general properties of their electronic str
ture. The cerium monopnictides have an NaCl cubic str
ture. Low-energy states of the conduction band lie as thX
points of the Brillouin zone. The top of the valence band l
at theG point. A slight overlap of these bands is responsi
for the semimetallic properties of these compounds. At l
temperatures~TN57 and 10.5 K for CeAs and CeP, respe
tively!, a long-range antiferromagnetic order develops in
subsystem of localized electronic states. The antiferrom
netic sublattices undergo tapering in the presence of a m
netic fieldH, influencing the energy spectrum of the curre
carriers through an interaction between the electrons in
calized and collectivized states. The major features of th
interactions are modelled by the following hamiltonian f
an antiferromagnetic semimetal:

H5 (
l f f 8s

$t f f 8
l

2d f f 8~2smBH1ml!%cl fs
1 cl f 8s

1 (
lgg8s

$tgg8
l

2dgg f8~2smBH1ml!%clgs
1 clg8s

1 (
l f gs

f f g
l ~cl fs

1 dlgs1dlgs
1 cl fs!1(

f g
K f g~SfSg!

2
1

2 (
f f 8

I f f 8~SfSf 8!2
1

2 (
gg8

I gg f8~SgSg8!

2(
f

gmBHSf
z2(

g
gmBHSg

z2(
f l

Jl~Sfsf l!

2(
gl

Jl~Sgsgl!. ~1!

Here the first three terms describe the free-electron-hole
system in the Wannier representation. To describe eff
associated with the antiferromagnetic order in the locali
subsystem, one performs the conventional separation
two sublattices,F and G. The Fermi operatorcl fs annihi-
lates an electron forl5e or hole for l5h at site f with
projections (s561/2) of the spin angular momentum. Th
operatordlgs corresponds to the same kind of process,
for siteg from the sublatticeG. For electronsme5m and for
holesmh52m. The next group of operators in Eq.~1! de-
scribes the Heisenberg interaction among the spin ang
momenta of the localized electronic states, which brin
about an antiferromagnetic order, as well as an interactio
the spin angular momenta with the magnetic fieldH. Here
we have included both the interaction within the sublattic
and the interaction among spin angular momenta from thF
andG sublattices. Finally, the last two terms account for t
s2 f exchange coupling among the spin angular moment
the localized and collectivized states.

The energy spectrum of the electrons and holes in
tapered antiferromagnetic phase is conveniently found
first going to local coordinate systems for theF andG sub-
lattices. The procedure for transforming to local coordina
and obtaining the electron and hole spectra in the non
linear geometry of this problem has been described in de
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elsewhere.13 Thus, here we only give the final expression f
the lower branches of the spectrum for the electronsl
5e) and holes (l5h),

E7
l ~k!5«l1tk2H FGk

l7S mBH1cosu
JlR

2 D G2

1sin2 uS JlR

2 D 2J 1/2

, ~2!

where

«l5tk
l5(

f 8
t f f 8
l exp$2 ik~Rf2Rf 8!%,

Gk
l5(

g
t f g
l exp$2 ik~Rf2Rg!%.

The angleu defines the orientationR of the equilibrium
magnetization of the sublattice relative to thez axis along
which the external magnetic fieldH is directed. ForH50,
u5p/2, while at the spin-flip transition pointu50. We are
interested in the fairly high magnetic fields when the taper
of the antiferromagnetic sublattices is large (u>p/4). In this
case, the lower energy states have energies given by the
pler expressions

E7
e ~k!57S mBH1cosu

JeR

2 D1
\2k2

2me
,

E7
h ~k!52D7S mBH1cosu

JhR

2 D1
\2k2

2mh
, ~3!

in which the effective masses are related to the jump par
eters by the following equations

\2

2ml
52

1

6 H(g
t f g
l ~Rf2Rg!21(

f 8
t f f 8
l

~Rf2Rg!2J .

~4!

Here the cubic structure of the lattice is taken into accou
In Eq. ~3!, the choice of reference scale for the energy is su
that, in the paramagnetic phase withH50, the bottom of the
conduction band corresponds to zero energy. Then the
gree of overlap of the valence band with the conduction b
is determined by the parameterD.0. In order to determine
the temperature dependence of this energy spectrum it is
essary to study the low-temperature thermodynamics of
system and to calculate the temperature dependenc
Rcosu in a noncolinear geometry.

2. TEMPERATURE EVOLUTION OF THE SUBLATTICE
MAGNETIZATION

The parameters which determine the magnetic struc
of the localized subsystem~R and cosu! can be calculated in
our case using an exchange hamiltonian. In local coordin
this hamiltonian is obtained by rotation through an angleu
for theF sublattice and by an angle2u for theG sublattice.
Then ~for details, see Ref. 13!,
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Hmz52
1

2 (
f f 8

I f f 8~SfSf 8!2
1

2 (
gg8

I gg8~SgSg8!

1(
f g

K f g$cos 2u~Sf
xSg

x1Sf
zSg

z!

1Sf
ySg

y1sin 2u~Sf
zSg

z2Sf
xSg

z!%

2gmBH cosuS (
f

Sf
z1(

g
Sg

zD
1gmBH sin uS (

f
Sf

x2(
g

Sg
xD . ~5!

For examining the low-temperature thermodynamics in
localized subsystem we use the Dyson–Maleev represe
tion,

Sf
15A2S~af2af

1afaf !, Sf
25A2Saf

1 ,

Sf
z5S2af

1af , Sg
15A2S~bg2bg

1bgbg!,

Sg
25A2Sbg

1 , Sg
z5S2bg

1bg , ~6!

whereaf (af
1) are the annihilation~creation! operators for

excitation at sitef for sublatticeF. For theG sublattice the
corresponding operators are denoted bybg (bg

1).
Substituting Eqs.~6! in the Hamiltonian~5!, taking the

Fourier transform, and proceeding as usual,14 we obtain the
Hamiltonian in the second quantization representation.
quadratic form is given by

Hmz
~2!5(

q
$«q~aq

1aq1bq
1bq!1nq~aq

1bq1bq
1aq!

1jq~aq
1b2q

1 1b2qaq!%, ~7!

where we have introduced the following notation;

«q5gmBH cosu2SK0 cos 2u1S~ I 02I q!,

nq5SKq cos2 u, jq52SKq sin2 u. ~8!

Here the Fourier transforms of the exchange integrals
given in the form

Kq5(
g

K f g exp$2 iq~Rf2Rg!%,

I q5(
f 8

I f f 8 exp$2 iq~Rf2Rf 8!%.

In order to write down the Hamiltonian in theaq , aq
1 , bq

andbq
1 operator representation, we equate the terms in

order in these operators to zero and obtain a condition for
equilibrium angleu,

cosu5qmBH/2SK0 . ~9!

To find the equilibrium magnetization

R5
1

N (
g

^Sg
z&5S2

1

N (
q

^bq
1bq& ~10!
e
ta-

e

re

st
e

we use the ideology of the two-time temperature Gre
functions.14,15 For this purpose, we introduce the followin
four functions into the discussion:

^^bq~ t !ubq
1~ t8!&&, ^^aq~ t !ubq

1~ t8!&&,

^^b2q
1 ~ t !ubq

1~ t8!&&, ^^a2q
1 ~ t !ubq

1~ t8!&&.

A closed system of equations for the Fourier transforms
these functions can be written in the form

~v2«q!^^bqubq
1&&v511nq^^aqubq

1&&v1jq^^a2q
1 ubq

1&&v ,

~v2«q!^^aqubq
1&&v5nq^^bqubq

1&&v1jq^^b2q
1 ubq

1&&v ,

~v1«q!^^b2q
1 ubq

1&&v52nq^^a2q
1 ubq

1&&v2jq^^aqubq
1&&v ,

~v1«q!^^a2q
1 ubq

1&&v52nq^^b2q
1 ubq

1&&v2jq^^bqubq
1&&v .

~11!

From this system we obtain a dispersion equation for
energy spectrum of the elementary excitations,

Uv2«q 2nq 2jq 0

2nq v2«q 0 2jq

jq 0 v1«q nq

0 jq nq v1«q

U50. ~12!

On solving Eq.~12!, we find two branches of the energ
spectrum,

v1~q!5A~«q2nq!22jq
2,

v2~q!5A~«q1nq!22jq
2. ~13!

Given Eqs.~8! and ~9!, the expressions for the spectrum
the noncollinear phase, whereu.0, can be written in the
form

v1~q!5S$~ I 02I q1K02Kq!~ I 02I q1K02Kq cos 2u!%1/2,

v2~q!5S$~ I 02I q1K01Kq!~ I 02I q1K01Kq cos 2u!%1/2.
~14!

It is clear that the lower branch is gapless, consistent with
Goldstone theory. The exchange Hamiltonian is invari
with respect to rotation by an arbitrary angle about thez axis,
while the ground state of the system in the tapered ph
does not have this invariance. This explains the presenc
the Goldstone boson in the system.

The second branch of the spectrum has an activa
character. The energy gap for this branch is given by

D5v1~0!52SK0 cosu5gmBH. ~15!

In the right-hand neighborhood of the spin-flip transitio
whenu50 and the subsystem of localized spins undergoe
transformation to the colinear phase, the two branches of
spectrum obey

v1,2~q!5gmBH1S~ I 02I q!2S~K06Kq!. ~16!

Solving the system of Eqs.~11!, we find the Green function

^^bqubq
1&&v5

@~v1«q!22nq
2#~v2«q!1jq

2~v1«q!

@v22v1
2~q!#@v22v2

2~q!#
,

~17!
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which allows us to obtain the desired expression for the e
librium magnetization,

R5S2dS~0!2dS~T!, ~18!

whereS(0) is a term which reduces the magnetization ow
to the zero-point quantum fluctuations, with

dS~0!5
1

2
2

1

4N (
q

H «q2nq

v1~q!
1

«q1nq

v2~q! J . ~19!

The temperature reduction in the magnetization is given

dS~T!5
1

2N (
q

H «q2nq

v1~q!
n1q1

«q1nq

v2~q!
n2qJ , ~20!

where

niq5$exp$v i~q!/T%21%21, i 51, 2.

These equations will be used to study the temperature de
dence of the band magnetization in a quantizing magn
field.

3. QUANTUM TEMPERATURE FLUCTUATIONS

Landau quantization takes place in a strong magn
field.16 In order to find the thermodynamic potential of th
electrons and holes, whose spectrum is given by Eq.~3!, it is
sufficient to transform to the Landau representation and s
over the quantum numbers of this representation.17,18 Then
the fluctuating part of the magnetization from the collect
ized electrons is given by

M;
e 52

TA\vc
e~me!

3/2

2p\3H (
s

m̃es

3 (
n51

`
~21!n

An

sin$2pnm̃es /\vc
e1fes%

sin h$2p2nT/\vc
e%

, ~21!

where

fes52psme /m02p/4,

m0 is the free-electron mass, andvc
e5eH/mec is the cyclo-

tron frequency for the conduction electrons. The import
feature of this expression forM;

e is that, instead of a chemi
cal potential that depends weakly on the temperature
magnetic field in the ordinary Fermi-liquid case, Eq.~21!
includes the renormalized chemical potential

m̃es5m1s~2mBH1JeR cosu!, ~22!

which, because of the term}R cosu, can vary rather
strongly as the temperature and magnetic field are chan
if the s2 f -exchange interaction parameter is sizeable. T
strongT dependence ofm̃es , therefore, lies at the basis o
the quantum temperature fluctuation phenomenon in th
antiferromagnetic semimetals. Before proceeding to a di
analysis of the quantum temperature fluctuations, we n
that the contribution of the holes to the fluctuating part of
magnetization is given by an expression analogous to
~21!, with the subscripte for the electrons replaced byh.
Then,

m̃hs52m1D1s~2mBH1JhR cosu!. ~23!
i-
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For low current-carrier concentrations and relative
large splitting of the electron- and hole-spin subbands, Fe
quasiparticles lie within the confines of spin subbands wit
single spin polarization. This situation occurs when the f
lowing inequalities are satisfied:

n,
4

3

~meDe!
3/2

p2\3 , n,
4

3

~mhDh!3/2

p2\3 , ~24!

wheren is the concentration of electrons~and holes! per unit
volume and

De5UmBH1
1

2
JeR cosuU,

Dh5UmBH1
1

2
JhR cosuU. ~25!

From the condition of electrical neutrality in the main a
proximation, we obtain

m̃e5
mh

me1mh
Deh , m̃h5

me

me1mh
Deh ,

Deh5D1
R cosu

2
~ uJeu1uJhu!1mBH~sign~Je!1sign~Jh!!.

~26!

The above expressions for the Fermi energies of
electrons and holes determine their strong temperature
field dependences. Here the absolute changes in these q
tities depend, in particular, on the ratio of their effecti
masses. Thus, for example, in the case of heavy holes
which mh@me , only the electron Fermi energy can chan
significantly. In this case, the quantum temperature fluct
tions will be determined only by the conduction-electr
subsystem.

For concrete calculations, we shall use Eqs.~9!, ~17!–
~20!, and ~23!. Figure 1 shows the results of a numeric
calculation of the quantum temperature fluctuations for
antiferromagnetic semimetal with equivalent electron a
hole bands. Here the following system parameters were u
Je5Jh50.2 eV,me5mh5m0 , andTN510 K. The concen-
tration of band carriers corresponded to the semimetal c
and equalled 0.035 per lattice site.M;(T) was calculated for

FIG. 1. Quantum temperature fluctuations of an antiferromagnetic se
metal. One electron and one hole subband are populated.
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temperaturesT50.5– 3.5 K, where, as noted above, t
spin-wave approximation is valid. It is quite clear from Fi
1 that for these system parameters there are a substa
number of temperature fluctuations.

Let us analyze the results on quantum temperature fl
tuations shown in Fig. 1. In the spin-wave approximation
drop in the magnetization owing to temperature is given

dS~T!5S b3

48a D S 1

sin u D S 1

2K0a D 1/2S T

SD 2

, ~27!

whereb is the magnetic cell parameter in the antiferroma
netic phase and the spin-wave rigidity is

a5
1

6 H(
f

I 0 fRf
21(

g
K0gRg

2J . ~28!

In the nearest-neighbor approximation, wherea5K0b2/8,
we have

dS~T!5S 1

3 sin u D S T

K0SD 2

.

These equations show that as the temperature chan
the phase shift in the argument of the sine in Eq.~21! is
determined by

dm̃e~T!

\vc
e 52S g

2D S meh

m0
D S uJeu1uJhu

4SK0
D S 1

3 sin u D S T

K0SD 2

5
dm̃h~T!

\vc
h , ~29!

where meh is the reduced electron-hole mass,meh

5memh /(me1mh). Equation~29! yields an important resul
for practical application of quantum temperature fluctuatio
If we construct the part of the magnetization that oscilla
with changing temperature as a function ofT2, then a plot of
‘‘damped’’ but still periodic oscillations is obtained. Figure
shows the results of such a construction using the same
ues as in Fig. 1. Clearly, in the new coordinates~neglecting
the drop in amplitude of the oscillations! the curve is indeed
periodic in T2. Small deviations in this periodicity are re

FIG. 2. Quantum temperature fluctuations of an antiferromagnetic s
metal as a function ofT2.
tial

c-
e

-

es,

.
s

al-

lated to the contribution of the second branch of the sp
wave perturbations and to the presence of Brillouin zo
effects which were neglected in Eq.~27!.

The equation for the phase shift implies that the per
of the oscillations with respect toT2 is given by

P5S 2 sin u

g D S m0

meh
D S 12SK0

uJeu1uJhu D S K0S

kB
D 2

, ~30!

wherekB is the Boltzmann constant. This equation can
used to derive an important relationship among the par
eters of the electronic structure of this antiferromagne
semimetal from experimental data on quantum tempera
fluctuations~after plotting the fluctuating part of the magn
tization in theM; ,T2 plane and measuring the periodP of
the oscillations!.

Here we note two other features which are immediat
evident from Eq.~30!. First, with other conditions the same
the period of the oscillations decreases asK0

3 when the ex-
change integral decreases. Given that the temperature r
in which the spin-wave approximation is applicable d
creases linearly~as the Neel temperature, itself! as K0 be-
comes smaller, we conclude that the number of spikes in
quantum temperature fluctuations increases rapidly for a
ferromagnetic semimetals with lower Neel temperatur
This feature is illustrated in Fig. 3. In calculating the qua
tum temperature fluctuation curve shown in this figure,
Neel temperature was taken to be 3 K~instead of 10 K, as in
the earlier cases!, while all the other characteristic param
eters were unchanged.

The second feature is related to the dependence of
period of the quantum temperature fluctuations on the ta
of the antiferromagnetic sublattices. As the spin-fli
transition point is approached, the period of the oscillatio
decreases}sinu. Then, by measuring the periodsP1 andP2

of the oscillations for two values of the external magne
field H1,H2,Hc , it is possible to obtain the field for the
spin-flip transition from the simple relation

i-

FIG. 3. Quantum temperature fluctuations of a low-temperature antife
magnetic semimetal as a function ofT2.
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Hc
25

~P1H2!22~P2H1!2

~P12P2!~P11P2!
. ~31!

A more complicated situation arises in the case wh
Fermi quasiparticles occupy subbands with opposite po
izations in the spin angular momentum. For example,
electrons occupy both spin subbands, while holes, as be
lie only in the lower spin subband. This occurs when t
following conditions are satisfied:

4

3

~meDe!
3/2

p2\3 ,n,
4

3

~mhDh!3/2

p2\3 , ~32!

then it is easy to find expressions for the temperature de
dences of the Fermi energies for the two electron and
hole bands by solving the equation for electrical neutral
Calculating the temperature phase shifts in the usual way
obtain the three periods inT2 for the oscillations:

P1
e 5S 2 sin u

g D S m0

me
D S 12SK0~g1

e 1g2
e 1gh!

2g2
e uJeu1gh~ uJeu1uJhu! D S K0S

kB
D 2

,

P2
e 5S 2 sin u

g D S m0

me
D S 12SK0~g1

e 1g2
e 1gh!

2g1
e uJeu2gh~ uJhu2uJeu!

D S K0S

kB
D 2

,

Ph5S 2 sin u

g D S m0

mh
D S 12SK0~g1

e 1g2
e 1gh!

g1
e ~ uJeu1uJhu!1g2

e ~ uJhu2uJeu!
D

3S K0S

kB
D 2

, ~33!

whereg1
e andg2

e are the densities of electronic states on
Fermi surface for the two spin subbands andgh is the density
of hole states on the Fermi surface forT50. When the dif-
ference in effective masses is relatively small, the amplitu
of the oscillations will be of the same order of magnitude
the electrons and holes. In this case, the resulting mag
zation M; is obtained by adding three periodic functio
and, therefore, is generally periodic inT2. This is illustrated
in Fig. 4. In these calculations the effective masses of
electrons and holes were chosen to be different, withme

5m0/2 and mh5m0 . The concentration of electrons~and
holes! per lattice site was chosen to be 0.06. The remain
parameters were the same as in the calculation of the q
tum temperature fluctuations shown in Fig. 3. Curvesa-c are
quantum temperature fluctuations that are periodic with
spect toT2 and originate from the two electron- and on
hole-spin subbands. The total fluctuating part of the mag
tization is shown in the lowest curve of this figure. It is th
form of quantum temperature fluctuations that is obser
experimentally. Thus, the method proposed here for ana
ing the experimental data and based on the above resul
of special importance. In fact, plotting theM; curve as a
function of T2 and then Fourier analyzing it makes it po
sible to isolate the periodic contributions from quasipartic
in the different spin subbands. After determining the perio
of the oscillations for the different components and comp
ing them with the values obtained from Eq.~33!, we obtain
numerical relations for the electronic structure parameter

Analogous results can be obtained easily even when b
electrons and holes occupy both spin subbands. Then
e
r-
t

re,
e

n-
e
.
e

e

s
r
ti-

e

g
n-

-

e-

d
z-
, is

s
s
r-

th
he

oscillating magnetization is made up, in general, of fo
functions that are periodic inT2. The proposed method fo
analyzing the experimental data is effective in this case
well. We do not give concrete expressions for the four pe
ods of the oscillations here in order to save space.

In conclusion, we summarize the main results of th
study. The main conclusion of this work is a proof of th
possible existence of a new type of oscillations, quant
temperature fluctuations, in antiferromagnetic semimet
The conditions for a distinct experimental observation
quantum temperature fluctuations are:~a! relatively low Neel
temperatures (Tn<1 – 10 K); ~b! the existence of an ex
change coupling between the spin angular momenta of
current carriers and localized electrons; and,~c! samples of
sufficiently good quality. At present, choosing solid-sta
compounds which satisfy these requirements presents no
ficulties. As an example, we note the already-mentioned
rium monopnictides. These compensated semimetals h
antiferromagnetic order with a Neel temperatureTN

;5 – 7 K. The high quality of the single crystals is co
firmed, in particular, by the intense signals from the de Ha
van Alphen effect19 in CeAs. Given that the order of magn
tude of the amplitude of the quantum temperatu
fluctuations is the same as that of the de Haas-van Alp
effect, we may hope for good observations of quantum te
perature fluctuations in these antiferromagnetic materials

It should be noted that studies of quantum temperat
fluctuations are of interest, both from the standpoint of o
serving the effect itself and in order to obtain additional
formation on the electronic structure. The predicted con
butions from the individual spin subbands to the quant
temperature fluctuations periodic inT2 provide a large infor-
mation input to studies on quantum temperature fluctuatio
which is, to a substantial extent, similar in its possibilities

FIG. 4. Quantum temperature fluctuations of an antiferromagnetic se
metal. Two electron subbands and one hole subband are occupied.~a–c!
Contributions of the electron and hole subbands;~d! total fluctuating part of
the magnetization.



th
s

si
n
it

un

d

J.

1529Phys. Solid State 40 (9), September 1998 V. V. Val’kov and D. M. Dzebisashvili
the usual de Haas-van Alphen effect. It is important that
period of the quantum temperature fluctuations, as oppo
to the period of the de Haas-van Alphen oscillations, is ea
changed by an external magnetic field. This offers additio
experimental means for testing the electronic structure w
the aid of quantum temperature fluctuations.
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Teor. Fiz.64, 620 ~1995! @sic#.
12V. V. Val’kov and D. M. Dzebisashvili, Zh. E´ ksp. Teor. Fiz.111, 654

~1997! @JETP84, 360 ~1997!#.
13V. V. Val’kov and D. M. Dzebisashvili, Fiz. Tverd. Tela~St. Petersburg!

39, 204 ~1997! @Phys. Solid State39, 179 ~1997!#.
14A. I. Akhiezer, V. G. Bar’yakhtar, and S. P. Peletminskii,Spin Waves,

North-Holland, Amsterdam~1968!, 368 pp.
15S. V. Tyablikov,Methods in the Quantum Theory of Magnetism@in Rus-

sian#, Nauka, Moscow~1975!, 528 pp.
16L. D. Landau and E. M. Lifshitz,Quantum Mechanics@in Russian#,

Nauka, Moscow~1989!, 768 pp.
17L. D. Landau and E. M. Lifshitz,Statistical Physics@in Russian#, Nauka,

Moscow ~1976!, 584 pp.
18I. M. Lifshits, M. Ya. Azbel’, and M. I. Kaganov,Electron Theory of

Metals, Consultants Bureau, New York~1973!, 416 pp.
19N. Takeda, Y. S. Kwon, Y. Hagaet al., Physica B186–188, 153 ~1993!.

Translated by D. H. McNeill


