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We examine the dynamics of a wave packet that initially corresponds to a coherent state in the
model of a quantum rotator excited by a periodic sequence of kicks. This model is the
main model of quantum chaos and allows for a transition from regular behavior to chaotic in the
classical limit. By doing a numerical experiment we study the generation of squeezed states
in quasiclassical conditions and in a time interval when quantum–classical correspondence is well-
defined. We find that the degree of squeezing depends on the degree of local instability in
the system and increases with the Chirikov classical stochasticity parameter. We also discuss the
dependence of the degree of squeezing on the initial width of the packet, the problem of
stability and observability of squeezed states in the transition to quantum chaos, and the dynamics
of disintegration of wave packets in quantum chaos. ©1998 American Institute of Physics.
@S1063-7761~98!00801-4#

1. INTRODUCTION cavity in a dynamical regime close to the separatrix.4,6
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At present the problem of generating squeezed quan
states draws a lot of attention, both from the standpoin
both pure knowledge and possible applications.1–3 Most of-
ten the topic is squeezed states of the electromagnetic fi
If in the simplest case we take a single-mode quantum fi
which is described by the creation and annihilation opera
a† and a, the variances of the quadrature field operat
a15a1a† anda252 i (a2a†) satisfy the uncertainty rela
tion Da1Da2>1, where the equality holds for a cohere
state or vacuum. Then, in these simple terms, a sque
state is a state for which the variance of one of the quadra
components is less than unity. Quantum fluctuations, de
mined by the uncertainty relation, are represented diagr
matically in thea1a2 plane of the quadrature components
a circle for a coherent state or by an ellipse for a squee
state. In a more systematic description of squeezing,
quantum-noise ellipse is determined in terms of the pro
tion onto the same plane of the horizontal section of
Wigner distribution function, which gives the quasiprobab
ity distribution for measuring the quadratic fie
components.3

A typical situation in experiments in generation
squeezed states is one in which a large number of pho
participate in a nonlinear interaction and the amplitude
quantum fluctuations is small compared to the mathema
expectations of the observables.2,3 In this case the common
approach in explaining squeezing is to use the semiclas
setting, where the Wigner quantum function is actually as
ciated with a classical distribution function and instead
examining the dynamics of the quantum-noise ellipse
considers the evolution of the classical phase volume.3,4

For quite a long time it has been known that squeez
of light is amplified in systems close to the bifurcation po
between two different dynamical regimes.3–6 Buildup of
squeezing in such conditions was considered, e.g., for
parametric interaction of light waves5 and for the interaction
of Rydberg atoms with an electromagnetic mode in a highQ
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The following simple argument is used to explain t
buildup of squeezing near a bifurcation point: quantum flu
tuations build up for the physical variable that is unsta
near the threshold. As a result there is nothing to stop
strong squeezing of fluctuations of the conjugate varia
since in a nondissipative system phase volume is conserv3

It must be noted at this point that a number of resear
ers~see Refs. 3–6! studied the buildup of squeezing near t
instability threshold in optical systems with only regular d
namics. However, it is well known that strong~exponential!
deformation of the phase volume is one of the main ma
festations of dynamical chaos in classical systems.7 The
physical reason for such strong deformations of the ph
volume is the local instability of motion, which usuall
manifests itself within a wide range of values of the cont
parameter of the dynamical system and not near the bifu
tion point. According to the correspondence principle, in t
quasiclassical limit a quantum system must manifest
properties of a classical system. Thus, it is quite natura
expect buildup of squeezing in the transition to quant
chaos, too. On the other hand, in a quantum mechanical
scription we speak only of the dynamics of wave packe
whose center moves almost along a classical trajectory in
course of a certain time interval. Hence in the quasiclass
limit the strong deformations of the phase volume, whi
accompany the transition to chaos, must manifest themse
in squeezing along a certain direction up to the point wh
quantum effects produce strong smearing of the wave pac

As far as we know, the generation of squeezed state
a system with chaotic dynamics was first examined in Re
8–10. By employing the 1/N-expansion method6,11 ~hereN
is the number of quantum states participating in the dyna
ics of the system! it was found in Refs. 8 and 9 that th
squeezing of light increases significantly in the transition
chaos during the time interval for which quantum–classi
correspondence is well-defined.12 This result was illustrated
in Refs. 8 and 9 by the example of the generalized Jan
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Cummings model, which allows a transition from regular
13
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dynamics to chaotic dynamics in the classical limit.Then
this result was generalized to the case of arbitrary sin
mode quantum-optical systems in Ref. 14. The squeezin
wave packets in quantum chaos was also briefly discusse
Ref. 10.

However, the main results of Refs. 8, 9 and 14 we
obtained by using a form of perturbation theory~the
1/N-expansion!. In this connection it should be interesting
study the generation of squeezed states in the numerica
lution of the Schro¨dinger equation proper for a simple qua
tum system that allows a transition to quantum chaos.

In the present paper we study the generation of squee
states in the time evolution of an initially Gaussian wa
packet in the model of a quantum rotator excited by a p
odic sequence of kicks, called the kicked quantum rota
The model was first introduced by Casatiet al.15 and at
present is the main model in studies of quantum chaos~see,
e.g., the review in Refs. 16–18!. The quantum rotator mode
is attractive mainly for two reasons: first, the classical lim
for this model is a well-studied standard map,19 and second,
in numerical calculations it is fairly easy to study the dyna
ics of the model in the quasiclassical region with a lar
number of quantum levels.

We examine the dynamics of narrow Gaussian pack
in a rotator with 217 ('105) levels. We define squeezing fo
the generalized quadrature operator

Xu5a exp~2 iu!1a†exp~ iu!,

whereu is a real parameter. It is this type of squeezing tha
observed in the homodyne detecting scheme, whereu is de-
termined by the phase of the reference beam.1 We will see
that as long as the wave packet is localized, the degre
squeezing correlates well with the degree of local instabi
in the system. Here the greater the instability, the stron
the squeezing achieved in a shorter time interval. Squee
is much stronger in quantum chaos than it is in regular m
tion. We will also see that the narrower the initial wa
packet, the higher the degree of squeezing that can
achieved. We attribute this to the fact that a narrow wa
packet is closer in its evolution to the classical trajecto
than a broad one, with the result that it is more sensitive
local instabilities in the motion, which leads to stron
squeezing.

We will also consider the problem of stability and o
servability of squeezing in the transition to chaos. More p
cisely, we will study the time dependence of the optimu
values of the phasesu of the generalized quadrature opera
Xu for which the squeezing is at its maximum~this is known
as principal squeezing20,21!. We will show that in strong
chaos and in long time intervals the optimum values of
phases change dramatically even under a small perturba
of the parameters of the initial Gaussian packet. Suc
squeezing regime is unstable and difficult to observe. On
other hand, our results suggest that in weak chaos squee
is fairly stable.

We will also briefly discuss the dynamics of disintegr
tion of wave packets in chaos. Here we will show tha
typical scenario of disintegration of an initially localize
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spread of the packet, and the catastrophic disintegratio
the packet into many small subpackets. Here our res
agree on the whole with the results of Casati and Chirikov18

Note that earlier the dynamics of narrow Gaussian pa
ets in the quasiclassical region was studied numerically
the model of a quantum rotator with kicks,22,23 and also the
model of a kicked quantum top24 and for the quantum-cat–
Arnold model25 in connection with the problem of quantum
classical correspondence in quantum chaos. However
these papers the generation of squeezed states was no
sidered.

The model of a quantum rotator is extremely popular
theoretical studies of quantum chaos. On the other hand
cently possibilities of implementing variants of this model
optical systems have been discussed.26 Moreover, the quan-
tum rotator model has been realized in experiments in
interaction of laser light and cooled atoms.27 Hence our re-
sults on the buildup of squeezing in the transition to quant
chaos in a rotator are also related to experimentally rea
able systems.

The plan of this paper is as follows. In Sec. 2 we discu
the quantum map of the rotator model and find how to c
culate principal squeezing. The method used in numer
calculations is developed in Sec. 3, and the main result
the dynamics of squeezing are given in Sec. 4. Finally,
Sec. 5 we draw the main conclusions and consider the p
sibility of verifying our results in experiments on squeezi
buildup.

2. THE QUANTUM ROTATOR MODEL AND SQUEEZED
STATES

Let us examined the model of a quantum rotator w
periodic delta-function kicks. Here we follow the notation
Ref. 23. The Hamiltonian for such a model is

H5
p2

2mL2 2dp~ t/T!mL2v0
2 cosx,

dp~ t/T!5 (
j 52`

1`

d~ j 2t/T!, ~1!

where x is the cyclic variable with a period 2p, L is the
characteristic size of the rotator,m is the rotator mass, and
v0 is the frequency of linear vibrations. The functio
dp(t/T) describes a periodic sequence of kicks with a per
T, whered(x) is the Dirac delta function. Let us introduc
new variables

a5mL2v0
2T, b5

T

mL2, ~2!

and measure time in units ofT, i.e., t→t/T. Then the Schro¨-
dinger equation assumes the form

i\
]C

]t
52

\2b

2

]2C

]x2 2dp~ t !a cosx•C. ~3!

Due to the periodicity ofC(x) in x the solution of Eq.~3!
can be written as follows:
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FIG. 1. Phase portrait of the classical standard map
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C~x!5
A2p

(
k52`

eikxAk~ t !,

Ak~ t !5
1

A2p
E

0

2p

C~x!e2 ikxdx. ~4!

Using the standard procedure,16,23 we obtain the quantum
map in the form

Cn115UxUpCn ,

Up5expS 2
ib

2\
p̂2D , Ux5expS ia

\
cos~ x̂! D , ~5!

where Cn is the value of the wave function at the tom
immediately after thenth kick. The time evolution of the
wave function in the map~5! is determined solely by two
parameters,a/\ and b\. SinceUp is diagonalized in the
p-representation,Ux is diagonalized in thex-representation,
and the transition betweenx- andp-representations is give
by the Fourier transformation~4!, the map~5! actually re-
duces to

Cn11~x!5UxF
21UpFCn~x!, ~6!

whereF and F21 are the direct and inverse Fourier tran
forms.

Sometimes it proves useful to use the quantum map w
ten in terms of the probability amplitudesAk of transitions
between the unperturbed levels of the rotator.15 Combining
~4! and ~5!, we obtain

Ak
~n11!5 (

m52`

1`

FkmAm
~n! ,

Fkm5~2 i !k2m expS 2
i\bm2

2 D Jk2mS a

\ D , ~7!

63 JETP 86 (1), January 1998
t-

and the superscript (n) on the variableA stands for the num-
ber of the kick. Bearing in mind that the Bessel functio
with u l u>z rapidly decrease with increasingl , we see from
~7! that, with exponential accuracy, in the course of a sin
kick 2a\21 unperturbed rotator levels are captured. Belo
we consider the case wherea/\ is large, which is typical of
quantum chaos problems.

In the classical limit the Hamiltonian~1! reduces to the
standard map

Pn115Pn2K sin xn11 , xn115xn1Pn ~mod 2p!,
~8!

wherePn5bpn , with the subscriptn denoting the values o
x and P immediately after thenth kick, andK[ab is the
Chirikov parameter.1! Strong and global chaos sets in fo
K.1. For K,1 the larger part of the phase plane is fille
with regular trajectories, although small regions with loc
chaos exist no matter how smallK may be.19 The phase
portrait for the map~8! at K50.8 is depicted in Fig. 1. The
chaotic layer lies near the separatrix of the main resona
which passes through the hyperbolic points (6p,0). In our
calculations we usually take a wave packet whose cente
gravity lies near a hyperbolic point.

For the initial state of the quantum map~5! we take the
Gaussian wave packet

C~x!5~2ps2!21/4 expS 2
~x2x0!2

4s2 1 ik0~x2x0! D ,

~9!

where

^x&5x0 , ^dx2&[^x2&2^x&25s2,

p0[^p&5\k0 , ^dp2&5 \2/4s2 ,

andk0 is an integer. The packet is assumed narrow:
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Note that in view of its periodicity inx the wave packet~9!
is generally not a state that minimizes the uncertainty re
tion. But in the case of a narrow packet it is essentia
indistinguishable from a minimum-uncertainty state.22–24

A typical initial quantum state in studies of light squee
ing is a coherent state.1–3 Such a state is an eigenfunction
the annihilation operatora, which in the present notation ca
be written as

a5
1

A2\
S Ag x̂1 i

p̂

Ag
D , g5S a

b D 1/2

. ~10!

The fact that the annihilation operator has such an app
ance can easily be understood if we consider the follow
limiting case of the harmonic oscillator that follows from~3!:

i\
]C

]t
52

\2b

2

]2C

]x2 1
ax2

2
C. ~11!

Now we can show that the wave function~9! is a coherent
state, i.e., an eigenfunction of~10!, if we put

s25
\

2g
. ~12!

Let us now turn to the problem of squeezing.
In light squeezing experiments,1 the observable quantity

is the variance of the generalized quadrature operator

Xu5ae2 iu1a†eiu, ~13!

whereu is the phase of the reference beam in the homod
detecting scheme. In the particular cases whereu50 or
u5p/2 Eq. ~13! yields the following expressions for th
generalized position and momentum operators:

X15a1a†, X252 i ~a2a†!, @X1 ,X2#52i , ~14!

with the uncertainty relation̂dX1
2&^dX2

2&>1, where averag-
ing is done over an arbitrary quantum state and equalit
achieved for a coherent state. The standard definition
quadrature squeezing is the condition1,3

min~^dX1
2&,^dX2

2&!,1, ~15!

i.e., the variance of one of the quadrature component
smaller than for the coherent state.

In a more general case we consider the variance^dXu
2&

of the operator~13!, and the state is assumed squeezed if
value of ^dXu

2& in this state for some value ofu is smaller
than in the coherent state.20,21 Experiments actually deter
mine the minimumS of this variance as a function of th
angleu:

S5 min
uP[0,2p]

^dXu
2&. ~16!

Using the definition~13! of Xu , we can show20,21 that

S5112^da†da&22A^da2&^da†2&, ~17!

and the minimum of̂ dXu
2& is reached at an optimum phas

valueu5u* defined as follows:21
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For our discussion it is convenient to expressS in terms of
the cumulants of the operatorsx andp. Using the definition
~10! of operatora and Eq.~17!, we obtain

S5
1

\ S ^dp2&
g

1^dx2&g

2A~^dx2&g2 ^dp2&/g!214c2D , ~19!

where

c5 1
2~^~xp1px!&22^x&^p&!.

Clearly each Gaussian packet satisfiesS5\/2s2g, while for
a coherent state we have, in view of~12!, S51. Hence a state
is squeezed if

S,1. ~20!

The condition determines the principal squeezing attaina
in homodyne detecting.20

The maximum of the variancêdXu
2& in u can be defined

in the same way the minimum was defined in~16!. We de-
note it byS̄. Then we can show that the dependence ofS̄ on
the cumulants differs from~19! only in the sign in front of
the square root, so that we have

SS̄>1. ~21!

Thus, squeezing inS ~Eq. ~20!! is accompanied by dilation in
S̄.

Note that in contrast to the quadrature squeezing~15!,
the definition~19! of principal squeezing contains quadratu
correlators of thê xp& type. This is very important for sys
tems with discrete time, to which the model of a quantu
rotator excited by kicks belongs. The thing is that the quad
ture squeezing~15! is essentially unobservable in such sy
tems, although the principal squeezing~19! and ~20! may
occur.2! In Sec. 4 we discuss the time dependence ofS.

3. THE NUMERICAL METHOD

Several features of the numerical method must be m
tioned. The interval inx from 0 to 2p is partitioned intoN
segmentsDx52p/N, and the wave functionC(x) is repre-
sented by a discrete sequence of values~column vectoruC&!
of lengthN, so thatC l5C( lDx), l P@0,1,•••, N21#. Ac-
cordingly, in the sum in~4! k varies from 0 toN21. In our
numerical methodN is an integral power of two. Here th
operatorF in ~6! is interpreted as the fast Fourier transform
which induces the following transformations:

F: C l→Ak , F21: Ak→C l . ~22!

To determine the principal squeezing, we must calcul
^dq2&, ^dp2&, and ^xp& ~see Eq.~19!!. For instance, the
calculation of^xp& proceeds along the following lines:

^xp&5^CuxF21pFuC&,

64K. N. Alekseev and D. S. Pri mak



where^Cu is obtained by transposing the vectoruC& and then
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finding the complex conjugate of the result, whilex and p
are vectors that initially have the form

x5@0, Dx, 2Dx,•••, 2p2Dx#,

p5@0, 1, 2,•••, N21#.

The fact thatx is defined modulo 2p requires following
the wave packet and ensuring that it is defined correctly d
ing the passage through the end-points of the interval@0,
2p#. We set up the process in the following manner. Wh
the center of the wave packet in thex-representation ap
proaches an edge of the half-interval@0, 2p#, the wave func-
tion C(x) is examined on a new interval,@2p,p#, with a
new vector

x5@0,Dx,•••,p,2p1Dx,2p

12Dx,•••,22Dx,2Dx#,

since (2kDx)mod 2p5(2p2kDx)mod 2p, wherek is an
integer. The transition from@2p,p# to @0,2p# is treated
similarly.

Calculations in thep-representation have their own sp
cial features. For instance, although for the Hamiltonian~1!
the momentum is defined in the interval from2` to 1`, in
numerical calculations we deal only with a finite range
values of momentump, a range specified by the numberN
of Fourier transforms in the expansion~4!. To avoid the pos-
sible problem of reflection of the wave packet from an ed
of the given interval in thep-representation,3! we select this
interval in each iteration of map~6! in such a way that the
maximum of the absolute value of the wave function of t
packet is always at the center of the given interval~actually,
we renumber the vectorp!.

The process of calculating the next iteration of the qu
tum map~6! is terminated as soon as the packet ceases t
sufficiently localized either in thex-representation or in the
p-representation, i.e., when the number of Fourier transfo
actually involved in the calculation process is smaller th
needed. We write the conditions for packet delocalizat
mentioned earlier. To this end we introduce the notation

j5 max
[0,2p]

uC~x!u, x5max$uA1u,uA2u,•••,uANu%,

and Aleft and Aright are the values ofAk belonging, respec-
tively, to the left and right edges of the finite interval
which the wave function in momentum space, the finiten
being due to the finite numberN of Fourier transforms in the
expansion~4!. The calculation is terminated when one of t
two inequalities,

maxH uAleftu
x

,
uArightu

x J .« or
uC~z!u

j
.«,

is valid ~herez50 if xP@0,2p# or z5p if xP@2p,p#. In
this paper we used the value«50.002!.

4. THE MAIN RESULTS

For the initial wave function in our calculations we too
the coherent state~a Gaussian wave packet! with \51026

and k0510 000, ands was varied between 0.04 and 0.0
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Chirikov parameterK, in terms of which the parametersa
andb in the evolution operator~5! are expressed as follows

a5K1/2
\

2s2 , b5K1/2
2s2

\
. ~23!

These formulas are obtained by combining the definit
K5ab and Eqs.~10! and ~12!.

In Sec. 2 we found that the number of unperturbe
rotator levels captured in one kick is roughly 2a/\. From
~23! it follows that in our case this number isK1/2/s2 and
amounts to several tens of thousands for the adopted wi
s of the wave packet.

In our calculationsK was varied between 0.2 and 2 wit
a step of 0.02. We found the time dependence of the squ
ing S ~19! and the optimum value of the phaseu* at which
^dXu

2& is at its minimum. To demonstrate the correlation th
exists between the degree of squeezing and the ch
characteristics9,14 we calculated

d5@^dx2&1^dp2&#1/2. ~24!

It can be shown9,14,28that in the classical limit and while
the wave packet is well-localized, i.e.,@^dx2&#1/2!x0 and
@^dp2&#1/2!p0 , the d of ~24! corresponds to the following
separation in phase space:

dcl~ t !5@~Dx!21~Dp!2#1/2, ~25!

where (Dx(t), Dp(t)) is the solution of the linear small
perturbation equations near the classical traject
(x(t), p(t)). The quantity dcl(t) characterizes the diver
gence of two initially close trajectories and enters into t
definition of the largest classical Lyapunov exponent

l5 lim
t→`

dcl~ t !

t
. ~26!

For a classical standard map with strong chaosK@1 we
have the simple dependencel' ln(K/2) ~see Ref. 19!. The
Lyapunov exponent~26! is an asymptotic characteristic o
chaos. For finite time intervals7

dcl~ t !'exp~h~x,p!t !, ~27!

where the exponenth is a function of a point in phase spac
and coincides, in order of magnitude, with the Lyapun
exponentl, but in some time intervals the difference b
tween the two may be significant. The latter fact can
explained by the strong inhomogeneity in the statistical pr
erties of the phase space of chaotic systems and, corresp
ingly, by the different rates of divergence of trajectories
different regions of phase space through which the sys
passes in its time evolution. It must be noted at this point t
the dependence ofh on the parameterK is extremely com-
plicated. What is important, however, is only the property
the strong~exponential! increase ofdcl specified by~27! in
the presence of chaos, a property often called lo
instability.7 When the motion is regular, the time dependen
of dcl is much weaker—it follows a power function.7
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On the other hand, it ish that determines the rate o
phase-volume deformation: the stronger the local instabi
the greater the phase-volume deformation in a given t
interval.

Since in our case quantum–classical correspondence
the concept of chaos are well-defined only in a very sh
time interval, while the wave packet remains localized, it
meaningful to consider the correlations existing between
time dependence of the squeezing and that of the quantd
~see~24!!, which in the classical limit becomesdcl ~see~25!!.

Figure 2 depicts the time dependence of the logarithm
squeezingS and lnd for different values ofK, when the
center of gravity is of the wave packet is initially at the po
x05p, p05\k050.01. This initial condition is close to a
hyperbolic point through which the chaotic layer passes e
whenK is small ~see Fig. 1!. Figure 2 shows that the large
the squeezing~the smaller the value ofS! the larger the local
instability ~the larger the values of lnd! up ton'4, when the
packet spread becomes so large that purely quantum ef
become important.

For another initial condition,x05p/2 and p050.01,
which is closer to an elliptic point and hence lands in t
chaotic region only at large values ofK, the dynamics of
squeezing is depicted in Fig. 3. We see that in this c
squeezing is stronger by a factor of almost two than un
the conditions of Fig. 2 in the same time interval. On t

FIG. 2. Time dependence of the logarithm of squeezingS ~the upper part of
the figure! and lnd defined in Eq.~24! ~the lower half of the figure!; x05p
ands50.006.

FIG. 3. The same as in Fig. 2 but forx05p/2.
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other hand, both Fig. 2 and Fig. 3 exhibit an increase
squeezing as a function of the parameterK, which controls
the development of chaos in the system.

Let us study the correlation between squeezing and
degree of local instability in the system for different valu
of K in greater detail. TheK-dependence of the degree
squeezing calculated after a fixed number of kicks atx05p
and p050.01 is depicted in Fig. 4. After the third kick th
correlation between lnS and lnd become very evident~Fig.
4a!. However, small discrepancies in this dependence m
appear as the number of kicks grows. Such discrepan
become evident, for instance, after the fourth kick f
1.1&K&1.4 ~Fig. 4b!. After five kicks,n55, the correlation
between lnS and lnd is restored~Fig. 4c!. Note that this

FIG. 4. Logarithm of the squeezingS ~solid curves! and lnd ~dashed
curves! as functions of the Chirikov parameterK for a fixed number of
kicks: ~a! n53, ~b! n54, and~c! n55; x05p ands50.007.
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behavior pattern is quite typical. Hence, to establish the c
relation between local instability and squeezing more clea
a certain procedure of coarsening~averaging! these quanti-
ties in the given time interval is needed. In our study
determine the minimum squeezingSmin in a time interval
during which the packet remains well-localized for most v
ues ofK considered here, and hence the maximumdmax in
the same time interval. We found that there is a disti
correlation betweenSmin and dmax: the larger the value o
dmax the smaller the value ofSmin , and vice versa. An ex
ample of such a dependence is depicted in Fig. 5, whereSmin

and dmax were calculated after six kicks. Note that the d
grams do not go farther thanK.1.7 because after six kick
the wave packet becomes delocalized forK.1.7 and calcu-
lating averages and local instability becomes meaningles

We also studied the dependence of the dynamics
squeezing on the initial widths of the wave packet. The
results are depicted in Fig. 6. Clearly, the narrower
packet the stronger the squeezing achieved in a fixed
interval. This dependence arises because a narrow w
packet travels farther along its classical trajectory tha
wide packet, so that it undergoes stronger deformations
lated to nonlinear classical dynamics. The exponential

FIG. 5. Logarithm of the minimum squeezingSmin ~solid curves! and of the
local instabilitydmax ~dashed curves! as functions of the Chirikov paramete
K after seven kicks. The parameters and initial conditions are the same
Fig. 4.

FIG. 6. Time dependence of the logarithm of squeezingS for different
initial widths s of the wave packet at fixedK50.8; x05p.
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from the classical limit and the dynamics is of an essentia
quantum nature.

Now let us examine the problem of stability and obse
ability of squeezing in chaos. The figures mentioned ear
can serve to illustrate the statement that the stronger
chaos the stronger the principal squeezing. However,
definition ~19! of principal squeezing is related to fixing th
phase,u5u* . Here u* is time-dependent even for exact
integrable systems.21 When chaos is strong, the time depe
dence ofu* (t) in the classical limit may be extremely com
plicated. Indeed, in addition to dilation and squeezing,
main feature of chaos in classical systems with a boun
phase space is the multiple formation of folds of the ph
volume as chaos evolves.7 Hence the process of finding th
‘‘minimum width’’ of a phase drop, which actually amount
to finding theu* vs. t dependence in the quasiclassical lim
becomes unstable for large time intervals.

Basing our reasoning on a similar semiclassical pictu
we examined the stability of the time dependence of the
timum phaseu* (t) calculated quantum mechanically with
small perturbation of the initial position of the wave pack
More precisely, we found the time dependence of the o
mum phaseu1* with the initial conditionx05p and, simi-
larly, u2* (t) with the initial conditionx05p20.05. We de-
note the difference of these phases by

D~ t !5u1* ~ t !2u2* ~ t !.

Since u* is periodic with a periodp ~see Eq.~18!!, it is
natural to take sin 2D as the quantity of interest, since in th
way we avoid breaks in the diagrams related to the peri
icity of u* . The dependence of sin 2D on the Chirikov pa-
rameterK for different fixed numbers of kicks is depicted i
Figs. 7a–7c. After two kicks~Fig. 7a! the maximum value of
usin 2Du does not exceed 0.035 atK52. After three kicks
~Fig. 7b! the value ofD becomes significant atK*1.2. Fi-
nally, after four kicks~Fig. 7c! the process of measurin
squeezing becomes essentially unstable atK*1. Indeed, in
these condition with a small perturbation of the initial po
tion of the wave packet, the difference of the optimu
phases reaches a value of orderp. In Ref. 9 such generation
of squeezed states was called unstable squeezing. As F
implies, unstable squeezing is observed when chaos is st
and the time intervals are such that semiclassical descrip
is valid. On the other hand, for short time intervals and sm
K ’s the squeezing is strong and stable.

To conclude this section we will briefly touch on th
problem of the dynamics of disintegration of coherent sta
in chaos, a problem that is of interest by itself. Figures
and 8b depict the dependence ofuCu on x and of uAku on k
~see Eq. ~4!!. Actually, Fig. 8 gives the shape of th
wave function in the coordinate and momentum represe
tions for an initially narrow wave packet with

@^dx2&#1/2(t50)[s50.006 and @^dp2&#1/2(t50)5 1
12

31023. The relatively small valueK51.2 makes it possible
to examine the fairly long evolution of the wave packet up
the point of its total disintegration.4! After six kicks ~Fig. 8a!
the wave packet spreads out significantly, but on the wh
retains its bell-shaped structure. What follows is

in
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disintegration of the packet into many small packets, w
the characteristic shape of the wave function depicted in
8b ~after 18 kicks!. Finally, very soon the wave functio
becomes so dissected that even 217 Fourier harmonics are
insufficient to describe the evolution correctly~for the data
of Fig. 8 this happens approximately at the 20th kick!. Quali-
tatively, the same pattern of the evolution of the wave pac
was observed at higher values ofK: first the broadening, or
‘‘swelling,’’ of the wave packet, and then its rapid disint
gration into many very small subpackets. The differences
packet disintegration for large values ofK in comparison
with the caseK.1 ~Fig. 8! boil down to two facts: first, the
swelling of the packet and the disintegration occur very r
idly ~it takes only several kicks to complete the process!, and

FIG. 7. The differenceD of optimum phases as a function of the parame
K at s50.006,x05p, and a fixed number of kicks:~a! n52, ~b! n53, and
~c! n54.
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the process of disintegration of wave packets in strong ch
resembles an explosion. On the whole, the pattern being
scribed agrees well with the pattern obtained from the an
sis of the behavior of the Wigner function,18 although we
observed some anomalies. In particular, for fairly narr
wave packets (s5431023) we observed the disintegratio
of the initial packet into two fairly large subpackets. Rippl
then appeared on the subpackets, and the two disintegr
into many small packets.

A more detailed description of the disintegration of c
herent states in chaos requires further investigations.

5. DISCUSSION AND CONCLUSION

Thus, in this work we have used a numerical experim
to study the dynamics of generation of squeezed states in
evolution of a Gaussian packet in the quasiclassical limit
the model of a quantum rotator excited by kicks. We sh
that within the time interval where the packet is we
localized the squeezing becomes stronger in the transitio
chaos. For strong chaos and in long time intervals
squeezing process becomes unstable. These results, obt
through direct numerical simulation, are in good agreem
with the results obtained by perturbation-theoretic techniq
and for other models.8,9,14

In the final stages of preparing the manuscript for pr
we became acquainted with two recent papers29 also devoted
to the problem of generating nonclassical states~squeezing
and antibunching! in quantum chaos. Rui-Hue Xie an
Gong-ou Xu29 presented the results of numerical expe
ments on the dynamics of quadrature squeezing in sim
quantum models that allow a transition to chaos in the c
sical limit: the Lipkin–Meshkov–Glick model30 and the
Belobrov–Zaslavski�–Tartakovski� model.31 In contrast to
our approach, Rui-Hue Xie and Gong-ou Xu29 were inter-
ested in the long-time limit, when the wave packets are
localized and this sense the quantum–classical corres
dence is completely violated. They found that quadrat
squeezing disappears in the transition to quantum chaos
though to some degree squeezing is always present in reg
motion. It must be noted at this point that Rui-Hue Xie a
Gong-ou Xu29 noticed the existence of nonzero squeezing
some sort in the short-time limit and for quantum chaos,
they did not observe the buildup of squeezing described
the present paper, probably because in their numer
experiments29 the quasiclassicality parameter was not su
ciently large: only several hundred quantum levels part
pated in the dynamics of the system. Thus, their results
not contradict ours and augment them in another limit
case, the limit of long times of motion. The description of t
dynamics of squeezing in the case intermediate between
one described in the present paper and the one studie
Ref. 29 merits a separate investigation.

In conclusion we would like to make several remar
concerning the possibility of experimentally observin
squeezing in quantum chaos on a time scale correspondin
a well-defined quantum–classical correspondence.
present essentially all squeezed-light experiments are don
the stationary regime. Squeezing in the transition to quan

r
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FIG. 8. Dependence of the absolute value of t
wave function,uCu on x and dependence of the
absolute value of the Fourier transforms,uAku,
on k in the expansion~4! of the wave function at
~a! n56 and ~b! n518 and fixeds50.006,
K51.2, andx05p.
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4!In conducting numerical experiments in the dynamics of the disintegration
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sense is a transient dynamical phenomenon. The first ex
ments in light squeezing in transient regimes are only in
preliminary stage.32 We hope that the development of effe
tive experimental methods for observing squeezed state
light in transient dynamical regimes will also make it po
sible to observe the buildup of squeezing in the transition
quantum chaos.

On the other, as noted in the Introduction, it is mu
simpler to realized the quantum rotator model with kicks
atomic optics.27 Moreover, it is much simpler to observ
transient dynamical regimes in experiments with cooled
oms. Hence we believe that atomic-optics systems of
type discussed in Ref. 27 have great potential for obse
tions of squeezed states in quantum chaos.
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* !E-mail: kna@iph.krasnoyarsk.su
1!The unusual form of the standard map~8! is due to the fact that we find it

convenient to take the values ofx and p immediately after thenth kick
rather than before thenth kick, as is done by the majority of researchers
must be noted, however, that the properties of the standard map ar
tained.

2!Note that Lan23 studied the time dependence of^da2& and ^dp2& for a
quantum rotator on a time scale on which quantum–classical corres
dence holds~Table I in Ref. 23!. Both variances increase uniformly, so th
quadrature squeezing~15! is impossible.

3!For a discussion of the problem of reflection and splitting of a wave pa
due to the finite range of momentum in the close model of the quan
Arnold cat see Ref. 25.
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of wave packets we did not use the procedure~described in Sec. 3! of
terminating the counting process when the wave function becomes d
calized.
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