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We examine the dynamics of a wave packet that initially corresponds to a coherent state in the
model of a quantum rotator excited by a periodic sequence of kicks. This model is the

main model of quantum chaos and allows for a transition from regular behavior to chaotic in the
classical limit. By doing a numerical experiment we study the generation of squeezed states

in quasiclassical conditions and in a time interval when quantum—classical correspondence is well-
defined. We find that the degree of squeezing depends on the degree of local instability in

the system and increases with the Chirikov classical stochasticity parameter. We also discuss the
dependence of the degree of squeezing on the initial width of the packet, the problem of

stability and observability of squeezed states in the transition to quantum chaos, and the dynamics
of disintegration of wave packets in quantum chaos. 1898 American Institute of Physics.
[S1063-776(98)00801-4

1. INTRODUCTION cavity in a dynamical regime close to the separatfix.

At present the problem of generating squeezed quantum . The foIIowmg-S|mpIe argu_ment s usgd to explain the
states draws a lot of attention, both from the standpoint oPUllduP of squeezing near a bifurcation point: quantum fluc-
both pure knowledge and possible applicatibisMost of- tuations build up for the physical variable that is unstable
ten the topic is squeezed states of the electromagnetic fiel€r the threshold. As a result there is nothing to stop the
If in the simplest case we take a single-mode quantum ﬁekﬁrong squeezing of fluctuations of the conjugate variable

which is described by the creation and annihilation operatofiN€ in @ nondissipative system phase volume is consérved.
a’ and a, the variances of the quadrature field operators It must be noted at this point that a number of research-

a,—a+a' anda,= —i(a—a') satisfy the uncertainty rela- _ers(se_e_ Refs. 3—)66tl_Jdied _the buildup of _squeezing near the
tion Aa;Aa,=1, where the equality holds for a coherent msta_blhty threshold_ in optical systems with only regulr_:tr dy-
state or vacuum. Then, in these simple terms, a squeezé@mics. However, it is well known that strottgxponential
state is a state for which the variance of one of the quadratur@eformation of the phase volume is one of the main mani-
components is less than unity. Quantum fluctuations, detefestations of dynamical chaos in classical systérfe
mined by the uncertainty relation, are represented diagranhysical reason for such strong deformations of the phase
matically in thea,a, plane of the quadrature components byVvolume is the local instability of motion, which usually
a circle for a coherent state or by an ellipse for a squeezefanifests itself within a wide range of values of the control
state. In a more systematic description of squeezing, thearameter of the dynamical system and not near the bifurca-
quantum-noise ellipse is determined in terms of the projection point. According to the correspondence principle, in the
tion onto the same plane of the horizontal section of thejuasiclassical limit a quantum system must manifest the
Wigner distribution function, which gives the quasiprobabil- properties of a classical system. Thus, it is quite natural to
ity distribution for measuring the quadratic field expect buildup of squeezing in the transition to quantum
components. chaos, too. On the other hand, in a quantum mechanical de-

A typical situation in experiments in generation of Scription we speak only of the dynamics of wave packets,
squeezed states is one in which a large number of photoshose center moves almost along a classical trajectory in the
participate in a nonlinear interaction and the amplitude ofcourse of a certain time interval. Hence in the quasiclassical
quantum fluctuations is small compared to the mathematicdimit the strong deformations of the phase volume, which
expectations of the observabfesin this case the common accompany the transition to chaos, must manifest themselves
approach in explaining squeezing is to use the semiclassic#l squeezing along a certain direction up to the point when
setting, where the Wigner quantum function is actually assoguantum effects produce strong smearing of the wave packet.
ciated with a classical distribution function and instead of  As far as we know, the generation of squeezed states in
examining the dynamics of the guantum-noise ellipse on@ system with chaotic dynamics was first examined in Refs.
considers the evolution of the classical phase voldthe. 8-10. By employing the N-expansion meth&d! (hereN

For quite a long time it has been known that squeezings the number of quantum states participating in the dynam-
of light is amplified in systems close to the bifurcation pointics of the systemit was found in Refs. 8 and 9 that the
between two different dynamical regim&€. Buildup of  squeezing of light increases significantly in the transition to
squeezing in such conditions was considered, e.g., for thehaos during the time interval for which quantum—classical
parametric interaction of light waveand for the interaction correspondence is well-definé@dThis result was illustrated
of Rydberg atoms with an electromagnetic mode in a lfigh- in Refs. 8 and 9 by the example of the generalized Janes—
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Cummings model, which allows a transition from regularwave packet in chaos consists of two stages: the initial
dynamics to chaotic dynamics in the classical liiiThen  spread of the packet, and the catastrophic disintegration of
this result was generalized to the case of arbitrary singlethe packet into many small subpackets. Here our results
mode quantum-optical systems in Ref. 14. The squeezing afgree on the whole with the results of Casati and Chirfov.

wave packets in quantum chaos was also briefly discussed in Note that earlier the dynamics of narrow Gaussian pack-
Ref. 10. ets in the quasiclassical region was studied numerically for

However, the main results of Refs. 8, 9 and 14 werethe model of a quantum rotator with kicks?®and also the
obtained by using a form of perturbation theofthe model of a kicked quantum tépand for the quantum-cat—
1/N-expansioh In this connection it should be interesting to Arnold modef® in connection with the problem of quantum—
study the generation of squeezed states in the numerical solassical correspondence in quantum chaos. However, in
lution of the Schrdinger equation proper for a simple quan- these papers the generation of squeezed states was not con-
tum system that allows a transition to quantum chaos. sidered.

In the present paper we study the generation of squeezed The model of a quantum rotator is extremely popular in
states in the time evolution of an initially Gaussian wavetheoretical studies of quantum chaos. On the other hand, re-
packet in the model of a quantum rotator excited by a pericently possibilities of implementing variants of this model in
odic sequence of kicks, called the kicked quantum rotatoroptical systems have been discus&&Moreover, the quan-
The model was first introduced by Casafiall® and at tum rotator model has been realized in experiments in the
present is the main model in studies of quantum chaee, interaction of laser light and cooled atoffsHence our re-
e.g., the review in Refs. 16—1L8The quantum rotator model sults on the buildup of squeezing in the transition to quantum
is attractive mainly for two reasons: first, the classical limitchaos in a rotator are also related to experimentally realiz-
for this model is a well-studied standard midm@nd second, able systems.
in numerical calculations it is fairly easy to study the dynam-  The plan of this paper is as follows. In Sec. 2 we discuss
ics of the model in the quasiclassical region with a largethe quantum map of the rotator model and find how to cal-
number of quantum levels. culate principal squeezing. The method used in numerical

We examine the dynamics of narrow Gaussian packetsalculations is developed in Sec. 3, and the main results in
in a rotator with 27 (~10P) levels. We define squeezing for the dynamics of squeezing are given in Sec. 4. Finally, in

the generalized quadrature operator Sec. 5 we draw the main conclusions and consider the pos-
] N ] sibility of verifying our results in experiments on squeezing
Xg=a exp —if)+a'expib), buildup.

where@ is a real parameter. It is this type of squeezing that is

observed in the homodyne detecting scheme, wHhasede-

termined by the phase of the reference béame will see 2. THE QUANTUM ROTATOR MODEL AND SQUEEZED
that as long as the wave packet is localized, the degree &TATES

squeezing correlates well with the degree of local instability
in the system. Here the greater the instability, the stronger
the squeezing achieved in a shorter time interval. Squeezi
is much stronger in quantum chaos than it is in regular mo-
tion. We will also see that the narrower the initial wave p ) 2
packet, the higher the degree of squeezing that can be H= 552~ %(t/T)MLwg cosx,
achieved. We attribute this to the fact that a narrow wave

Let us examined the model of a quantum rotator with
eriodic delta-function kicks. Here we follow the notation of
ef. 23. The Hamiltonian for such a model is

2

packet is closer in its evolution to the classical trajectory _ § _

than a broad one, with the result that it is more sensitive to 59(“1—)_].:_30 8(j—tT), @
local instabilities in the motion, which leads to strong ) _ ) ) ) _
squeezing. wherex is the cyclic variable with a period2 L is the

We will also consider the problem of stability and ob- characteristic size of the rotatan is the rotator mass, and
servability of squeezing in the transition to chaos. More pre«o IS the frequency of linear vibrations. The function
cisely, we will study the time dependence of the optimum&(t/T) describes a periodic sequence of kicks with a period
values of the phasesof the generalized quadrature operator T» Where(x) is the Dirac delta function. Let us introduce
X, for which the squeezing is at its maximu(this is known ~ New variables
as principal squeezifg?). We will show that in strong
chaos and in long time intervals the optimum values of the ~a=mL2w3T, B=
phases change dramatically even under a small perturbation )
of the parameters of the initial Gaussian packet. Such &nd measure time in units @f i.e.,t—t/T. Then the Schro
squeezing regime is unstable and difficult to observe. On théinger equation assumes the form
_othe_r hand, our results suggest that in weak chaos squeezing W h28 2w
is fairly stable. =——

We will also briefly discuss the dynamics of disintegra- 2 X
tion of wave packets in chaos. Here we will show that aDue to the periodicity of’(x) in x the solution of Eq(3)
typical scenario of disintegration of an initially localized can be written as follows:

2

mL?’

i = — Jp(t)a cosx- V. 3

62 JETP 86 (1), January 1998 K. N. Alekseev and D. S. Priimak 62



FIG. 1. Phase portrait of the classical standard map for

K=0.8.
1 whereJ,(z) is the Bessel function of ordérand argument,
V(X)=— E e A (1), and the superscripn) on the variabléA stands for the num-
NLASES ber of the kick. Bearing in mind that the Bessel functions
) with |I|=z rapidly decrease with increasing we see from
Ad(t) = 1 f W\I,(X)efikxdx. (4) (?) that, Wi}h exponential accuracy, in the course of a single
V27 Jo kick 2af~* unperturbed rotator levels are captured. Below

we consider the case wheté# is large, which is typical of
gquantum chaos problems.
In the classical limit the Hamiltoniafil) reduces to the

Y, 1=U U, ¥, standard map

Using the standard proceduf®? we obtain the quantum
map in the form

IB ~ ia R Pn+1=Pn_K SianH_l, Xn+1=Xn+Pn (mOd 277'),
Up=exg — 52 p*|,  Ux=exg - codX)|, (5) (8)

) ] whereP,= Bp,, with the subscriph denoting the values of
where ¥, is the value of the wave function at the tome y and p immediately after thenth kick, andK =« is the
immediately after thenth kick. The time evolution of the  Chirikov parametet! Strong and global chaos sets in for
wave function in the maji5) is determined solely by two K ~1 Fork<1 the larger part of the phase plane is filled
parametersp/f and ph. SinceU, is diagonalized in the yjth regular trajectories, although small regions with local
p-representationt), is diagonalized in the-representation, chaos exist no matter how smafl may be!® The phase
and the tran_sition between_ andp-representations is given norirait for the mag8) at K=0.8 is depicted in Fig. 1. The
by the Fourier transformatiofd), the map(5) actually re-  chaotic layer lies near the separatrix of the main resonance,

duces to which passes through the hyperbolic pointss#,0). In our
W, () =UF U FW (%), (6)  calculations we usually take a wave packet whose center of
gravity lies near a hyperbolic point.
whereF and F ! are the direct and inverse Fourier trans- For the initial state of the quantum m#&p) we take the
forms. Gaussian wave packet
Sometimes it proves useful to use the quantum map writ- )
ten in terms of the probability amplitudes, of transitions W (x)= (2mo?) 14 ex;{ _ (X=X%o) +iko(X—xo)
between the unperturbed levels of the rotafoEombining 40° 0 o)
(4) and (5), we obtain 9
o where
(n+1) _ (n)
A= 2 P 0=x0, (BF)=0¢) (2=,
C o iem ih,@mz) a , Po=(P)=fiko, (8p*)=rh%40?,
km=(~1) ex 2 k=m\ 7 ) 0 andk, is an integer. The packet is assumed narrow:
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o<Xg, (6p?)<tiky. - [(5a?)
e = m (18)

Note that in view of its periodicity irx the wave packet9)

is generally not a state that minimizes the uncertainty relagor our discussion it is convenient to expr& terms of

tion. But in the case of a narrow packet it is_essentiallythe cumulants of the operatoxsandp. Using the definition
indistinguishable from a minimum-uncertainty st&te?* (10) of operatora and Eq.(17), we obtain

A typical initial quantum state in studies of light squeez- 5
ing is a coherent stafe® Such a state is an eigenfunction of S— 1 (<5D ) +(5x2)
the annihilation operata, which in the present notation can h Y
be written as

1 " f) a

=— | Vyx+i—=], :(—

ar \ T e

The fact that the annihilation operator has such an appear- c=3({(xp+px))—2(x){(p)).

ance can easily be understood if we consider the followin
limiting case of the harmonic oscillator that follows frd®):

172 —((X®)y— (8p?) y)*+4c? |, (19
(10

where

gClearly each Gaussian packet satisBesi /202y, while for
a coherent state we have, in view(@P), S=1. Hence a state

AL 2B PV ax? is squeezed if
ih—=—— ——+ —W. (11)
ot 2 X 2 S<1. (20)
Now we can show that the wave functi¢®) is a coherent The condition determines the principal squeezing attainable
state, i.e., an eigenfunction ¢£0), if we put in homodyne detectin®’
% The maximum of the varianggsX3) in 6 can be defined
02:2_. (12)  in the same way the minimum was defined(16). We de-
Y note it byS. Then we can show that the dependenc& oh
Let us now turn to the problem of squeezing. the cumulants differs frong19) only in the sign in front of

In light squeezing experimentshe observable quantity the square root, so that we have

is the variance of the generalized quadrature operator —
SS=1. (21

om0y aTaif
Xp=ae THater, (13 Thus, squeezing i8 (Eq. (20)) is accompanied by dilation in

where# is the phase of the reference beam in the homodyng,

detecting scheme. In the particular cases whereO or Note that in contrast to the quadrature squeeZitfy,
6=m/2 Eq. (13) yields the following expressions for the the definition(19) of principal squeezing contains quadrature
generalized position and momentum operators: correlators of thexp) type. This is very important for sys-

tems with discrete time, to which the model of a quantum
rotator excited by kicks belongs. The thing is that the quadra-
with the uncertainty relatiogsX2)( 5X3)=1, where averag- ture squeezing15) is essentially unobservable in such sys-
ing is done over an arbitrary quantum state and equality iééms, although the principal squeezif@d) and (20) may
achieved for a coherent state. The standard definition opccur? In Sec. 4 we discuss the time dependenc&.of
quadrature squeezing is the conditidn

min((8X3),(6X3))<1, (15)

X,=a+al, X,=-i(a—a"), [X;,X,]=2i, (14

3. THE NUMERICAL METHOD

i.e., the variance of one of the quadrature components is )
smaller than for the coherent state. Several features of the numerical method must be men-

In a more general case we consider the varian®e) tioned. The interval irx from O to 2 is partitioned intoN
of the operator13), and the state is assumed squeezed if thé@gmentsix=2=/N, and the wave functio’(x) is repre-
value of (6X2) in this state for some value af is smaller ~ Sented by a discrete sequence of valleesumn vecto¥))
than in the coherent stat&?! Experiments actually deter- Of lengthN, so that¥,=W(1Ax), 1€[0,1; -+, N—1]. Ac-
mine the minimums of this variance as a function of the cordingly, in the sum ir(4) k varies from 0 toN—1. In our

angle 6; numerical methodN is an integral power of two. Here the
operatorF in (6) is interpreted as the fast Fourier transform,
S= min (8X3). (16 which induces the following transformations:
6e[0,27]
F: ¥, —A, FLA—-Y,. (22)

Using the definition(13) of X,, we can sho#f*' that . o .
To determine the principal squeezing, we must calculate

S=1+2(sa'sa)—2(sa?)(sa'?), (17 (89%), (p?), and(xp) (see Eq.(19). For instance, the

and the minimum of 5X2) is reached at an optimum phase calculation of(xp) proceeds along the following lines:

value 6= 6* defined as follow$! (xp)=(¥|xF~'pF|¥),
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where(W| is obtained by transposing the vectd) and then  We fixed the initial widtho of the wave packet and the
finding the complex conjugate of the result, whdeandp  Chirikov parameteK, in terms of which the parametets

are vectors that initially have the form and g in the evolution operatof5) are expressed as follows:
X:[O, AX, ZAX,..',ZW—AX], K1/2 K1/220.2 93
p=[0, 1, 2;--, N—1]. a=KTo52 BEKTS (23

The fact thaix is defined modulo 2 requires following  These formulas are obtained by combining the definition
the wave packet and ensuring that it is defined correctly durk — 4, 5 and Eqs(10) and (12).
ing the passage through the end-points of the intefoal In Sec. 2 we found that the number of unperturbed-
2m]. We set up the process in the following manner. Whenyotator levels captured in one kick is roughlyv. From
the center of the wave packet in therepresentation ap- (23) it follows that in our case this number Y% o and

proaches an edge of the half-intery@) 2x], the wave func-  amounts to several tens of thousands for the adopted widths
tion W(x) is examined on a new intervgli- 7, 7], with a 5 of the wave packet.

new vector In our calculationK was varied between 0.2 and 2 with
X=[0AX,- -, 7, — 7+ AX,— 7 a step of 0.02. We found the time dependence of the squeez-
ing S (19) and the optimum value of the phagé at which
+2Ax,--+,—2Ax%,—AX], (6X3) is at its minimum. To demonstrate the correlation that

since (—kAx)mod 27= (27 —kAx)mod 27, wherek is an  €Xists between the degree of squeezing and the chaos
) st Q14
integer. The transition fronfi—, 7] to [0,27] is treated ~characteristics' we calculated

similarly. _ 2 N2
Calculations in thep-representation have their own spe- d=[{x%)+({opT)]"™ (24)
cial features. For instance, although for the Hamiltorian It can be showh#28that in the classical limit and while

the momentum is defined in the interval from to +%,in e wave packet is well-localized, i.d.( ox2)]Y2<x, and

numerical calculations we deal only_ Wlth a finite range of[<5pz>]1/2< Po, thed of (24) corresponds to the following

values of momentunp, a range specified by the numbgr separation in phase space:

of Fourier transforms in the expansiof). To avoid the pos-

sible problem of reflection of the wave packet from an edge  dy(t)=[(Ax)%+(Ap)?]Y¥2 (25)

of the given interval in the-representatior, we select this

interval in each iteration of mafb) in such a way that the Where @Ax(t), Ap(t)) is the solution of the linear small-

maximum of the absolute value of the wave function of thePerturbation equations near the classical trajectory

packet is always at the center of the given intertattually, ~ (X(t), p(t)). The quantityd(t) characterizes the diver-

we renumber the vectq). gence of two initially close trajectories and enters into the
The process of calculating the next iteration of the quandefinition of the largest classical Lyapunov exponent

tum map(6) is terminated as soon as the packet ceases to be

sufficiently localized either in th&-representation or in the A= lim w (26)

p-representation, i.e., when the number of Fourier transforms tow L

actually involved in the calculation process is smaller than

needed. We write the conditions for packet delocalizatiorFor a classical standard map with strong ch&os1 we

mentioned earlier. To this end we introduce the notation ~have the simple dependenge=In(K/2) (see Ref. 18 The

Lyapunov exponent26) is an asymptotic characteristic of

§:[YJTST>]<|‘1’(X)|’ x=max|Aql,|Azf,- .| A}, chaos. For finite time intervdis

and Ajr and Aigr are the values of\, belonging, respec- dg(t)~exp(h(x,p)t), (27)
tively, to the left and right edges of the finite interval in ] ) o

which the wave function in momentum space, the finitenes¥/nere the exponerit is a function of a point in phase space
being due to the finite numbe¢ of Fourier transforms in the @nd coincides, in order of magnitude, with the Lyapunov
expansior(4). The calculation is terminated when one of the ©XPONeNtA, but in some time intervals the difference be-

two inequalities, tween the two may be significant. The latter fact can be
explained by the strong inhomogeneity in the statistical prop-

X[M |Arightl] —e or |‘1’(Z)|>8 erties of the phase space of chaotic systems and, correspond-
X X £ ' ingly, by the different rates of divergence of trajectories in

different regions of phase space through which the system
passes in its time evolution. It must be noted at this point that
the dependence df on the parameteK is extremely com-
plicated. What is important, however, is only the property of
the strong(exponentigl increase ofd,, specified by(27) in

For the initial wave function in our calculations we took the presence of chaos, a property often called local
the coherent statéa Gaussian wave packewith #=10"° instability.” When the motion is regular, the time dependence
and ko=10 000, ando was varied between 0.04 and 0.07. of d,, is much weaker—it follows a power functidn.

is valid (herez=0 if xe[0,27] or z=7 if xe[—,7]. In
this paper we used the valiae=0.002.

4. THE MAIN RESULTS
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FIG. 2. Time dependence of the logarithm of squee8rithe upper part of
the figurg and Ind defined in Eq(24) (the lower half of the figurg xo=m
and o=0.006.

On the other hand, it i that determines the rate of
phase-volume deformation: the stronger the local instability,
the greater the phase-volume deformation in a given time
interval.

Since in our case quantum—classical correspondence and
the concept of chaos are well-defined only in a very short
time interval, while the wave packet remains localized, it is
meaningful to consider the correlations existing between the
time dependence of the squeezing and that of the quahtity
(see(24)), which in the classical limit becomek, (see(25)).

Figure 2 depicts the time dependence of the logarithm of
squeezingS and Ind for different values ofK, when the
center of gravity is of the wave packet is initially at the point
Xo= 1, Po="ko=0.01. This initial condition is close to a
hyperbolic point through which the chaotic layer passes even
whenK is small(see Fig. 1. Figure 2 shows that the larger
the squeezindgthe smaller the value @) the larger the local
instability (the larger the values of Id) up ton~4, when the
packet spread becomes so large that purely quantum effects
become important.

For another initial conditionxy= /2 and py=0.01,
which is closer to an elliptic point and hence lands in the
chaotic region only at large values &f, the dynamics of
squeezing is depicted in Fig. 3. We see that in this cas

ind, InS

e ——
-’ "~

0 0.5 1.0

L5 20

EIG. 4. Logarithm of the squeezin§ (solid curve$ and Ind (dashed
curves as functions of the Chirikov parameté&r for a fixed number of

squeezing is stronger by a factor of almost two than undefjcys: () n=3, (b) n=4, and(c) n=5; x,= = ande=0.007.

the conditions of Fig. 2 in the same time interval. On the

In$

FIG. 3. The same as in Fig. 2 but fag= /2.
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other hand, both Fig. 2 and Fig. 3 exhibit an increase in
squeezing as a function of the parameferwhich controls
the development of chaos in the system.

Let us study the correlation between squeezing and the
degree of local instability in the system for different values
of K in greater detail. Th&-dependence of the degree of
squeezing calculated after a fixed number of kickggat =
and py=0.01 is depicted in Fig. 4. After the third kick the
correlation between I8 and Ind become very evidenig.

43). However, small discrepancies in this dependence may
appear as the number of kicks grows. Such discrepancies
become evident, for instance, after the fourth kick for
1.1=K=1.4(Fig. 4b. After five kicks,n=5, the correlation
between IS and Ind is restored(Fig. 49. Note that this
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crease is replaced by growth when the wave packet departs
from the classical limit and the dynamics is of an essentially
quantum nature.

Now let us examine the problem of stability and observ-
ability of squeezing in chaos. The figures mentioned earlier
can serve to illustrate the statement that the stronger the
chaos the stronger the principal squeezing. However, the
definition (19) of principal squeezing is related to fixing the
phase,f= 6*. Here 6* is time-dependent even for exactly
integrable system. When chaos is strong, the time depen-
dence of6* (t) in the classical limit may be extremely com-

0 0.5 1.0 s 20 plicated. Indeed, in addition to dilation and squeezing, the
K main feature of chaos in classical systems with a bounded

. - . . phase space is the multiple formation of folds of the phase
FIG. 5. Logarithm of the minimum squeeziigy,;, (solid curve$ and of the | h VéH th f findi th
local instabilityd, . (dashed curvesas functions of the Chirikov parameter volume as chaos evolvesdience the process of Tinding the

K after seven kicks. The parameters and initial conditions are the same as i{NiNimum width” of a phase drop, which actually amounts
Fig. 4. to finding the#* vs.t dependence in the quasiclassical limit,
becomes unstable for large time intervals.

Basing our reasoning on a similar semiclassical picture,
behavior pattern is quite typical. Hence, to establish the corwe examined the stability of the time dependence of the op-
relation between local instability and squeezing more clearlytimum phasef* (t) calculated quantum mechanically with a
a certain procedure of coarsenif@veraging these quanti- small perturbation of the initial position of the wave packet.
ties in the given time interval is needed. In our study weMore precisely, we found the time dependence of the opti-
determine the minimum squeezir®y,, in a time interval mum phased; with the initial conditionx,== and, simi-
during which the packet remains well-localized for most val-larly, 65 (t) with the initial conditionx,=7—0.05. We de-
ues ofK considered here, and hence the maximdyp, in  note the difference of these phases by
the same time interval. We found that there is a distinct D(t)= 6% (1) — 0% (1)
correlation betweerS,,, and d,.«: the larger the value of 1 23
dmax the smaller the value o®,,,, and vice versa. An ex- Since #* is periodic with a periodr (see Eq.(18)), it is
ample of such a dependence is depicted in Fig. 5, wBgte  natural to take sin2 as the quantity of interest, since in this
and dp,a Were calculated after six kicks. Note that the dia-way we avoid breaks in the diagrams related to the period-
grams do not go farther that>1.7 because after six kicks icity of §*. The dependence of sib2on the Chirikov pa-
the wave packet becomes delocalizedKor 1.7 and calcu-  rameterK for different fixed numbers of kicks is depicted in
lating averages and local instability becomes meaningless. Figs. 7a—7c. After two kickéFig. 78 the maximum value of

We also studied the dependence of the dynamics ofsin 2D| does not exceed 0.035 Kt=2. After three kicks
squeezing on the initial widthr of the wave packet. The (Fig. 7b the value ofD becomes significant a&€=1.2. Fi-
results are depicted in Fig. 6. Clearly, the narrower thenally, after four kicks(Fig. 79 the process of measuring
packet the stronger the squeezing achieved in a fixed timgqueezing becomes essentially unstabl&atl. Indeed, in
interval. This dependence arises because a narrow wavBese condition with a small perturbation of the initial posi-
packet travels farther along its classical trajectory than ajon of the wave packet, the difference of the optimum
wide packet, so that it undergoes stronger deformations rgshases reaches a value of orderin Ref. 9 such generation
lated to nonlinear classical dynamics. The exponential deef squeezed states was called unstable squeezing. As Fig. 7

implies, unstable squeezing is observed when chaos is strong
and the time intervals are such that semiclassical description
InS is valid. On the other hand, for short time intervals and small

-6 . . N

K’s the squeezing is strong and stable.
To conclude this section we will briefly touch on the
-1 6=0007  _ 0006 | problem of the dynamics of disintegration of coherent states
in chaos, a problem that is of interest by itself. Figures 8a
-2 ) and 8b depict the dependence|®#f on x and of |A,| on k
(see Eq.(4)). Actually, Fig. 8 gives the shape of the
-3 ) wave function in the coordinate and momentum representa-
tions for an initially narrow wave packet with
-4f  0=0005 [(5x3)]¥%(t=0)=0c=0.006 and [(6p?)]“(t=0)=1
5 .0 =0.004 X103, The relatively small valu& = 1.2 makes it possible
0 1 2 3 4 to examine the fairly long evolution of the wave packet up to
" the point of its total disintegratiofi.After six kicks (Fig. 8a
FIG. 6. Time dependence of the logarithm of squeezinépr different ~ the wave packet spreads out significantly, but on the whole
initial widths o of the wave packet at fixell =0.8; xo= 1. retains its bell-shaped structure. What follows is a
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second, the emerging subpackets are extremely small. Hence
the process of disintegration of wave packets in strong chaos
resembles an explosion. On the whole, the pattern being de-
scribed agrees well with the pattern obtained from the analy-
sis of the behavior of the Wigner functidh,although we
observed some anomalies. In particular, for fairly narrow
wave packets¢=4x10"%) we observed the disintegration
of the initial packet into two fairly large subpackets. Ripples
then appeared on the subpackets, and the two disintegrated
into many small packets.

A more detailed description of the disintegration of co-
herent states in chaos requires further investigations.

5. DISCUSSION AND CONCLUSION

Thus, in this work we have used a numerical experiment
to study the dynamics of generation of squeezed states in the
evolution of a Gaussian packet in the quasiclassical limit for
the model of a quantum rotator excited by kicks. We show
that within the time interval where the packet is well-
localized the squeezing becomes stronger in the transition to
chaos. For strong chaos and in long time intervals the
squeezing process becomes unstable. These results, obtained
through direct numerical simulation, are in good agreement
with the results obtained by perturbation-theoretic techniques
and for other model&9*

In the final stages of preparing the manuscript for press
we became acquainted with two recent papraatso devoted
to the problem of generating nonclassical stassieezing
and antibunching in quantum chaos. Rui-Hue Xie and
Gong-ou X&#° presented the results of numerical experi-
ments on the dynamics of quadrature squeezing in simple
quantum models that allow a transition to chaos in the clas-
sical limit: the Lipkin—-Meshkov—Glick mod& and the
Belobrov—Zaslavski-Tartakovski model®! In contrast to
our approach, Rui-Hue Xie and Gong-ou Xwvere inter-
ested in the long-time limit, when the wave packets are de-
localized and this sense the quantum-classical correspon-
dence is completely violated. They found that quadrature

0 0.5 L0 L5 % 20 squeezing disappears in the transition to quantum chaos, al-

though to some degree squeezing is always present in regular
FIG. 7. The differenc® of optimum phases as a function of the parameter motion. It must be noted at this point that Rui-Hue Xie and
K ato=0.006,x=, and a fixed number of kicksa) n=2, (b)) n=3,and  Gong-ou Xi#° noticed the existence of nonzero squeezing of

(©) n=4. some sort in the short-time limit and for quantum chaos, but

they did not observe the buildup of squeezing described in

the present paper, probably because in their numerical
disintegration of the packet into many small packets, withexperiment® the quasiclassicality parameter was not suffi-
the characteristic shape of the wave function depicted in Figciently large: only several hundred quantum levels partici-
8b (after 18 kick$. Finally, very soon the wave function pated in the dynamics of the system. Thus, their results do
becomes so dissected that evel{ Bourier harmonics are not contradict ours and augment them in another limiting
insufficient to describe the evolution correcflfipr the data  case, the limit of long times of motion. The description of the
of Fig. 8 this happens approximately at the 20th kicguali-  dynamics of squeezing in the case intermediate between the
tatively, the same pattern of the evolution of the wave packebne described in the present paper and the one studied in
was observed at higher valuesKf first the broadening, or Ref. 29 merits a separate investigation.
“swelling,” of the wave packet, and then its rapid disinte- In conclusion we would like to make several remarks
gration into many very small subpackets. The differences irconcerning the possibility of experimentally observing
packet disintegration for large values Kf in comparison squeezing in quantum chaos on a time scale corresponding to
with the caseK=1 (Fig. 8) boil down to two facts: first, the a well-defined quantum-—classical correspondence. At
swelling of the packet and the disintegration occur very rappresent essentially all squeezed-light experiments are done in
idly (it takes only several kicks to complete the progeand  the stationary regime. Squeezing in the transition to quantum
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chaos builds up only over finite time intervals and in this?In conducting numerical experiments in the dynamics of the disintegration
sense is a transient dynamical phenomenon. The first experiof wave Pac::ets we did not use thﬁ pricedMESCfribeq in Sec.)3of |

ments in light squeezing in transient regimes are only in the gl?;g];t'”g the counting process when the wave function becomes delo
preliminary stagé? We hope that the development of effec-

tive experimental methods for observing squeezed states of —

light in transient dynamical regimes will also make it pos-

sible to observe the buildup of squeezing in the transition to

guantum chaos.
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