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We study the process of magnetic ordering in planar antiferromagnetic systems with a ' Kagome
lattice. It is found that if the interaction between next-nearest-neighbor spins is taken into
account, the heat capacity of such systems has a singularity at a finite temp&ra@mehe basis

of a scaling analysis of finite-size systems we study the behavior of thermodynamic

quantities in the neighborhood of a phase transition. We find that the phase transition at the
critical point is due to discrete- and continuous-symmetry breaking, in which the long-range chiral
order and the power-law translational spin order emerge simultaneously. Finally, we

calculate the temperatures of the transition to diffefgnth three and nine spins per unit cell
ordered states. €998 American Institute of Physids$S1063-776(98)02106-4

1. INTRODUCTION Heisenberg systems diverges in the zero-temperature?fhnit.
In the MFg(OH)s(SQ,), family of compounds

Lately there has been an upsurge of interest in phasgM=H;O, Na, K, Rb, Ag, NH, Tl, Pb, and Hy called

transitions in the low-temperature range in compounds witharosites(the name has its origin in mineraloggnd in their

a Kagomelattice. Because of the special geometry of thechromium analog KFgOH)s(CrQ,),, the magnetic iron ions

lattice (triangles in a layer alternate with hexagirtbe spin - Fe** form a Kagomdattice in thec plane®~*! The crystal-

systems are highly frustrated. As the temperature drops, thme structure of such compounds is hexagottak space

ordering proceeds much more slowly in comparison to ordigroup isR3m). According to the experimental data, the in-

nary frustrated systems. It is knowhthat this situation oc- teractions between nearest-neighbor spins inside a layer and

curs because in systems with a coordination number muchetween layers is antiferromagnetfcNeutron-diffraction,

smaller than, say, in triangular antiferromagnets, at large valyossbauer, and other measurements involving jarosites

ues ofS in addition to states with nontrivial global degen- show that in jarosites at low temperatures magnetic ordering

eracy there can be local degenerate states. As a result, wheain be accompanied by formation of triangular structures in

there is interaction between the nearest-neighbor spins, thegge x plane!!~13

is no single finite temperature at which a phase transition to  |n our work we studied the phase transitions in com-

a magnetically ordered state can occur. The additional intefpounds of the jarosite type. Since in such compounds the

action between next-nearest-neighbor spins partially lifts th@eighboring layers with Fé are separated by nonmagnetic

degeneracy and may lead to a phase transition at finiteyns of S, O, K, and OH, layer-to-layer exchange is much

temperatured.Nevertheless, since the frustration effects aresmaller than the intraplanar exchangg It has also been

still present, the process of ordering and stabilization ofestablished that in some substances, e.g., withKy the

structure is slower than in nonfrustrated systems. spins in a layer are perpendicular to thewxis as a result of
Ising systems with a Kagomlattice have been studied magnetic ordering? Below we allow for the interaction be-

fairly recently. As in Ising systems with a triangular lattice, tween nearest-neighbor and next-nearest-neighbor spins on a

in the classical ground state the entropy per spin is finit.kagomelattice separated by distancds and A,, respec-

(interaction of nearest neighbordut the decrease in the tively,

spin—spin correlation functions at=0 follows an exponen-

tial law rather than a power lasuperfrustrated systefis.

Heisenberg systems with a Kagotagtice were under inten- H=J; > S-Sia+Js > S-Sin., @

sive study at the beginning of the 1990s. The excitations of 141 ' 142 ?

such systems have a null spectrum in the entire magnetic

Brillouin zone® Quantunf and therma® fluctuations lift the  and limit our study to systems wittXY-like spins: S

degeneracy and select states with a planar spin configuratiors: S(cosé ,sin ).

XY systems have not been studied so thoroughly. Itis known As for Ising systems with a Kagonattice, it is knowrt*

that asT— 0, the spins in such systems are less ordered thathat phase transitions are possible only when next-nearest-

in Heisenberg systems. Here the correlation function of ameighbors interact antiferromagnetically,&0), but com-

XY system is similar to the correlation function of the three-pounds with Ising spins have yet to be found. In contrast to

state Potts mod®|(T—0), while the correlation length of such compoundsXY systems have continuous symmetry in
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the plane. Further, in contrast to Heisenberg systems, they (¢4, o, ¥a) (herey,, are the Fourier transforms of the
also have discrete symmetry, sincelat0 the chiral param- deviation of the sublatticer from the equilibrium structupe
eter specified for each elementary triantjle, can be written as

k=i((3132)+(5253)+(5331)) (2 H=—(31+Jz)SZN+3522 WMy, ©)
3v3 2%

(the spins are numbered clockwjiséakes a value ofr1 or ~ where the elements of thexd@ matrix M, are
— 1. The situation resembles triangular antiferromagnets with M 1= My M o= 2(J 1+ J,)
planar spins®’but here, first, the chiral parameter does not e s L2k

change sign forJ,>0 and, second, the unit cell on a < V3
Kagomelattice has nine spins instead of three Jgr 0. We M1=Mp=—J; COS( >+ 7ky>
find that although for next-nearest-neighbor antiferromag-

netic interaction J,>0) the ordering process is slower than 3 V3

that for ferromagnetic interactionJ{<0), in both cases —J COS(EkX_Ek )

there exists a finite critical temperature at which translational

spin and chiral orders emerge simultaneously. ke V3
M23=M32=_J1 CcO EX_7ky
2. THE LOW-TEMPERATURE RANGE -3, Co{ﬁkﬁ ﬁky)
2 2 '

The ground state on a Kagonfagtice strongly depends
on the sign of the exchange interactidn between next- M3;=M 3= —J; cosk,—J, cosv3k,. (4)
nearest-neighbors. For antiferromagnetic exchardge;0,
this state has a structure with three spins per unit (E&d).
1a), while for J,<0 the structure consists of nine spiifsg.
10). In both cases the spin configurations are continuously
degenerate with respect to rotations in the plane and are two-
fold symmetric. ForJ,>0 the discrete degeneracy is char-
acterized by & of fixed sign(Figs. 1a and 1p while for ~ (A2=A3=3(J1+J5)). In the low-temperature range we
J,<0 the value ok changes sign in neighboring elementary have the following expressions for the enefgy-(H), the
triangles(Figs. 1c and 1d A transition between two equiva- spin—spin correlation function, and the chiral parameter
lent states amounts to surmounting an energy barrier propoK(T):

Whenk is small, for the smallest eigenvalue of the matrix
M, we obtain

1 2

tional to |J,|. We expect that in the low-temperature range

the related excitations are suppressed and the system can be E= —(J1+J2)SZN[1— CTRRESAEAL (6)
described in the harmonic approximation. Let us examine the (Ji+J)

properties of the phases at low temperatures for states with (o= )2

three and nine spins per unit magnetic cell. (SO-S,>=exr{ - ~r 0, (7)

In the state with three spins per unit cel,>0, the
Hamiltonian in the quadratic approximation iny,  whereo andr belong to the same sublattice,
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1 T (N,=3 for J,>0 andN_,=9 for J,<0; M, is the sublattice
k(M=y <; k( R)> =1- 200,733, F €) magnetizatiopy the parametek(T), and the corresponding
susceptibility yy .

(R stands for the coordinates of the points of the dual Iattice The temperature dependence of the thermodynamic
In the states with nine spins per unit cel, <0, the quantities forj=*=0.5 (j=J,/J;) is depicted in Fig. 2. At
smallest eigenvalue d¥1,, the spin—spin correlation func- low temperatures the behavior of the energy can be described

tion, and the chiral parameté(T) in the low-temperature by the harmonic approximatiof6) for j=0.5 and by the
range are given by the same expressitB)s-(9) but with  same expression with-2J, substituted forJ, in (6) for
—2J, substituted foid,. j=—0.5. Deviations from the linear dependence emerge for
The process of ordering of planar spins on a Kagomél/J;S?>0.3 in Fig. 2a and foif/J;S*>0.5 in Fig. 2b. The
lattice was studied for arbitraryf by the Monte Carlo parametek(T) behaves in the linear region in a similar way,
method. In comparison to a triangular lattice, the number ofn accordance with the expected relationships of @e
spins on a Kagomdattice is smaller by 1/4, oN=3L?/4, The exponenty(T) for the spin—spin correlation func-
whereL in our calculations varied from 12 to 48. The heattion can be determined from the dimensional relationship
capacity and the magnetic susceptibility were found by nu- M2~ -~ 7T (11)
merical calculations from the fluctuations of the energy and '
magnetization, respectively. We also calculated the meaWe calculated the parametef(T) from the slope of the
square of the sublattice magnetization: asymptotic straight lines forIn m? as a function of IrL.
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FIG. 3. Temperature dependencezpfThe symbolsD and® correspondto  FIG. 4. The maximum in heat capacity as a function df IiThe symbolsD
diagrams withj =0.5 andj = —0.5, respectively. and @ correspond to the same valuesjadis in Fig. 3.

The results for different values af are depicted in Fig. 3.
As the temperature increases, deviations from the linear d
pendence emerge at the same value§ at for the internal
energy.

Jange. The dimensional dependence of the height of the heat-
capacity peak is depicted in Fig. 4: obviously, the logarith-
mic divergence is due to a phase transition in the parameter
K.

We expect that in the limiN—co the behavior ok is
described by the following formula:

The appreciable difference between the antiferromag-
netic systems with),=0 andJ,# 0 manifests itself in the KEN=[k(N==)]"N+ O(N). (12
behavior of the heat capacity and the susceptibiliiég. 2.  The dimensional dependence kfN on N at j=*+0.5 is
For instance, when we havg+ 0, the heat capacity and the depicted in Figs. 5a and 5b. The valuesk¢T) for an infi-
chiral susceptibility have a peak that increases with latticenite system were calculated from the slope of the asymptotic
size and becomes sharper, while the homogeneous suscediraight lines(dotted lines. On the basis of these data, we
bility x has a broad maximum in a specific temperatureconstructed(Figs. 5¢ and 5gthe dependence of In k on

3. PHASE TRANSITION

KN
1200+
800}
FIG. 5. (a,9—Dimensional dependence &fN
r at different temperatures. The slopes of the
4001 asymptotic straight linegdotted line$ yield the
: value of k? for an infinite system. The straight
| lines 1-5 correspond ta=0.36, 0.41, 0.46, 0.51,
L and 0.53 atj=0.5 (a) andt=0.52, 0.57, 0.62,
¥ 0.67, and 0.72 at=—0.5(b). (c,d—The param-
0 eterk extrapolated to an infinite system as a func-
_Ink tion of the normalized temperature (log—log
0.6 scalg atj=0.5(c) andj=—0.5(d). The symbols
c d O, @, and correspond td.=0.55, 0.54, and
0.5k c.# 0 0.5F 0.53 atj=0.5(c) andt,=0.74, 0.73, and 0.72 at
. o) o o j=—0.5 (d). The dotted lines have a slope
0.4}F ..:Q.' (=] 0.4+ o..,.g ,8=012i 0.01.
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—In(t,—t) for different trial values oft,(=T./J;S?). The

chiral parameter is a power functiok(t) ~ (t—t.)?. Figures
5c and 5d show that for any sign pfa straight line with a
slope B=0.12+0.01 emerges at,=0.54+0.01 for j=0.5

and att.,=0.73+0.01 forj=—0.5.

transition temperature the data of the numerical calculations

critical temperaturé, is found under the assumption that the deviate from a straight linéthe dotted ling because of the
finiteness ofL. In the region where the data for different

lattice sizes lie on a common straight line, the lines corre-
spond to the slop@=1/8 (as in the previous calculations
AboveT,, scaling analysis of the chiral susceptibiljzy

We also did a finite-size-scaling analysis under the aswas done on the basis of the following relationship:

sumption that
kLA =Fy([t—tJ L"),

13

whereF, is the scaling function® Below t,, the relationship
(13) reduces tk~ (t.—t)# in the limit L— o, so that forF,

we have
FkNXB

(14

as x—o0. On the other hand, abouwg the parametek is
proportional to 1{/N~1/L, so that in this case

Fi(x)~xP "

(15

asx— . The best values df., B8, andv, obtained from the

conditions that the data for different lattice sizes lie on a

single curve(Figs. 6a and 6band the limiting relation14)
and (15) are valid, are as followst.=0.535 atj=0.5 and
t.=0.726 atj=—0.5, andB=1/8 andv=1 irrespective of

the sign ofj. We see that the calculated values of the trany

sition temperatures and the critical exponents in Figs. 6a al

6b are in good agreement with the similar calculated values

in Figs. 5c and 5d.

For these values.=0.535 (=0.5) andt.=0.726 (=
—0.5) we have also found the In k vs. —In(t.—t) depen-
dence for different values df (Figs. 6¢c and 6d Near the

txl " =F ([t—t|L). (16)

Obviously, ax—, the scaling functiorf, (x) assumes the
following form:

17

since in the thermodynamic limlt—o we must have y,
~|t—t¢~?. The values ofy and v were chosen from the
conditions that the numerical data for lattices with different
Ls lie on the same curve and that the lirii7) holds. The
best coincidence at.=0.535 for the cas§=0.5 and at
t.=0.726 for the cas¢= — 0.5 was obtained withh=1 and
v=7/4 (Figs. 7a and 7b

Thus, the foregoing results show that, irrespective of the
sign ofj (and hence of the number of spins per unit);ehe
critical behavior in a phase transition is described by the
critical exponents of two-dimensional Ising systems. This
ct is not accidental and is due to the symmetry of the sys-
ms with respect to sign reversal laf

In determining the temperature of the Berezinskii—

Kosterlitz—Thouless transition it is convenient to study the
correlation function

g(r)=(cos Iho— )y ~r 27D,

F (X)) ~x"7 (t>t1),

(18
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which makes it possible to isolate the contribution of con-  In KFe;(OH)&(SQ,), the magnetic susceptibility has a

tinuous fluctuations at below the temperature of the Ising broad maximum af.=60 K (Ref. 10; the exchange inter-
transition and to correctly determine the phase transition if itactionsJ, andJ, are antiferromagnetic, with, known to be
occurs at temperature higher than that for the transition ismaller thanJ, by a factor of ten. Atj=0.1 we have
discrete variables. Figure 8 depicts the power-function bet.=0.22. Thus, the exchange interaction between the
havior ofg(r) for j=+0.5 at different temperatures. Using nearest-neighbor Bé ions with spinsS=5/2 can be ex-
the Berezinskii—Kosterlitz—Thouless  criterioy,(Tgxr) pected to be 44 K.

=1/4, we found that the phase transition with continuous-

symmetry breaking occurs #éfxr=0.542+0.003 atj=0.5
and tgxr=0.733+0.003 at j=-0.5, where tgr
=Tpgkr/JS. Within the accuracy of the calculationtsgr We have studied the magnetic properties of planar anti-
coincides witht., so that a phase transition in the system isferromagnetic systems with a Kagoniattice. We have
realized at a single temperature, irrespective of the sign dfound that with allowance for exchange interactions between
j(==0.5). Note that, to the accuracy of calculations, thenext-nearest-neighbor spins there is a phase transition in the
behavior of in (8) yields the same value dfgy. In this  system at finite temperatures. In the low-temperature phase
case forp=1/4 we havetgxt=0.537+-0.002 atj=0.5 and there is long-range order in the parameterand the corre-
tgkr=0.729-0.003 atj=—0.5. Similar calculations for lation function decreases according to a power law. Scaling
other values of that are not too close to zero show that bothanalysis of finite-size systems shows thatanishes at the
transitions occur simultaneously. The-j phase diagram is same temperature at which the chiral susceptibility diverges,
depicted in Fig. 9. The neighborhood of the pgiant0 where  and their behavior is described fairly well by the critical
the two phase transitions may be expected to occur is prolexponents of two-dimensional Ising systems. We have also
ably very small and requires more exact calculations andound that the temperature of a Berezinskii—Kosterlitz—
extensive computer time. Thouless transition and the temperature of an Ising transition

4. CONCLUSION

Ing(r)
b
-50 K .."M FIG. 8. Spatial dependence of the correlation
"°-.,.' function g(r) for L=48. The symbols\, @,
. ‘ . and correspond ta=0.519, 0.542, and 0.565
"q,‘_ "."'o. and the slope of the dotted lineg,,=0.18,
10+ o 10 =. 0.25, and 0.5(a), and t=0.664, 0.733, and
- “-\Q%‘J ) w"b\ 0.804 andz,,=0.12, 0.25, and 0.48).
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