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Magnetic ordering and phase transitions in planar antiferromagnetic systems with a
Kagomé lattice
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660036 Krasnoyarsk, Russia
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We study the process of magnetic ordering in planar antiferromagnetic systems with a Kagome´
lattice. It is found that if the interaction between next-nearest-neighbor spins is taken into
account, the heat capacity of such systems has a singularity at a finite temperatureT. On the basis
of a scaling analysis of finite-size systems we study the behavior of thermodynamic
quantities in the neighborhood of a phase transition. We find that the phase transition at the
critical point is due to discrete- and continuous-symmetry breaking, in which the long-range chiral
order and the power-law translational spin order emerge simultaneously. Finally, we
calculate the temperatures of the transition to different~with three and nine spins per unit cell!
ordered states. ©1998 American Institute of Physics.@S1063-7761~98!02106-4#
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1. INTRODUCTION

Lately there has been an upsurge of interest in ph
transitions in the low-temperature range in compounds w
a Kagome´ lattice. Because of the special geometry of t
lattice ~triangles in a layer alternate with hexagons!, the spin
systems are highly frustrated. As the temperature drops
ordering proceeds much more slowly in comparison to o
nary frustrated systems. It is known1,2 that this situation oc-
curs because in systems with a coordination number m
smaller than, say, in triangular antiferromagnets, at large
ues ofS in addition to states with nontrivial global dege
eracy there can be local degenerate states. As a result,
there is interaction between the nearest-neighbor spins, t
is no single finite temperature at which a phase transition
a magnetically ordered state can occur. The additional in
action between next-nearest-neighbor spins partially lifts
degeneracy and may lead to a phase transition at fi
temperatures.3 Nevertheless, since the frustration effects a
still present, the process of ordering and stabilization
structure is slower than in nonfrustrated systems.

Ising systems with a Kagome´ lattice have been studie
fairly recently. As in Ising systems with a triangular lattic
in the classical ground state the entropy per spin is fin
~interaction of nearest neighbors!, but the decrease in th
spin–spin correlation functions atT50 follows an exponen-
tial law rather than a power law~superfrustrated systems4,5!.
Heisenberg systems with a Kagome´ lattice were under inten
sive study at the beginning of the 1990s. The excitations
such systems have a null spectrum in the entire magn
Brillouin zone.6 Quantum7 and thermal2,3 fluctuations lift the
degeneracy and select states with a planar spin configura
XY systems have not been studied so thoroughly. It is kno
that asT→0, the spins in such systems are less ordered t
in Heisenberg systems. Here the correlation function of
XY system is similar to the correlation function of the thre
state Potts model8 (T→0), while the correlation length o
1201063-7761/98/86(6)/7/$15.00
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Heisenberg systems diverges in the zero-temperature lim2,8

In the MFe3~OH!6~SO4!2 family of compounds
(M5H3O, Na, K, Rb, Ag, NH4, Tl, Pb, and Hg! called
jarosites~the name has its origin in mineralogy! and in their
chromium analog KFe3~OH!6~CrO4!2, the magnetic iron ions
Fe31 form a Kagome´ lattice in thec plane.9–11 The crystal-
line structure of such compounds is hexagonal~the space
group isR3̄m!. According to the experimental data, the i
teractions between nearest-neighbor spins inside a layer
between layers is antiferromagnetic.12 Neutron-diffraction,
Mössbauer, and other measurements involving jaros
show that in jarosites at low temperatures magnetic orde
can be accompanied by formation of triangular structures
the x plane.11–13

In our work we studied the phase transitions in co
pounds of the jarosite type. Since in such compounds
neighboring layers with Fe31 are separated by nonmagnet
ions of S, O, K, and OH, layer-to-layer exchange is mu
smaller than the intraplanar exchangeJ1 . It has also been
established that in some substances, e.g., with M5K, the
spins in a layer are perpendicular to thec axis as a result of
magnetic ordering.12 Below we allow for the interaction be
tween nearest-neighbor and next-nearest-neighbor spins
Kagomélattice separated by distancesD1 and D2 , respec-
tively,

H5J1 (
iD1

Si–Si 1D1
1J2 (

iD2

Si–Si 1D2
, ~1!

and limit our study to systems withXY-like spins: Si

5S(cosui ,sinui).
As for Ising systems with a Kagome´ lattice, it is known14

that phase transitions are possible only when next-nea
neighbors interact antiferromagnetically (J2,0), but com-
pounds with Ising spins have yet to be found. In contras
such compounds,XY systems have continuous symmetry
9 © 1998 American Institute of Physics
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FIG. 1. Degenerate ground states forj .0 ~a and b! and
j ,0 ~c and d!; the ‘‘plus’’ and ‘‘minus’’ indicate the
sign of the parameterk on the elementary triangles. Th
heavy lines depict the unit magnetic cells with three~a!
and nine~c! spins.
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the plane. Further, in contrast to Heisenberg systems,
also have discrete symmetry, since atT50 the chiral param-
eter specified for each elementary triangle,15

k5
2

3)
~~S1S2!1~S2S3!1~S3S1!! ~2!

~the spins are numbered clockwise!, takes a value of11 or
21. The situation resembles triangular antiferromagnets w
planar spins,16,17but here, first, the chiral parameter does n
change sign forJ2.0 and, second, the unit cell on
Kagomélattice has nine spins instead of three forJ2,0. We
find that although for next-nearest-neighbor antiferrom
netic interaction (J2.0) the ordering process is slower tha
that for ferromagnetic interaction (J2,0), in both cases
there exists a finite critical temperature at which translatio
spin and chiral orders emerge simultaneously.

2. THE LOW-TEMPERATURE RANGE

The ground state on a Kagome´ lattice strongly depends
on the sign of the exchange interactionJ2 between next-
nearest-neighbors. For antiferromagnetic exchange,J2.0,
this state has a structure with three spins per unit cell~Fig.
1a!, while for J2,0 the structure consists of nine spins~Fig.
1c!. In both cases the spin configurations are continuou
degenerate with respect to rotations in the plane and are
fold symmetric. ForJ2.0 the discrete degeneracy is cha
acterized by ak of fixed sign ~Figs. 1a and 1b!, while for
J2,0 the value ofk changes sign in neighboring elementa
triangles~Figs. 1c and 1d!. A transition between two equiva
lent states amounts to surmounting an energy barrier pro
tional to uJ2u. We expect that in the low-temperature ran
the related excitations are suppressed and the system c
described in the harmonic approximation. Let us examine
properties of the phases at low temperatures for states
three and nine spins per unit magnetic cell.

In the state with three spins per unit cell,J2.0, the
Hamiltonian in the quadratic approximation inck
ey

th
t
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be
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5(ck1, ck2, ck3) ~herecka are the Fourier transforms of th
deviation of the sublatticea from the equilibrium structure!
can be written as

H52~J11J2!S2N1
1

2
S2(

k
ckMkc2k , ~3!

where the elements of the 333 matrix Mk are

M115M225M3352~J11J2!,

M125M2152J1 cosS kx

2
1
)

2
kyD

2J2 cosS 3

2
kx2
)

2
kyD ,

M235M3252J1 cosS kx

2
2
)

2
kyD

2J2 cosS 3

2
kx1
)

2
kyD ,

M315M1352J1 coskx2J2 cos)ky . ~4!

When k is small, for the smallest eigenvalue of the matr
Mk we obtain

l15
1

2
~J113J2!k2 ~5!

(l25l3.3(J11J2)). In the low-temperature range w
have the following expressions for the energyE5^H&, the
spin–spin correlation function, and the chiral parame
k(T):

E52~J11J2!S2NF12
T

2~J11J2!S2G , ~6!

^So–Sr&5expF2
^~co2c r !

2&
2 G;r 2h~T!, ~7!

whereo and r belong to the same sublattice,
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FIG. 2. Energy, heat capacity, magnetization, chiral para
eter, and susceptibilitiesx and xk versus the normalized
temperaturet5T/J1S2 at j 50.5 ~a! and j 520.5 ~b!. The
symbolss, h, n, and, correspond toL512, 24, 36, and
48.
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h~T!5
T

p~J113J2!S2 , ~8!

k~T!5
1

N K (
R

k~R!L 512
T

2~J113J2!S2 ~9!

~R stands for the coordinates of the points of the dual lattic!.
In the states with nine spins per unit cell,J2,0, the

smallest eigenvalue ofMk , the spin–spin correlation func
tion, and the chiral parameterk(T) in the low-temperature
range are given by the same expressions~5!–~9! but with
22J2 substituted forJ2 .

The process of ordering of planar spins on a Kago´
lattice was studied for arbitraryT by the Monte Carlo
method. In comparison to a triangular lattice, the numbe
spins on a Kagome´ lattice is smaller by 1/4, orN53L2/4,
whereL in our calculations varied from 12 to 48. The he
capacity and the magnetic susceptibility were found by
merical calculations from the fluctuations of the energy a
magnetization, respectively. We also calculated the m
square of the sublattice magnetization:
e

f

t
-
d
n

m25
1

Na
K (

Na

Ma
2 L ~10!

~Na53 for J2.0 andNa59 for J2,0; Ma is the sublattice
magnetization!, the parameterk(T), and the corresponding
susceptibilityxk .

The temperature dependence of the thermodyna
quantities forj 560.5 (j 5J2 /J1) is depicted in Fig. 2. At
low temperatures the behavior of the energy can be descr
by the harmonic approximation~6! for j 50.5 and by the
same expression with22J2 substituted forJ2 in ~6! for
j 520.5. Deviations from the linear dependence emerge
T/J1S2.0.3 in Fig. 2a and forT/J1S2.0.5 in Fig. 2b. The
parameterk(T) behaves in the linear region in a similar wa
in accordance with the expected relationships of type~9!.

The exponenth(T) for the spin–spin correlation func
tion can be determined from the dimensional relationship

m2;L2h~T!. ~11!

We calculated the parameterh(T) from the slope of the
asymptotic straight lines for2 ln m2 as a function of lnL.
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The results for different values ofT are depicted in Fig. 3
As the temperature increases, deviations from the linear
pendence emerge at the same values ofT as for the internal
energy.

3. PHASE TRANSITION

The appreciable difference between the antiferrom
netic systems withJ250 andJ2Þ0 manifests itself in the
behavior of the heat capacity and the susceptibilities~Fig. 2!.
For instance, when we haveJ2Þ0, the heat capacity and th
chiral susceptibility have a peak that increases with lat
size and becomes sharper, while the homogeneous susc
bility x has a broad maximum in a specific temperat

FIG. 3. Temperature dependence ofh. The symbolss andd correspond to
diagrams withj 50.5 andj 520.5, respectively.
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range. The dimensional dependence of the height of the h
capacity peak is depicted in Fig. 4: obviously, the logari
mic divergence is due to a phase transition in the param
k.

We expect that in the limitN→` the behavior ofk is
described by the following formula:

k2N5@k~N→`!#2N1O~N!. ~12!

The dimensional dependence ofk2N on N at j 560.5 is
depicted in Figs. 5a and 5b. The values ofk(T) for an infi-
nite system were calculated from the slope of the asympt
straight lines~dotted lines!. On the basis of these data, w
constructed~Figs. 5c and 5d! the dependence of2 ln k on

FIG. 4. The maximum in heat capacity as a function of lnL. The symbolss
andd correspond to the same values ofj as in Fig. 3.
e
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FIG. 5. ~a,b!—Dimensional dependence ofk2N
at different temperatures. The slopes of th
asymptotic straight lines~dotted lines! yield the
value of k2 for an infinite system. The straigh
lines1–5 correspond tot50.36, 0.41, 0.46, 0.51,
and 0.53 atj 50.5 ~a! and t50.52, 0.57, 0.62,
0.67, and 0.72 atj 520.5 ~b!. ~c,d!—The param-
eterk extrapolated to an infinite system as a fun
tion of the normalized temperaturet ~log–log
scale! at j 50.5 ~c! and j 520.5 ~d!. The symbols
s, d, and h correspond totc50.55, 0.54, and
0.53 at j 50.5 ~c! and tc50.74, 0.73, and 0.72 a
j 520.5 ~d!. The dotted lines have a slop
b50.1260.01.
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FIG. 6. ~a,b!—The scaling functions for the pa
rameterk above and belowTc ~curves1 and 2,
respectively! at j 50.5 ~a! and j 520.5 ~b!. The
symbolss, h, n, and , correspond toL512,
24, 36, and 48. The dotted straight lines have
slope n2b57/8 for T.Tc and 2b521/8 for
T,Tc . ~c,d!—The temperature dependence
the parameterk for finite-size systems~log–log
scale!; tc50.535 at j 50.5 ~c! and tc50.726 at
j 520.5 ~d!. The symbolss, h, n, and, cor-
respond toL512, 24, 36, and 48. The dotted
straight lines have a slopeb51/8.
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2 ln(tc2t) for different trial values oftc(5Tc /J1S2). The
critical temperaturetc is found under the assumption that th
chiral parameter is a power function:k(t);(t2tc)

b. Figures
5c and 5d show that for any sign ofj a straight line with a
slope b50.1260.01 emerges attc50.5460.01 for j 50.5
and attc50.7360.01 for j 520.5.

We also did a finite-size-scaling analysis under the
sumption that

kLb/n5Fk~ ut2tcuL1/n!, ~13!

whereFk is the scaling function.18 Below tc the relationship
~13! reduces tok;(tc2t)b in the limit L→`, so that forFk

we have

Fk;xb ~14!

as x→`. On the other hand, abovetc the parameterk is
proportional to 1/AN;1/L, so that in this case

Fk~x!;xb2n ~15!

asx→`. The best values oftc , b, andn, obtained from the
conditions that the data for different lattice sizes lie on
single curve~Figs. 6a and 6b! and the limiting relations~14!
and ~15! are valid, are as follows:tc50.535 at j 50.5 and
tc50.726 atj 520.5, andb51/8 andn51 irrespective of
the sign of j . We see that the calculated values of the tra
sition temperatures and the critical exponents in Figs. 6a
6b are in good agreement with the similar calculated val
in Figs. 5c and 5d.

For these valuestc50.535 (j 50.5) andtc50.726 (j 5
20.5) we have also found the2 ln k vs. 2 ln(tc2t) depen-
dence for different values ofL ~Figs. 6c and 6d!. Near the
-

a

-
nd
s

transition temperature the data of the numerical calculati
deviate from a straight line~the dotted line! because of the
finiteness ofL. In the region where the data for differen
lattice sizes lie on a common straight line, the lines cor
spond to the slopeb51/8 ~as in the previous calculations!.

AboveTc , scaling analysis of the chiral susceptibilityxk

was done on the basis of the following relationship:

txkL
2g/n5Fx~ ut2tcuL1/n!. ~16!

Obviously, asx→`, the scaling functionFx(x) assumes the
following form:

Fx~x!;x2g ~ t.tc!, ~17!

since in the thermodynamic limitL→` we must havetxk

;ut2tcu2g. The values ofg and n were chosen from the
conditions that the numerical data for lattices with differe
Ls lie on the same curve and that the limit~17! holds. The
best coincidence attc50.535 for the casej 50.5 and at
tc50.726 for the casej 520.5 was obtained withn51 and
g57/4 ~Figs. 7a and 7b!.

Thus, the foregoing results show that, irrespective of
sign of j ~and hence of the number of spins per unit cell!, the
critical behavior in a phase transition is described by
critical exponents of two-dimensional Ising systems. T
fact is not accidental and is due to the symmetry of the s
tems with respect to sign reversal ofk.

In determining the temperature of the Berezinski
Kosterlitz–Thouless transition it is convenient to study t
correlation function

g~r !5^cos 3~c02c r !&;r 29hxy~T!, ~18!
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FIG. 7. The scaling functions for the chiral sus
ceptibility aboveTc at j 50.5 ~a! and j 520.5
~b!. The symbolss, h, n, and, correspond to
L512, 24, 36, and 48. The dotted straight line
have a slope2g527/4.
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which makes it possible to isolate the contribution of co
tinuous fluctuations atT below the temperature of the Isin
transition and to correctly determine the phase transition
occurs at temperature higher than that for the transition
discrete variables. Figure 8 depicts the power-function
havior of g(r ) for j 560.5 at different temperatures. Usin
the Berezinskii–Kosterlitz–Thouless criterionhxy(TBKT)
51/4, we found that the phase transition with continuo
symmetry breaking occurs attBKT50.54260.003 at j 50.5
and tBKT50.73360.003 at j 520.5, where tBKT

5TBKT /JS2. Within the accuracy of the calculations,tBKT

coincides withtc , so that a phase transition in the system
realized at a single temperature, irrespective of the sign
j (560.5). Note that, to the accuracy of calculations, t
behavior ofh in ~8! yields the same value oftBKT . In this
case forh51/4 we havetBKT50.53760.002 atj 50.5 and
tBKT50.72960.003 at j 520.5. Similar calculations for
other values ofj that are not too close to zero show that bo
transitions occur simultaneously. Thetc– j phase diagram is
depicted in Fig. 9. The neighborhood of the pointj 50 where
the two phase transitions may be expected to occur is p
ably very small and requires more exact calculations
extensive computer time.
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In KFe3~OH!6~SO4!, the magnetic susceptibility has
broad maximum atTc560 K ~Ref. 10!; the exchange inter-
actionsJ1 andJ2 are antiferromagnetic, withJ2 known to be
smaller thanJ1 by a factor of ten. At j 50.1 we have
tc50.22. Thus, the exchange interaction between
nearest-neighbor Fe31 ions with spinsS55/2 can be ex-
pected to be 44 K.

4. CONCLUSION

We have studied the magnetic properties of planar a
ferromagnetic systems with a Kagome´ lattice. We have
found that with allowance for exchange interactions betwe
next-nearest-neighbor spins there is a phase transition in
system at finite temperatures. In the low-temperature ph
there is long-range order in the parameterk, and the corre-
lation function decreases according to a power law. Sca
analysis of finite-size systems shows thatk vanishes at the
same temperature at which the chiral susceptibility diverg
and their behavior is described fairly well by the critic
exponents of two-dimensional Ising systems. We have a
found that the temperature of a Berezinskii–Kosterlit
Thouless transition and the temperature of an Ising transi
n
FIG. 8. Spatial dependence of the correlatio
function g(r ) for L548. The symbolsn, d,
andh correspond tot50.519, 0.542, and 0.565
and the slope of the dotted lineshxy50.18,
0.25, and 0.5~a!, and t50.664, 0.733, and
0.804 andhxy50.12, 0.25, and 0.45~b!.
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coincide to within the accuracy of the calculations. We e
pect that our result can be used for a detailed experime
study of jarosite-type compounds. Note that in real syste
with weak interplanar interaction there is a narrow but fin
temperature range where the critical behavior is thr
dimensional. However, the vast body of experimental d
suggests that, say, for the layeredXY ferromagnet Rb2CrCl4
~Ref. 19!, the Ising antiferromagnet K2CoF4 ~Ref. 20!, the
triangular antiferromagnet VCl2 ~Ref. 21!, and other mag-
netic materials~Ref. 22! the behavior outside this range
two-dimensional, although there is three-dimension lo
range order in the system.

In conclusion we note that in Ising-like Heisenberg a
tiferromagnets, where due to distortions in the 120° struct
there is a finite magnetic moment on each elementary
angle of the Kagome´ lattice, a drop in temperature can lea
to a phase transition with discrete- and continuous-symm
breaking.23 Therefore, we expect that the behavior of su
systems is in many respects similar to the behavior of

FIG. 9. The phase diagram in thetc – j plane for planar antiferromagneti
systems with a Kagome´ lattice.
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planar (XY) antiferromagnetic systems considered in this p
per.
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