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We discuss, in connection with the problem of the ground state in the Hubbard model withU
5`, the normal~nonmagnetic! N-state of a system over the entire range of electron
concentrationsn<1. It is found that in a one-particle approximation, e.g., in the generalized
Hartree–Fock approximation, the energye0(n) of theN-state is lower than the energyeFM(n) of a
saturated ferromagnetic state for all values ofn. Using the random phase approximation we
calculate the dynamical magnetic susceptibility and show that theN-state is stable for all values of
n. A formally exact representation is derived for the mass operator of the one-particle
electron Green’s function, and its expression in the self-consistent Born approximation is obtained.
We discuss the first Born approximation and show that when correlations are taken into
account, the attenuation vanishes on the Fermi surface and the electron distribution function atT
50 acquires a Migdal discontinuity, whose magnitude depends onn. The energy of theN-
state in this approximation is still lower thaneFM(n) for n,1. We show that the spin correlation
functions are isotropic, which is a characteristic feature of the singlet states of the system.
We calculate the spin correlation function for the nearest neighbors in the zeroth approximation
as a function ofn. Finally, we conclude that the singlet state of the system in the
thermodynamic limit is the ground state. ©1998 American Institute of Physics.
@S1063-7761~98!01712-0#
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1. INTRODUCTION. STATEMENT OF THE PROBLEM

In this paper we discuss the problem of the ground s
and the electron distribution function in the Hubbard mod1

when the single-site repulsive potential is infinite,U5`.
The system Hamiltonian

H`5(
f sD

t~D!Xf
s0Xf 1D

0s 2l (
f s

Xf
ss , ~1!

specified on ad-dimensional lattice withN sites with a co-
ordination numberz and periodic boundary conditions, de
scribesNe electrons that tunnel to the nearest vacant sitesf
stands for the lattice sites,D is the vector connecting th
nearest neighbors,t(D) is the tunneling integral, andl is the
chemical potential!. Since repulsion is assumed infinite, ea
site is either vacant or contains a single electron with s
projections ~pairs are forbidden!. This fact is reflected in the
use of Hubbard operators with well-known commutation
lations, which differ from those of fermions~see below!.

At this point it is convenient to normalize the Hami
tonian to the halfwidth of the ‘‘bare’’ electron bandzt:

h`5H`/zt , t~D!/zt52 1/z .

In the thermodynamic limit (N→`, Ne→`, Ne /N5n
5const), all the properties of our system depend solely
1151063-7761/98/87(12)/8/$15.00
te

n

-

n

the topology of the lattice~the numberd of the lattice dimen-
sions and the numberz of the nearest neighbors! and the
electron concentrationn(0<n<1).

Applying Fourier transformations to all the operators,

Xks5
1

AN
(

f
eik fXf

0s ,

Xss8~q!5
1

AN
(

f
eiq fXf

ss8 , ~2!

where the vectorsk andq belong to the first Brillouin zone,
we find that the Hamiltonian becomes

h`5(
ks

~vk2m!Xks
† Xks , ~3!

wherevk represents the dimensionless dispersion law in
nearest-neighbors approximation,

vk52
1

z (
D

eikD52gk , ~4!

andm5l/zt is the dimensionless chemical potential.
The simplicity of the Hamiltonian~3! is an illusion,

since the operatorsX obey the following commutation rela
tions and completeness condition:
9 © 1998 American Institute of Physics
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$Xks ,Xps8
† %5

1

N (
f

ei ~k2p! f~dss8Xf
001Xf

s8s!,

Xf
001Xf

ss1Xf
s̄s̄51. ~5!

Using the commutation relations~5!, we can write the
equations of motion (\51) as follows:

iẊks5@Xks ,h`#5jk
0Xks1Rks , jk

05vk2m, ~6!

Rks5
1

AN
(

q
vk2q@Xs̄s~q!Xk2q s̄2Xs̄s̄~q!Xk2qs#,

~7!

s̄52s.

The nonlinearity of Eq.~6! stems from the algebra of th
operatorsX or the presence of ‘‘kinematic’’ correlations be
tween electrons with opposite projections of spin.

What is important in the problem of strong electron co
relations is the ground state of the system and the elec
distribution function.

The energy of the system depends on the system’s
spin S. In the case of a saturated ferromagnetic stateS
5Ne/2), the solution of the problem is exact and trivial f
any admissible number of electrons. In this case the sys
is an ideal Fermi gas of electrons with the projection of
spins in one direction~the state in thek-space is either vacan
or occupied by a single electron!. At T50 the distribution
function is a Fermi step function.

An alternative of the ground state of the system is
singlet state (S50 for an even number of electrons!, which
we also call a normal (N) strongly correlated state~the num-
bers of electrons with spin ‘‘up’’ and ‘‘down’’ are equal an
there is no long-range magnetic order!. The energy advan
tage of theN-state is due to the possibility of double occ
pancy of states in thek-space (Xka

† Xkb
† uc0&Þ0), which low-

ers the chemical potential in comparison with that for t
ferromagnetic state. Here, of course, pairs are forbidde
the direct space andNe<N.

Correlations between electrons with opposite spin p
jections are strongest in theN-state. By ‘‘dispersing’’ the
electrons according to their momenta such correlations
the one hand, enhance the energy of the system and, o
other, may modify the Fermi step function atT50. Here it is
important to establish whether the Migdal discontinuity2 in
the distribution function is retained on the Fermi surface
whether it disappears, as it does in a marginal3 or Luttinger4

electron liquid.
The goal of this work is to calculate the distributio

function of electrons in a system in theN-state atT50 by
the method of two-time retarded Green’s functions.5. In con-
trast to the previous previous work of one of the auth
~E.V.K!,6,7 here we examine the approximation of the ma
operator corresponding to the self-consistent Born appr
mation.

2. GREEN’S FUNCTIONS: GENERAL PROPERTIES

We consider the two-time retarded anticommuta
Green’s function
-
on

tal

m
e

e

in

-

n
the

r

s
s
i-

r

Gks~t!52 iu~t!^$Xks~ t !,Xks
† ~ t8!%&, t5t2t8, ~8!

and its Fourier transform

^^XksuXks
† &&E[Gks~E!5E

2`

`

dt eiEtGks~t!, ~9!

whereE is the spectral variable. It is convenient to write th
Green’s function as follows:

Gks~E!5csFks~E!, ~10!

^$Xks ,Xks
† %&512ns̄[cs , ns̄5

1

N (
f

^Xf
s̄s̄&.

We introduce the spectral intensity

I ks~E!52
1

p
Im Fks~E1 i0!. ~11!

Using this quantity and the spectral theorem, we can find
averages~here and in what follows we assumeT50):

^Xks
† Xks&5nks5csE

2`

0

I ks~E! dE[cs f ks . ~12!

The spectral intensity obeys the sum rule

E
2`

`

I ks~E! dE51. ~13!

The chemical potential can be found by solving the equat

n5
1

N (
ks

nks5
1

N (
ks

csE
2`

0

I ks~E! dE, ~14!

wheren is the given electron concentration. The system
ergy ~per lattice site! is

e5
1

N (
ks

vknks5
1

N (
ks

vkcsE
2`

0

I ks~E! dE. ~15!

Since all calculations are done in the thermodynamic lim
we can replace the sums by integrals:

1

N (
k

A~vk!5E
21

1

A~v!r~v! dv, E
21

1

r~v! dv51,

where r(v) is the density of states corresponding to t
dispersion lawvk ~for alternant latticesr(v)5r(2v),
21<vk<1). After the chemical potential has been foun
we can use formula~12! to find the one-particle distribution
function.

A saturated ferromagnetic state in the Hubbard mo
can be described exactly. AtT50 the chemical potential and
the system energy can be found by the formulas

n5E
21

m

r~v! dv, eFM~n!5E
21

m

vr~v! dv, ~16!

which makes it possible to determine the explicit depende
of the energy of the ferromagnetic state on the electron c
centrationn.
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3. THE MASS OPERATOR OF THE GREEN’S FUNCTION
AND ITS APPROXIMATION IN THE SELF-CONSISTENT
BORN APPROXIMATION

In the exact equation~6! we can isolate the linear par
which corresponds to the generalized Hartree–Fock appr
mation. This is achieved by introducing the irreducib
operator5–7

R̃ks5Rks2
^$Rks ,Xks

† %&

^$Xks ,Xks
† %&

Xks[Rks2
aks

cs
Xks , ~17!

for which ^$R̃ks ,Xks
† %&50. Actually this means that the pro

cedure allows for all ‘‘internal’’ pairings, which lead to lin
earization. Equation~6! takes the form

iẊks5jksXks1R̃ks , ~18!

where

jks5jks
0 1

1

cs
^$Rks ,Xks

† %&5Ds1S cs1
ks

cs
Dvk2m,

~19!

Ds5ues̄u/cs ,ks5^Xf
s̄sXf 1D

ss̄ 1n f s̄n f 1Ds̄&, andes̄ is the en-
ergy ~per lattice site! of the subsystem of electrons with sp

projectionss̄, with n f s5Xf
s̄s̄2ns̄ .

The Green’s functionGks(E) ~or Fks(E)) satisfies the
Dyson equation. To set up the equation, we use the w
known method of first differentiating the Green’s functio
with respect to the ‘‘first’’ timet and then with respect to th
‘‘second’’ time t8. Using the equation of motion in the gen
eralized Hartree–Fock approximation, we arrive6,7 at

Fks~E!5
1

E2jks2Sks~E!1 i0
, ~20!

Sks~E!5
1

cs
^^R̃ksuR̃ks

† &&E
~c! .

The mass operatorSks(E) ~the self-energy part of the
Green’s function! is the connected~index (c)) part of the
higher-order Green’s function, which is not cut along the li
of the graphical representation of the zeroth-order Gree
function Fks

0 (E)5(E2jks)21. Assuming

Sks~E1 i0![Mks~E!2 iGks~E!, ~21!

we have

I ks~E!52
1

p
Im Fks~E!

5
1

p

Gks~E!

@E2jks2Mks~E!#21Gks
2 ~E!

, ~22!

with Gks(E)>0 ~Ref. 5!. Formally the representation~20! of
the mass operator is exact. However, to perform calculatio
we need the explicit form of the mass operator, which me
we must use an approximation scheme of some sort.

The spectral representation of the higher-order retar
anticommutator Green’s function is
xi-

ll-

’s

s,
s

d

^^R̃ksuR̃ks
† &&E5E

2`

` Jks~E8!

E2E81 i0
dE8. ~23!

If we now employ the spectral theorem, we can express
spectral density of this function in terms of time average

Jks~E!5E
2`

` dt

2p
eiEt ~^R̃ks

† ~0!R̃ks~t!&1^R̃ks~t!R̃ks
† ~0!&!

~24!

with Gks(E)5pJks(E)/cs .
Using the definition~7! of the operatorRks , we calcu-

late the averages in~24!, writing them as a product of quas
Bose and quasi-Fermi averages~i.e., carrying out ‘‘external’’
couplings!. Each of these averages can be found by the sp
tral theorem5 in terms of the corresponding commutator a
anticommutator Green’s functions. As a result we obtain

Jks~E!'
1

N (
q

vk2q
2 E

2`

`

dv N~v! f ~E2v!~11ebE!

3@Ss̄s~q,v!cs̄I k2q,s̄~E2v!

1Ss̄s̄~q,v!csI k2q,s~E2v!#, ~25!

where

Ss̄s~q,v!52
1

p
Im^^Xs̄s~q!uXss̄~2q!&&v , ~26!

Ss̄s̄~q,v!52
1

p
Im^^Xs̄s̄~q!uXs̄s̄~2q!&&v , ~27!

and

F~E!5~ebE11!21, N~v!5~ebv21!21.

A similar approximation was done by Plakidaet al.8 ~see
also Ref. 9! for the t–J model. It corresponds to the sel
consistent Born approximation.

In the N-state, all the main characteristics are indepe
dent of the spin projections (cs5c512n/2, I ps(E)
5I p(E), etc.!, and atT50 we have an expression for th
imaginary part of the mass operator:

Gk~E!5p
1

N (
q

vk2q
2 E

2`

`

dv @S~q,v!1S̃~q,v!#

3@u~E!u~v!u~E2v!2u~2E!u~2v!

3u~ uEu2uvu!#I k2q~E2v!, ~28!

with the obvious redefinitions forS(q,v) ~Eq. ~26!! and
S̃(q,v) ~Eq. ~27!!. Thus, the imaginary part of the mas
operator in the self-consistent Born approximation is rep
sented by a convolution of the spectral intensities of qua
Bose and quasi-Fermi excitations in the frequenciesv and
momentaq. The real part of the mass operator is a Hilbe
transform ofSks(E), i.e.,

Mk~E!5
1

p
P E

2`

` Gk~E8! dE8

E2E8
. ~29!

If the functions~26! and ~27!, which describe the trans
verse and longitudinal components of spin density fluct
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tions, have been calculated~at least approximately!, the mass
operator can be found self-consistently from~28! and ~29!,
the representations~20! and ~21!, and the equation for the
chemical potential

n5
1

N (
ks

^Xks
† Xks&5 ~22n!

1

N (
k
E

2`

0

I k~E! dE.

~30!

Note the difference between a true singlet state an
normal ~paramagnetic! state. In addition toŜi u0& vanishing
in the singlet state, this state has a nontrivial, isotropic s
correlation function

^Sf
xSf 1r

x &5^Sf
ySf 1r

y &5^Sf
zSf 1r

z &[C~r !, ~31!

^Sf
1Sf 1r

2 &52C~r !,

which is independent of the direction of vectorr . If there is
no such correlation (C(r )50), we have an ordinary para
magnetic state. Equations~31! are also true for the correla
tion functionŝ Si(q)Si(2q)& and the corresponding Green
functions.

4. THE ZEROTH APPROXIMATION AND THE RANDOM
PHASE APPROXIMATION

Let us start with the zeroth approximation, i.e., t
N-state andT50, where in describing the electron states
ignore the mass operator. In this case the spectral intens
a delta function and the distribution function, a Fermi st
function:

I p
0~E!5d~E2jp!, np

05c fp
05cu~2jp!,

jp'D1cvp2m. ~32!

Herec512n/2, D5ue0u/2c, e0(n) is the system energy~per
site!, and we have used an approximate expression for
one-particle spectrum~the correlation functionk is dropped
from ~19!!. At this point it proves convenient to introduce th
effective chemical potentialm5(m2D)/c. Thenm and the
system energy as functions of the electron concentration
are, respectively,

n

22n
5E

21

m

r~v! dv[g~m!, ~33a!

e0~n!

22n
5E

21

m

vr~v! dv[v~m!. ~33b!

By excluding the upper limitm we can obtain the explici
dependence ofe0 on n. Analysis shows6,7 that in the zeroth
approximatione0(n),eFM(n) for all concentrations, i.e., the
singlet ~nonmagnetic! state is the energy-advantageous o
Moreover, Eq. ~33a! allows correctly for the excluded
volume effect in the Hubbard model withU5`: the Fermi
surface is inflated compared to the case of free electronn
22g(m) for such electrons! and occupies the entire Bril
louin zone asn→1(m→1).

The spectral densities of the quasi-Bose states in
mass operator can be found in the random phase approx
tion. In the N-state, the commutator Green’s functions
transverse and longitudinal spin fluctuations are7
a

in

is
p

e

.

(

e
a-

f

^^S1~q!uS2~2q!&&v5^^S2~q!uS1~2q!&&v

5
D0~q,v!

11P~q,v!
[D~q,v!, ~34a!

^^Sz~q!uSz~2q!&&v5
1

2
D~q,v!, ~34b!

and

^^Xs̄s̄~q!uXs̄s̄~2q!&&5^^Xss~q!uXss~2q!&&v

5
D0~q,v!

12P2~q,v!
[D̃~q,v!, ~35!

where

D0~q,v!52x0
12~q,v!5

1

N (
p

np2np1q

v2cvpq
,

P~q,v!5
1

N (
p

np1qvp1q2npvp

v2cvpq
, ~36!

^Xps
† Xps&5^Xps̄

†
Xps̄&5np , vpq5vp1q2vp .

Equation ~34b! points to spin isotropy~see Eq.~31!!,
which is characteristic of a singlet state. In this state
correlator

^Xss̄~q!Xs̄s~2q!&1^Xs̄s̄~q!Xs̄s̄~2q!&

53^Sz~q!Sz~2q!&1 1
4^r~q!r~2q!&, ~37!

wherer(q) is the operator of electron number density flu
tuations. In the random phase approximation we have

^^r~q!ur~2q!&&v5
D0~q,v!

12P~q,v!
[D̄~q,v!, ~38!

so that in the singlet state the sum of the spectral intens
can be written as follows:

S~q,v!1S̃~q,v!5 3
2S~q,v!1 1

4S̄~q,v!, ~39!

whereS̄(q,v) is the imaginary part of the function~38!.
If we use the Fermi step functionf p

05u(2jp)5u(m
2vp) to calculate the transverse susceptibilityx12(q,v)
52D(q,v), of the Hubbard electrons in the static ca
~v50! for q→0 we obtain7

lim
q→0

x12~q,0!5
r~m!

12g~m!1mr~m!
[u~m!r~m!, ~40!

whereu(m) is the paramagnetic gain factor. Equation~40!
has no pole singularity, which is an indication that t
N-state is stable against the development of ferromagnet
this agrees with the results of Ref. 10.

Thus, the zeroth approximation and the random ph
approximation are in full agreement~the absence of ferro
magnetism in the Hubbard model withU5` in the thermo-
dynamic limit!.
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5. APPROXIMATIONS USED IN CALCULATING THE MASS
OPERATOR AND THE DISTRIBUTION FUNCTION

Let us discuss the role of kinematic correlations
N-state of the system. Such correlations are described by
mass operator(

k
(E) , and finding them self-consistentl

constitutes an extremely difficult problem, whose soluti
involves complicated numerical calculations. For this rea
we introduce a number of simplifying assumptions, whic
we believe, do not change the main conclusions and the
sence of the problem.

1. The denominators of the functionsD(q,v), D̃(q,v),
and D̄(q,v) do not vanish, which is an indication that th
model does not contain well-defined collective excitatio
~magnons or zero-point sound!. This makes it possible to
approximately replace the sum of spectral intensities~instead
of using the random phase approximation! by

S~q,v!1S̃~q,v!'2AS0~q,v!, ~41!

which is equivalent to considering the susceptibility of ind
pendent Hubbard electrons. In Eq.~41!, A is a correction
factor depending on the concentration~or on the chemical
potential!. With a distribution function of the general form
np5c fp5c f(vp) we have

2
1

p
Im D0~q,v!5S0~q,v!

5
c

N (
p

f ~vp!@12 f ~vp1q!#

3@d~v2cvpq!2d~v1cvpq!#

[S0
~1 !~q,v!2S0

~2 !~q,v!. ~42!

This function, known as the dynamic form factor,11 is de-
fined for both positive (v.0) and negative (v,0) frequen-
cies, sincevpq.0 ~obviously, S0

(2)(q,2v)5S0
(1)(q,v)),

and describes incoherent single-pair electron excitations
the spectrumvpq within the first Brillouin zone.

The correcting factorA can be found from the sum rul

1

N (
q

^Sq
1S2q

2 &5
1

N (
q

^Xq
ssX2q

ss &5
n

2
. ~43!

Using ~41! and the spectral theorem, atT50 we have

^Sq
1S2q

2 &5
Ac

N (
p

f p~12 f p1q!. ~44!

If we take the Fermi step functionf p
05u(m2vp) as the

zeroth distribution function with the effective chemical p
tentialm and replace summation by integration with the ele
tron state densityr(v), we find

n

2
5AcE

21

1

dv r~v!u~m2v!E
21

1

dv8 r~v8!u~v82m!

5Acg~m!@12g~m!#.

Since c512n/25@11g(m)#21 and n/25g(m)@1
1g(m)#21, we have

A~m!5@12g~m!#21. ~45!
he

n
,
s-

s

-

th

-

After this approximation, the imaginary part of the ma
operator can be written as follows (S0

1(q,v)[S0(q,v) for
v>0):

Gk~E!

'5
Gk

15
2Ap

N (
q

vk2q
2 E

0

E

dv S0~q,v!I k2q~E2v!,

E.0,

Gk
25

2Ap

N (
q

vk2q
2 E

0

uEu
dv S0~q,v!I k2q~2uEu1v!,

E,0.
~46!

We see that the attenuationGk(E) vanishes asE→0. Note
that the Fermi level corresponds toE50, so that there is no
attenuation on the Fermi surface proper.

2. Instead of the dynamic form factorAS0(q,v)
5S(q,v) we consider its value averaged over all the m
menta:

S~q,v!→
A

N (
q

S0~q,v![S~v,m!, ~47!

which is the number density of single-pair excitations w
an energyv and a chemical potentialm. Using the Fermi
step function, introducing a new variable,V5v/c, and em-
ploying Eqs.~42! and ~47!, we get

S~V,m!5A~m!E
m2V

m

r~x!r~x1V! dx, 0<V<2.

~48!

We see thatS(V,m)'A(m)r2(m)V asV→0. The shape of
the functionS(V,m) is depicted in Fig. 1 for an elliptica
density of electron states,r(x)5(2/p)A12x2. Analysis of
~48! shows that the behavior and numerical values
S(V,m) do not change significantly with other densities
states for two- and three-dimensional alternant lattices.

The essence of the approximation~47! is as follows. The
general expressions~25! and ~28! describe processes of th
following type: an electron with an ‘‘energy’’E and momen-
tum k passes to the stateE2v, k2q, exciting in the process
an electron–hole pair with momentumq and energyv
5vpq . When the approximation~47! is used, we ignore the
detailed description of states in the momenta and specify
transition of the electron from the constant-energy surfacE
to the constant-energy surfaceE2v; such transitions take
place with different momentaq, which is reflected in~47!.
Since the description of states is done on a constant-en
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surfaces, the dependence of the attenuation and the e
mass operator on the quasimomentumk is lost, i.e.,Sk(E)
→S(E)[M (E)2 iG(E). Now, settingE at c«, we obtain

G~«!

'5 2pE
0

«

dV S~V,m!
1

N (
p

vp
2I p~«2V!, «.0,

2pE
0

u«u
dV S~V,m!

1

N (
p

vp
2I p~2u«u1V!, «,0,

~49!

and

M ~«!5Re S~«!'
1

p
P E

2`

` G~E8! dE8

«2E8
. ~50!

3. Let us study the first Born approximation~the first
iteration step in the self-consistent solution!:

I p~«2V!→I p
0~«2V!5d~«2V2~vp2m!!.

The sum in~49! is

1

N (
p

vp
2 I p

0~«2V!'
1

zN (
p

I p
0~«2V!

5
1

z E
21

1

dx r~x!d@«2V1m2x#

5
1

z
r~«2V1m!,

where

1

z
5

1

N (
p

vp
25E

21

1

v2r~v! dv ~51!

is the average value of the square of the bare spectrum
the entire Brillouin zone. In this case the attenuation is

FIG. 1. The density of single-pair excitations for different values of
chemical potentialm(V is the excitation energy!. Here an elliptical density
of electron states is used.
tire

er

g~«,m!5G~1!~«!

'5
2p

z E
0

«

dV S~V,m!r~«2V1m!,

0<«<32m,

2p

z E
0

u«u
dV S~V,m!r~2u«u1V1m!,

2~31m!<«<0,

~52!

with 21<m<1.
As usual, on the Fermi surfaceg(«)→0 as«→0. Near

the Fermi surface («→0, so thatV→0) we have

S~V,m!'A~m!r2~m!V, r~«2V1m!'r~m!,

and

g~«,m!'
p

z
A~m!r3~m!«2. ~53!

It should be recalled that in our calculations we deal w
dimensionless units; actually, 1/z has the dimensions of en
ergy squared andg, of energy. The functional dependence
~53! on « agrees with Landau’s theory of a Fermi liquid12

(indeed, if we put«5«p2«F5(p22pF
2)/2m'vF(p2pF),

we find thatg}(p2pF)2) and with the results of quasipar
ticle lifetime calculations in the generalized random pha
approximation~see Ref. 11!. The results of calculations o
g(«,m) and of r («,m), the real part of the mass operat
~the Hilbert transform ofg(«,m)), are depicted in Fig. 2.

Within these approximations, the spectral intensity c
be written as follows:

I p~«!5I ~«,vp ,m!

5
1

p

g~«,m!

@«2~vp2m!2r ~«,m!#21g2~«,m!
. ~54!

It has been proved, both numerically and analytically, t
the spectral intensity obeys the sum rule

E
2`

`

d« I ~«,vp ,m!51

for arbitraryvp andm. The distribution function

FIG. 2. The real (r («,m)) and imaginary (g(«,m)) parts of the mass op-
erator in the first Born approximation as functions of the spectral variab«
at m520.4.
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nk5c fk5c f~vk ,m!, f ~vk ,m!5E
2`

0

I ~«,vk ,m! d«,

~55!

has a discontinuity atvk5m ~Fig. 3!. Equation~30! for the
chemical potential with the distribution function~55! reduces
to

n

n22
5E

21

1

r~v! f ~v,m! dv. ~56!

From ~56! we see that to a high degree of accuracy
chemical potential calculated in the first Born approximat
does not differ fromm. Figure 4 depicts the dependence
the discontinuityZ(n) on the electron concentrationn. The
energies of the saturated ferromagnetic state,eFM(n), and of
the N-state in the zeroth approximation,e0(n), and in the
first Born approximation,e1(n), are depicted in Fig. 5. We
see that although the kinematic correlations of the electr
in theN-state raise the energy of the system in compariso
the zeroth approximation, theN-state is still the most advan
tageous one energetically.

Let us discuss the spin structure of this state. Spin is
ropy, which is a characteristic feature of the singlet st
~34b!, is retained if we use the approximation~41!. The spin
correlation function for the nearest neighbors~in the first
coordination sphere! is

C15
1

2N (
q

gq^Sq
1S2q

2 . ~57!

In the approximation~41! we have

FIG. 3. Typical shape of the distribution function in the Hubbard mo
with U5` at T50.

FIG. 4. Dependence of the discontinuity on the Fermi surface on the e
tron concentrationn.
e

f

s
to

t-
e

C15
cA

2N (
q

gq

1

N (
p

f p
0~12 f p1q

0 !

5
cA

2N (
p

u~m2vp!
1

N (
k

gk2pu~vk2m!. ~58!

For the square and cubic lattices there is the well-kno
symmetry effect of ‘‘splitting’’ of gk2p , i.e.,

C15
cA

2N (
p

@u~m2vp!gp#
1

N (
k

gku~vk2m!

5
cA

2 S E
21

m

r~v!v dv D S E
m

1

r~v8!v8 dv8D
52

1

2

v2~m!

12g2~m!
. ~59!

Using ~33!, we finally get

C152
1

8

e0
2~n!

12n
. ~60!

If, e.g., we take the ‘‘rectangular’’ density of statesr(v)
51/2 we havee0(n)52n(12n)(12n/2)21, so that

C1~n!52
1

8

n2~12n!

~12n/2!2
.

In the present model the correlations are due solely to e
trons hopping to neighboring vacant sites and, natura
C1(n)→0 asn→1.

Thus, ourN-state is a singlet state with a nontrivial iso
tropic spin correlation function.

6. CONCLUSION

Our analytical and numerical analysis of the Hubba
model for the limit of infinite repulsion at a single site (U
5`) has shown that qualitatively the properties of the el
tron system are the same as those of a normal metal
electron–electron coupling. What is important here is t
the kinematic electron correlations do not disrupt the Fe
surface, but leave a ‘‘signature’’ in the form of a Migda
discontinuity in the distribution function. Although this re

l

c-

FIG. 5. The energies of the saturated ferromagnetic state,eFM(n), the nor-
mal state in the zeroth approximation,e0(n), and the normal state in the firs
Born approximation,e1(n).
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sult has been obtained in the first Born approximation,
believe that it is not altered by further iterations, since
attenuation~the imaginary part of the mass operator! always
vanishes on the Fermi surface, i.e., for a zero value of
spectral variablesE.

Our numerical calculations have shown that the norm
~nonmagnetic! singlet state is the ground state. The ma
reason for this is that the chemical potential is lower th
that of the saturated ferromagnetic state, which is indica
already by the zeroth approximation. Our study was don
the thermodynamic limit, with the result that the subtle qua
tum mechanical effect described by the Nagaoka theore13

which concerns the ground ferromagnetic state in the p
ence of one hole, does not appear in this limit. In this c
nection we would like to mention To’th’s paper,14 where it
was stated that in the presence of two holes the ferrom
netic state is not the ground state.

In the model withU5` we considered only theN-state
as the main contender for the ground state of the syst
Here the state with the electron concentrationn51 is the
‘‘punctured’’ point with zero energy and high degree of d
generacy. At finite but large values of Coulomb repulsi
(U@t), the degeneracy is lifted by the antiferromagnetic e
change interactionsJ't2/U, and long-range antiferromag
netic order emerges at low hole concentrations.9. However,
as the concentration grows, long-range antiferromagnetic
der disappears and the system passes into its normal~metal-
lic! state of the type described above.
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