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We discuss, in connection with the problem of the ground state in the Hubbard modeJ with

=, the normal(nonmagnetit N-state of a system over the entire range of electron
concentrationsi<1. It is found that in a one-particle approximation, e.g., in the generalized
Hartree—Fock approximation, the energyfn) of the N-state is lower than the energyy(n) of a
saturated ferromagnetic state for all valueshofJsing the random phase approximation we
calculate the dynamical magnetic susceptibility and show thaklitbete is stable for all values of

n. A formally exact representation is derived for the mass operator of the one-particle

electron Green'’s function, and its expression in the self-consistent Born approximation is obtained.
We discuss the first Born approximation and show that when correlations are taken into
account, the attenuation vanishes on the Fermi surface and the electron distribution fun€tion at
=0 acquires a Migdal discontinuity, whose magnitude depends. drhe energy of theN-

state in this approximation is still lower thas,(n) for n<1. We show that the spin correlation
functions are isotropic, which is a characteristic feature of the singlet states of the system.

We calculate the spin correlation function for the nearest neighbors in the zeroth approximation
as a function ofn. Finally, we conclude that the singlet state of the system in the
thermodynamic limit is the ground state. €998 American Institute of Physics.
[S1063-776(98)01712-0

1. INTRODUCTION. STATEMENT OF THE PROBLEM the topology of the latticéhe numbed of the lattice dimen-

) ) sions and the numbez of the nearest neighbgrand the
In this paper we discuss the problem of the ground statgoctron concentration(0<n<1).

and the ele_ctron d_istributior_1 function _in t_he_ H_ul_abard model Applying Fourier transformations to all the operators,

when the single-site repulsive potential is infinités= .

The system Hamiltonian 1 _

)(ko_:\/_N 2 elkfx(f)o"
f

Ha= 20 HA)XTOXPT =N 2 X7, (1)

) 1 , '

X7 (q)=—= > €9X77, )
specified on al-dimensional lattice withN sites with a co- IN T
ordination number and periodic boundary conditions, de-
scribesN, electrons that tunnel to the nearest vacant sites (
stands for the lattice sites) is the vector connecting the
nearest neighbor$(A) is the tunneling integral, and is the
chemical potential Since repulsion is assumed infinite, each .=, (@ — ) X§ Xio ()
site is either vacant or contains a single electron with spin 7
projectiona (pairs are forbidden This factis reflected in the  yhere w, represents the dimensionless dispersion law in the
use of Hubbard operators with well-known commutation re-nearest-neighbors approximation,
lations, which differ from those of fermionsee below.

where the vectork and g belong to the first Brillouin zone,
we find that the Hamiltonian becomes

At this point it is convenient to normalize the Hamil- 1 KA
tonian to the halfwidth of the “bare” electron barmt: WkT T EA: (Y S
h,=H./zt, t(A)/zt=—1/z. and u= \/zt is the dimensionless chemical potential.

The simplicity of the Hamiltonian(3) is an illusion,
In the thermodynamic limit l—o, Ng—o, N./N=n since the operatorX obey the following commutation rela-
=const), all the properties of our system depend solely otions and completeness condition:
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Grol 7) = =1 0(D{({Xa(1), X[, (1)),  7=t—t', (8)

1 ) /
{Xko'xga’}: N zf el(k_p)f(aga/x?0+x?' 0)1
and its Fourier transform

N

X4 X774 XIT=1, 5)

. _ , , Xiol XE V=G E=fwde‘E’G : 9
Using the commutation relation®), we can write the {Xicol Xis))e=Cro () T ko(7) ©

equations of motion#=1) as follows: ) ) ) ) )
whereE is the spectral variable. It is convenient to write the

iXko=[Xko N 1= Xy + Riyrr  E0=w0— 1, (6)  Green’s function as follows:
1 o o Gko’(E): CO'FkO'(E)l (10)
R~ ; o X77(Q) Xk g 7= X77(A) Xk— g0,
1 -
Y (o X =1=n=Co, =g 2 (X{7).

= — 0.
We introduce the spectral intensity
The nonlinearity of Eq.(6) stems from the algebra of the

operatorsX or the presence of “kinematic” correlations be-
tween electrons with opposite projections of spin.

What is important in the problem of strong electron cor- ) ) ]
relations is the ground state of the system and the electroHSing this quantity and the spectral theorem, we can find the

IkU(E)=—%Im Fio(E+i0). (11)

distribution function. averageghere and in what follows we assunie=0):
The energy of the system depends on the system’s total 0
spin S. In the case of a saturated ferromagnetic st&8e ( (Xlaxk():nk(,:cgf l,(E) dE=c,f\, . 12

=Ng/2), the solution of the problem is exact and trivial for
any admissible number of electrons. In this case the syster,q spectral intensity obeys the sum rule
is an ideal Fermi gas of electrons with the projection of the
spins in one directiofthe state in thé-space is either vacant o
or occupied by a single electrbrAt T=0 the distribution fﬁxlkﬂ(E) dE=1. (13)
function is a Fermi step function.

An alternative of the ground state of the system is thelhe chemical potential can be found by solving the equation
singlet state $=0 for an even number of electrognsvhich 1 1 o
we also call a normalN) strongly correlated staighe num- n=— > N=v 2 Co’f l o (E) dE, (14)
bers of electrons with spin “up” and “down” are equal and N %z N %z —o
there is no long-range magnetic orfdefhe energy advan-
tage of theN-state is due to the possibility of double occu-
pancy of states in thespace K{,X{ 5 o) #0), which low-
ers the chemical potential in comparison with that for the 1 1 0
ferromagnetic state. Here, of course, pairs are forbidden in €= kE oMk =1y kE wkCUJ l-(E) dE. (19
the direct space and <N. 7 7 o

Correlations between electrons with opposite spin prosince all calculations are done in the thermodynamic limit,

jections are strongest in the-state. By “dispersing” the e can replace the sums by integrals:
electrons according to their momenta such correlations, on

the one hand, enhance the energy of the system and, on the 1 E ([t 1 _

other, may modify the Fermi step function®t0. Here it is N 4 Al = LlA("’)p(“’) do, fﬁlp(“’) do=1,

important to establish whether the Migdal discontintiiity

the distribution function is retained on the Fermi surface omwhere p(w) is the density of states corresponding to the

whether it disappears, as it does in a mardimalLuttingef  dispersion laww, (for alternant latticesp(w)=p(—w),

electron liquid. —1=sw,=<1). After the chemical potential has been found,
The goal of this work is to calculate the distribution we can use formul&l?) to find the one-particle distribution

function of electrons in a system in tiéstate aitT=0 by  function.

the method of two-time retarded Green’s functiéng con- A saturated ferromagnetic state in the Hubbard model

trast to the previous previous work of one of the authorscan be described exactly. At=0 the chemical potential and

(E.V.K),>" here we examine the approximation of the masghe system energy can be found by the formulas

operator corresponding to the self-consistent Born approxi-

. M n
mation. n=f_1p(w) do, EFM(H)ZJ_lwp(a))dw, (16

2. GREEN'S FUNCTIONS: GENERAL PROPERTIES

wheren is the given electron concentration. The system en-
ergy (per lattice sit¢ is

which makes it possible to determine the explicit dependence
We consider the two-time retarded anticommutatorof the energy of the ferromagnetic state on the electron con-
Green'’s function centrationn.
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3. THE MASS OPERATOR OF THE GREEN'S FUNCTION v 3 (ED)
AND ITS APPROXIMATION IN THE SELF-CONSISTENT ((Reo R V)= f k= dE (23)
BORN APPROXIMATION —= E—E'+i0

In the exact equatiofB) we can isolate the linear part, If we now employ the spectral theorem, we can express the
which corresponds to the generalized Hartree—Fock approx?‘pectral density of this function in terms of time averages:

mation. This is achieved by introducing the irreducible P

operatct-" o) | 5 €= (RO R (1) + (R (DRL(O))
'~F'2 -R <{Rko"xk4r}> ak(rx 1 (24)
ko™ Rke™ m ka_c_g ko s A7 with I'o(E)= 73, (E)/c, .

Using the definition(7) of the operatoRR,,, we calcu-
for which ({Ry, ,X}l,})=0. Actually this means that the pro- late the averages i24), writing them as a product of quasi-
cedure allows for all “internal” pairings, which lead to lin- Bose and quasi-Fermi averagés., carrying out “external”

earization. Equatioii6) takes the form couplings. Each of these averages can be found by the spec-
_ 5 tral theorem in terms of the corresponding commutator and
I Xko= &koXkoT Rio s (18 anticommutator Green'’s functions. As a result we obtain
where

Jio(E)=~ 2 w?_ qf do N(w)f(E— 0)(1+ePE)

KO'
c,+ C_U Wi— M,
(19

1
=&+ —{Reo X{ ) =A,+
gko’ gko— Co'<{ ko s ka'}> o X[S‘”’(q,w)cglk_q;(E—w)

+577(q,0)Chl kg, (E—w)], (25
A,=|ellc, ko= (X””ijjA%—vfgvHM) ande, is the en-

ergy (per lattice sitg of the subsystem of electrons with spin
projectionso, with v¢,=X{"—nj. ol 1 ol o

The Green’s functiorG,,(E) (or F\,(E)) satisfies the $77(g, @) = = —Im((X”7 (X7 (=)o (26)
Dyson equation. To set up the equation, we use the well-
known method of first differentiating the Green’s functions
with respect to the “first” timet and then with respect to the
“second” timet’. Using the equation of motion in the gen-
eralized Hartree—Fock approximation, we arfiVat

where

N 1 JE— N
$79(q, @)=~ —Im((X7(Q)[X77(=D))). (27)

and
F(E)=(e’F+1)"!, N(w)=(ef*—1)"1.

(200 A similar approximation was done by Plakida al® (see
also Ref. 9 for the t—J model. It corresponds to the self-
1 . consistent Born approximation.
Sko(E)= c_<<Rk"| Rl,,))(E"). In the N-state, all the main characteristics are indepen-
v dent of the spin projections c(=c=1-n/2, |,,(E)
The mass operatd,,,(E) (the self-energy part of the =I,(E), etc), and atT=0 we have an expression for the
Green’s functioh is the connectedindex (c)) part of the imaginary part of the mass operator:
higher-order Green'’s function, which is not cut along the line 1 w ~
of thg graophlcal represen'Eatlon of the zeroth-order Green'$\(E)== N > wi*qf, dw[S(g,w)+S(q,w)]
function F) (E)=(E— &) 1. Assuming q *

1

Pl B = B TS (B +10°

3o (E+10)=Mi(o(E) =T (E), (21) X[6(E)8(w)O(E~ )~ 6(~E)8(~ v)
we have X O(|E|— o) Nk—q(E— ), (28
with the obvious redefinitions foB(q,») (Eq. (26)) and
|k0_(E):_£|m Fyo(E) $(q,w) (Eq. (27)). Thus, the imaginary part of the mass
m operator in the self-consistent Born approximation is repre-
1 Iy (E) sented by a convolution of the spectral intensities of quasi-
—— g (22) Bose and quasi-Fermi excitations in the frequeneeand
T [E~ &~ Mo (E) 2+ T, (E) momentag. The real part of the mass operator is a Hilbert
with I',.(E)=0 (Ref. 5. Formally the representatid20) of transform of2.,(E), i.e.,
the mass operator is exact. However, to perform calculations, k(E ) dE’
we need the explicit form of the mass operator, which means  M«(E)= —f J’ E_E (29)

we must use an approximation scheme of some sort.
The spectral representation of the higher-order retarded If the functions(26) and (27), which describe the trans-
anticommutator Green'’s function is verse and longitudinal components of spin density fluctua-
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tions, have been calculatéat least approximatelythe mass (SIS (=D =S (@|ST(—a)))w
operator can be found self-consistently frg28) and (29),
the representation0) and (21), and the equation for the _ Do(q,w) —D(q, o) (343
chemical potential 1+P(q,w) Y
1 1 0
- T (9 1
n=§ 2 KX omg 3 [T e ae (S (@S (~D)),=5D(a,0), (34b
(30)
Note the difference between a true singlet state and gnd
normal (paramagneticstate. In addition tcfS‘lO) vanishing X7 )| X7 — = ((X77(q)|XT7(—
in the singlet state, this state has a nontrivial, isotropic spin (X @IXT (=)= (X" (@IX (=),
correlation function Do(q, ) _
=————=D(q,0), (39
(SESt1 ) = (SIS{4) =(SiS7+ ) =C(r), (3D 1-P?(q,0)
(S{Sr.,)=2C(r), where
which is independent of the direction of vectorlf there is 1 n,—ng.
no such correlation@(r)=0), we have an ordinary para- Do(g,w)= —Xg‘(q,w)z N E ﬁ
Pq

magnetic state. Equatior{81) are also true for the correla-
tion functions(S'(q) S (—q)) and the corresponding Green'’s

. 1 Np4qw —Nyw
functions. P(q, )= ~ 2 p+qwi+cl) :had: (36)
P pq

4. THE ZEROTH APPROXIMATION AND THE RANDOM ) ;
PHASE APPROXIMATION (XpaXpo) =(X,oXpe) =Np,  Wpq=@piq— wp.

Let us start with the zeroth approximation, i.e., the Equation(34b) points to Spin isotrop}(see Eq(3]_)),
N-state andl =0, where in describing the electron states wewhich is characteristic of a singlet state. In this state the
ignore the mass operator. In this case the spectral intensity igrrelator
a delta function and the distribution function, a Fermi step

function: (X77(@)X77(= )+ (X7 (@) X7 (1)
I0(E)=8(E—&p), np=cfo=co(—&p), =3(S(q)S(—a) +xp(q)p(—a)), 37
fp~A+cop—pu. (320 wherep(q) is the operator of electron number density fluc-

Herec=1-n/2, A=|e|/2c, eo(n) is the system energyper  tuations. In the random phase approximation we have
site), and we have used an approximate expression for the Dy(q, @)
one-particle spectrurtthe correlation functiork is dropped ((P(Q)|P(—Q)>>w=&5
from (19)). At this point it proves convenient to introduce the 1-P(q,w)
effective chemical potentiah=(u—A)/c. Thenm and the
system energy as functions of the electron concentration
are, respectively,

D(q,w), (39)

so that in the singlet state the sum of the spectral intensities
can be written as follows:

n _(m S(0,0) +5(0,0) = $S(0, ) + S0, @), (39
T p(w) dw=g(m), (333 -
-t whereS(q,w) is the imaginary part of the functio{88).
€o(N) If we use the Fermi step functiohgza(—gp)ze(m

m

> n :f_l wp(w) do=v(mM). (839  —w,) to calculate the transverse susceptibiligy (g, o)
=-D(q,w), of the Hubbard electrons in the static case

By excluding the upper limim we can obtain the explicit (w=0) for g—0 we obtairf

dependence of, on n. Analysis shows’ that in the zeroth

approximationey(n) < epy(n) for all concentrations, i.e., the lim " (q,0)= p(m)

singlet (nonmagnetit state is the energy-advantageous one. 40 X ' 1—g(m)+mp(m)

Moreover, Eq. (339 allows correctly for the excluded-

volume effect in the Hubbard model with=c: the Fermi  whereu(m) is the paramagnetic gain factor. Equati@t)

surface is inflated compared to the case of free electrons (has no pole singularity, which is an indication that the

—2g(m) for such electronsand occupies the entire Bril- N-state is stable against the development of ferromagnetism;

louin zone amn—1(m—1). this agrees with the results of Ref. 10.

The spectral densities of the quasi-Bose states in the Thus, the zeroth approximation and the random phase
mass operator can be found in the random phase approximapproximation are in full agreemefithe absence of ferro-
tion. In the N-state, the commutator Green’s functions of magnetism in the Hubbard model with=« in the thermo-
transverse and longitudinal spin fluctuations’are dynamic limip.

=u(m)p(m), (40



JETP 87 (6), December 1998 E. V. Kuz'min and I. O. Baklanov 1163

5. APPROXIMATIONS USED IN CALCULATING THE MASS After this approximation, the imaginary part of the mass
OPERATOR AND THE DISTRIBUTION FUNCTION operator can be written as fO||OW§X(q,w)ESO(q,w) for
: ; - ; - 0=0):
Let us discuss the role of kinematic correlations in

N-state of the system. Such correlations are described by the
mass operato@k(E), and finding them self-consistently I'\(E)
k

constitutes an extremely difficult problem, whose solution
involves complicated numerical calculations. For this reason
we introduce a number of simplifying assumptions, which,

we believe, do not change the main conclusions and the es- F+_2A7T

E
> wﬁ_qfo do So(0,0) 1 o(E~w),

sence of the problem. K™ N
1. The denominators of the functioi¥(q, ), D(q,®), E>0,
and D(qg,») do not vanish, which is an indication that the =~ AT IE|

model does not contain well-defined collective excitations F[:T > wﬁ,q do Sy(q, w)lk—o( —|E[+ w),
(magnons or zero-point soundThis makes it possible to a 0

approximately replace the sum of spectral intensifiestead | E<O.
of using the random phase approximajidmy (46)
S(0, @) +3(q,0) = 2A%(q, ), (4D

which is equivalent to considering the susceptibility of inde-We See that the attenuatidh(E) vanishes a&—0. Note
pendent Hubbard electrons. In E@il), A is a correction that the Fermi level corresponds Eo=0, so that there is no
factor depending on the concentratiéor on the chemical atténuation on the Fermi surface proper.

potentia). With a distribution function of the general form 2. Instead of_dthe_ dyn?mic form ;actoASOIthw)
n,=cf,=cf(w;) we have r;Sr(]gjlw) we consider its value averaged over all the mo-

- ImDo(a,.0)=Sy(q,0)

c S(q,0) AE )=S(w,m) (47)
,W)— — ,W)=S(w,M),
5 2 HoplLfopeq)] ARCTE

X[8(w—Cwpg) = S(w+Cwpg)]
. - which is the number density of single-pair excitations with
=$"(0,0)—-S '(q,0). (42)  an energyw and a chemical potentiah. Using the Fermi
This function, known as the dynamic form factdris de-  Step function, introducing a new variab®@ = w/c, and em-
fined for both positive >0) and negative<0) frequen-  P10Ying EQs.(42) and (47), we get
cies, sincew,a>0 (obviously, S{(q, - w)=S§"(q,w)),
and describes incoherent single-pair electron excitations with
the spectrumupq within the first Brillouin zone. S(Q,m)=A(m)f
The correcting factoA can be found from the sum rule

m

p(X)p(x+Q)dx, 0=sO=2.
Q
(48)

1 1 n
N ; (SiS79=y % (XgTXTG= 5. (43)
We see thaB(Q,m)~A(m)p?(m) asQ—0. The shape of

the functionS(€),m) is depicted in Fig. 1 for an elliptical
density of electron stateg(x) = (2/7)y1—x2. Analysis of

(48) shows that the behavior and numerical values of
S(Q2,m) do not change significantly with other densities of
states for two- and three-dimensional alternant lattices.

The essence of the approximati@ty) is as follows. The
general expression®5) and (28) describe processes of the
following type: an electron with an “energyE and momen-

n 1 1 tum k passes to the stake— w, k—q, exciting in the process
§=ACJ do P(w)ﬁ(m—w)f do’ p(e')8(0’=m)  an electron—hole pair with momentum and energyw
-1 -1 . . . .
=wpq. When the approximatiof47) is used, we ignore the
=Acg(m)[1—g(m)]. detailed description of states in the momenta and specify the
Since c=1-n2=[1+g(m]* and n/2=g(m)[1 transition of the electron from the c.onstant-ene_rgy surtace
+g(m)] L, we have to the c_onstf'int-energy surfaée- ; SL_Jch transmo_ns take
place with different momentgq, which is reflected in(47).
A(m=[1—g(m)] L. (45 Since the description of states is done on a constant-energy

Using (41) and the spectral theorem, &t=0 we have

A
<sgs:q>=WC% fo(1=fpiq). (44)

If we take the Fermi step functiomgz 6(m—wp) as the
zeroth distribution function with the effective chemical po-
tentialmand replace summation by integration with the elec-
tron state density(w), we find
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FIG. 1. The density of single-pair excitations for different values of the FIG. 2. The real ((s,m)) and imaginary §(s,m)) parts of the mass op-

chemical potentiam(() is the excitation energyHere an elliptical density

of electron states is used.

surfaces, the dependence of the attenuation and the entir

mass operator on the quasimomentkns lost, i.e.,%(E)
—3(E)=M(E)—iT(E). Now, settingE at ce, we obtain

[(e)
e 1
wa dQ S(Q,m) < > wil(e—Q), £>0,
0 N “5
= o 1
2m| dQSQ.m) < X Wil (—|e[+Q), &<0,
0 N 5
(49)
and
M(g)=Re3(¢) ! ﬁfw I'E) de (50
=Re ~— —_—.
£ & p . S—E’

3. Let us study the first Born approximatigithe first
iteration step in the self-consistent solution

Io(e—Q)—=13(e—Q)=8(z—Q—(wp—m)).

The sum in(49) is

1 1
- 210/ _ 0~ (-
N%wp|p(s ) ZN%lp(s 0)

E fl dxp(x)d[e—Q+m—x]
-1

z
1
=Zp(e—Q+m),
z
where
1 1 1
E:NZ,) w|2)= f_ w?’p(w) dw (51

erator in the first Born approximation as functions of the spectral variable
atm=—0.4.

Me,m)=TM(s)
f2 e
7” JO dQ S(Q,m)p(s—Q+m),

O<es3—m,
=) 27 (el (52)

-~ dQ S(Q,m)p(—|e|+Q+m),
0

| —(3+m)<e<0,

with —1sm<1.
As usual, on the Fermi surfacge)—0 ase—0. Near
the Fermi surfaceg— 0, so thatt)—0) we have

S(Q,m)=A(m)p*(m)Q,

and

p(e—Q+m)~p(m),

n
y(e,m)~ ;A(m)p3(m)sz. (53

It should be recalled that in our calculations we deal with
dimensionless units; actually,Zlhas the dimensions of en-
ergy squared ang, of energy. The functional dependence of
(53) on ¢ agrees with Landau’s theory of a Fermi liqtfd
(indeed, if we putszsf—spz(pz—pé)/2m~vp(p—pp),
we find thatyo(p—pg)) and with the results of quasipar-
ticle lifetime calculations in the generalized random phase
approximation(see Ref. 11 The results of calculations of
v(e,m) and ofr(e,m), the real part of the mass operator
(the Hilbert transform ofy(e,m)), are depicted in Fig. 2.
Within these approximations, the spectral intensity can
be written as follows:

lo(e)=1(g,0p,m)
1 y(g,m)

B [e = (wp—m)=r(s,m)]*+y*(s,m)’ 59

It has been proved, both numerically and analytically, that
the spectral intensity obeys the sum rule

©

de l(g,0p,m)=1

is the average value of the square of the bare spectrum over

the entire Brillouin zone. In this case the attenuation is

for arbitrary w, andm. The distribution function
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flw)

T
-0.1

Z(m) i €y
-0.2
m=-0.4 m=0 Gl
0 l m=-0.8 . (') 1 - €0
- w 0.3

0 0.2 04 0.6 0.8 1.0
FIG. 3. Typical shape of the distribution function in the Hubbard model n
with U= at T=0.
FIG. 5. The energies of the saturated ferromagnetic séaign), the nor-
mal state in the zeroth approximatian(n), and the normal state in the first
Born approximationg,(n).

ng=cf,=cf(wg,m), f(wk,m)=fo [(e,wy,m) de,
(55

has a discontinuity ab,=m (Fig. 3). Equation(30) for the
chemical potential with the distribution functidf5) reduces cA 1

to - _ — _
- oN 2 OM-wpg 2 Yiepblo=m). (59

n—2_ f_l p(w)f(w,m) do. (56 For the square and cubic lattices there is the well-known
symmetry effect of “splitting” of y,_,, i.e.,

From (56) we see that to a high degree of accuracy the cA n

chemical potential calculated in the first Born approximation =" (M- o - 0(wr—m

does not differ fromm. Figure 4 depicts the dependence of 12N E Lo )%l N ; dw=m)

the discontinuityZ(n) on the electron concentration The

CA 1
— 0 0
Crman 2 Yy 2 1 fhe)

energies of the saturated ferromagnetic statg(n), and of = C_A( fm p(w)o dw) ( flp(w/)w, dw’)
the N-state in the zeroth approximatiosg(n), and in the 21\ /)4 m
first Born approximatione,(n), are depicted in Fig. 5. We )
see that although the kinematic correlations of the electrons - E vi(m) (59
in the N-state raise the energy of the system in comparison to 21-g¥(m)’
the zeroth approximation, tHé-state is still the most advan- : ,
) Using (33), we finally get

tageous one energetically.

Let us discuss the spin structure of this state. Spin isot- 1 eg(n)
ropy, which is a characteristic feature of the singlet state ~C1=~ 81-n" (60)

(34b), is retained if we use the approximatiofil). The spin . . ]
correlation function for the nearest neighbds the first  !f: €.9., we take the “rectangular” density of statptw)

coordination sphejeis =1/2 we haveey(n)=—n(1—n)(1—n/2)"1, so that
1 1 n%(1—n)
- + g Cin)y=—g ———.
Ci=55 % ¥4(Sq S (57) (n=-g (122
In the approximatior{41) we have In the present model the correlations are due solely to elec-

trons hopping to neighboring vacant sites and, naturally,
Ci(n)—0 asn—1.
Z Thus, ourN-state is a singlet state with a nontrivial iso-

“’» tropic spin correlation function.
0.9}
- 6. CONCLUSION
0’8: Our analytical and numerical analysis of the Hubbard
07l model for the limit of infinite repulsion at a single sitéJ (
1 =) has shown that qualitatively the properties of the elec-
06 tron system are the same as those of a normal metal with
0 02 0.4 0.6 08 1.0 electron—electron coupling. What is important here is that

n the kinematic electron correlations do not disrupt the Fermi

FIG. 4. Dependence of the discontinuity on the Fermi surface on the eleosgrface_: b_Ut |_eave a_“Si_gna_ture” in _the form of a Migdal
tron concentratiom. discontinuity in the distribution function. Although this re-
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