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Zh. Éksp. Teor. Fiz.114, 1954–1970~December 1998!

Electron transmission in the two-, three-, and four-terminal nanostructures is considered under
the influence of a radiation field. The frequency of the radiation field is tuned to the
transition between the energy of a bound state and the Fermi energy of the incident electrons.
The radiation induced resonant peaks and dips of the electron transport are exhibited for
zero and low magnetic fields. It is shown that rotation of the radiation field polarization can
effectively control the electron transport into different electrodes attached to the structures
because of the symmetry of the structures. The resonant anomalies of the Hall resistance are found
in a weak magnetic field. ©1998 American Institute of Physics.@S1063-7761~98!00412-0#
ru
a
nt
a
r

itie
a

ur
an
li
v
le
lik
th
o
e

tru
ce
st
ro

he
ri

ro
nc
ha

e
b

de

-
und
re-

of
wn

or
t
th

ated
gies

all
ag-
the
nds
or a

nd
the
as
ing

the
mix
tron
of
ts
qual
ur-
d

1. INTRODUCTION

For several decades the transport of electrons in st
tures of low dimensionality and complicated geometry h
been the focus of extensive theoretical and experime
study. Electrons can be confined to very narrow regions f
ricated on an interface of an AlGaAs/GaAs heterostructu
Since the electrons in such regions can have high mobil
in the two dimensions available to them, such systems
called two-dimensional electron gases~2DEGs!. The study
of electronic transport properties of 2DEGs is of great c
rent interest not only from the standpoint of the basic qu
tum effects involved but also for potential engineering app
cations. An idealized sample becomes an electron wa
guide, wherein the quantum transport properties are so
determined by the geometry of the structure and the wave
nature of the electrons. A remarkable manifestation of
successful achievement of quantum ballistic transp
through a semiconductor nanostructure is the appearanc
quantized steps on the conductance through a narrow s
ture as the number of one-dimensional channels is suc
sively varied,1,2 the quenching of the Hall effect, and the la
plateau and the negative bend resistance in the c
geometry.3–5

Ford et al.5 presented a systematic investigation of t
influence of cross geometry on the Hall effect. They fab
cated various differently shaped cross sections based
GaAs–AlxGa12xAs, which demonstrated that near ze
magnetic field the Hall resistance can be quenched, enha
over its classical value, or even negative. This effect
been considered in detail theoretically by Schultet al.6 and
Amemiya and Kawamura.7 Another interesting feature of th
cross geometries is a bound state found numerically
Schultet al.8 and by Peeters.9

The question of the existence of electromagnetic mo
trapped by special geometries has been a classic one in
1051063-7761/98/87(12)/10/$15.00
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theory of waveguides.10 It has been realized that the intro
duction of bends into waveguides generally leads to bo
states, or localized modes, which exist below the cut-off f
quency for the waveguide. Cariniet al.11,12 have demon-
strated theoretically and experimentally the presence
boundTE modes for rectangular bent waveguides and sho
that the number of boundTE modes is bend-dependent. F
the two-dimensional Schro¨dinger equation it was proved tha
any curved two-dimensional waveguide of constant wid
and infinite length posses bound states.13–18 Bound states
were found in the same year~1989! in a four-terminal junc-
tion of narrow wires by Schult6,8 and independently by
Peeters9 ~see also Refs. 19 and 20!.

For the stationary processes of the energy conserv
electron transmission only quasi-bound states with ener
within the conduction subbands are important.6,7 In particu-
lar, it was shown that the quasi-bound states in the H
junction result in resonant dips of the resistance in high m
netic fields when the magnetic length is comparable with
size of the junction. The Hall resistance sensitively depe
on the geometry of a junction and can become negative f
smoothed junction for small magnetic fields.

Although the bound states below the lowest subba
threshold do not participate in stationary transmission,
possibility of observing of them, at least in principle, w
shown by Berggren and Ji for the case of two intersect
electron waveguides with finite electrodes.20 In that case
bound states can be probed by resonant tunneling through
electrodes below the subband. However, it is possible to
the bound state with electron transmission through elec
waveguides with infinite electrodes directly by application
a radiation field, provided that the dipole matrix elemen
between the bound state and propagating ones are not e
to zero. Such a possibility was demonstrated for the fo
terminal’s Hall junction.21 Let E1 be the energy of the boun
8 © 1998 American Institute of Physics
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FIG. 1. The types of structures considere
L-structure ~a!, the T-structure ~b!, and
X-structure~c!.
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state below the subbands which for zero magnetic field
be specified as

En~k!5
\2

2m* d2 ~k21p2n2!,

whered is the width of the electrodes,n is the number of the
subband, andk is the wave number of the incident electro
Tuning a perturbation frequency near the resona
\v5En(k)2E0 , one can expect resonant anomalies in
electron transmission through the many-terminal junction21

The aim of the present article is to consider the elect
transmission effected by mixing of bound states with
propagating solutions in theX-, T-, andL-types of electron
waveguides which are shown in Fig. 1.

2. CONDUCTANCE ANOMALIES INDUCED BY THE
RADIATION FIELD

2.1. Numerical method

In this section we consider single electron transmiss
through the rectangular structures, the geometries of wh
are shown in Fig. 1 and specified below asL-, T-, and
X-structures. They share the property of having at least
bound state. The Schro¨dinger equation for an electron of
massm* subjected to a magnetic fieldB applied normal to
the junction and to a radiation fieldA1(t) directed in the
plane of the junction can be written

i\
]c~r ,t !

]t
5

\2

2m* S i¹1
e

\c
~A0~r !1A1 cosvt ! D 2

c~r ,t !.

~1!

Here we use the gaugeA0(r )5(2By,0,0). The radia-
tion field is considered in the long-wavelength approxim
tion, in which the wavelength of the radiation field is mu
greater than the size of the junction. We use the follow
dimensionless transformations:

t→
\t

2m* d2 , r→
r

d
, e5

2m* d2E

\2 ,

v→
2m* d2v

\
, a5

2pdA1

f0
, g5

2pd2B

f0
, ~2!

wheref05ch/e is the magnetic flux quantum. In terms o
the dimensionless variables~2! the Schro¨dinger equation~1!
takes the form

i
]c~r ,t !

]t
5~ i¹1~a0~r !1acosvt !!2c~r ,t !, ~3!
n

e
e

n
e

n
h

e

-

g

where a0(r )5(2gy, 0, 0). We map this equation onto
square lattice with elementary unitw. The lattice site is
specified as~m, l!. The total vector potentiala01acosvt is
accounted for by a Peierls phase factor.22 Then Eq.~3! trans-
forms as follows:

iw2
]c~m,l !

]t
54c~m,l !2exp~ i g̃ l !c~m11, l !

2exp~2 i g̃ l !c~m21, l !

2exp~2 i ã cosvt !c~m,l 11!

2exp~ i ã cosvt !c~m,l 21!, ~4!

whereg̃5gw2, ã5aw. In the four-terminal junction we use
also a different gaugea0(r )5(0,gx,0) for which the
Schrödinger equation~3! will map onto a square lattice a
follows:

iw2
]c̃~m,l !

]t
54c̃~m,l !2c̃~m11,l !2c̃~m21, l !

2exp~2 i ã cosvt2 i g̃m!c̃~m,l 11!

2exp~ i ã cosvt1 i g̃m!c̃~m,l 21!, ~5!

wherec(m,l )5exp(2ig̃ml)c̃ (m,l). Because of the processe
of absorption and emission of photons, we write the wa
function in the electrodes23,24

c~r ,t !5(
n

exp@2 i ~e1nv!t#cn~r !. ~6!

Substitution of~6! into ~4! gives

w2~e1nv!cn~m,l !54cn~m,l !2exp~ i g̃ l !cn~m11,l !

2exp~2 i g̃ l !cn~m21,l !

2(
s

Gnscs~m,l 21!

2(
s

Gns* cs~m,l 11!, ~7!

where

Gns5 i s2nJs2n~ ã!.

Here we used the standard expansion of an exponentia
Bessel functions25
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exp~ i ã cosvt !5(
m

i mJm~ ã!exp~ imvt !. ~8!

Let us introduce column vectors for each site of t
square lattice describing the amplitudes of the wave func
~6!

C~m,l !5col~ ...,c1~m,l !,c0~m,l !,c21 ,~m,l !,...!.

Then Eq.~7! takes more compact form

~w2e1V!C54C~m,l !2exp~ i g̃ l !C~m11, l !

2exp~2 i g̃ l !C~m21, l !

2GC~m,l 21!2G* C~m,l 11!, ~9!

where we have introduced two matricesV5diag(w2nv) and
G5$Gns%. Following Ando26 we take the electrodes1 and4
~Fig. 1c! to be infinitely long in thex direction and consisting
of M lattice sites in they direction. We introduce a genera
ized vector

Cm5col~C~m,M !,C~m,M21!,¯ ,C~m,1!!.

The dimension of this vector isM3L whereL is the dimen-
sion of the vectorC(m,l ). In computer simulations the di
mensionL, which is the number of amplitudes of the wav
function ~6!, was taken to be a finite number chosen by n
merical accuracy.27 We also introduce a diagonal matrix

Pll 85d l l 8 exp~2 i g̃ l !,

the unit matricesI 0 of dimensionM3M andI of dimension
L3L, and the up-diagonal matrix

D5S 0 1 0 0 ¯

0 0 1 0 ¯

0 0 0 1 ¯

]

D
of dimensionM3M .

Then Eq.~9! takes the form presented by Ando26

~w2e2H0!Cm1PiCm211Pi* Cm1150, ~10!

where

H054I 0^ I 2D ^ G* 2D1
^ G2I 0^ V, Pi5P^ I .

To obtain the linearly independent modes of Eq.~10! we
set26

Cm5lmC0 ,

which gives

lS C1

C0
D5S Pi~H02w2e! 2Pi

2

1 0
D S C1

C0
D . ~11!

In order to find similar modes in the perpendicular ele
trodes~2 and3 in Fig. 1c! we write the Schro¨dinger equation
~5! as follows:
n

-

-

~w2e1V!C̃~m,l !54C̃~m,l !2exp~2 i g̃m!G* C̃

3~m,l 11!2exp~ i g̃m!GC̃~m,l 21!

2C̃~m11, l !2C̃~m21, l !. ~12!

Introducing again the column vectorC̃l which describes the
amplitudes of thel th line along thex-direction, we obtain
from Eq. ~12!

~w2e2H̃0!C̃l1P'C̃l 211P'
* C̃l 1150, ~13!

where

H̃054I 0^ I 2D ^ I 2D1
^ I 2I 0^ V, P'5P* ^ G.

Using the relationC̃l5l l C̃0 we obtain from~13! the linearly
independent solutions in the electrodes2 and3:

lS C̃1

C̃0
D 5S P'~H̃02w2e! 2P'

2

1 0
D S C̃1

C̃0
D . ~14!

From the Schro¨dinger equations~4! and ~5! the following
continuity equation for the probability density follows:

2
w2

2

]r

]t
5 j m,l

~x! 2 j m21,l
~x! 1 j m,l

~y! 2 j m,l 21
~y! , ~15!

where jm,l5( j m,l
(x) , j m,l

(y) ) is the probability current density. In
particular, for the gaugea05(2gy,0,0) in the electrodes1
and4 we have

j m,l
~x! 5Im$exp~ i g̃ l !cm,l* cm11,l%,

j m,l
~y! 5Im$exp~2 i ã cosvt !cm,l* cm,l 11%. ~16!

For the gaugea05(0,gx,0) in the electrodes2 and 3 we
have

j m,l
~x! 5Im$c̃m,l* c̃m11,l%,

j m,l
~y! 5Im$exp~2 i ã cosvt2 i g̃m!c̃m,l* c̃m,l 11%. ~17!

From these expressions for the probability current d
sity it is easy to find the stationary current carryed by t
propagating mode withulu51 in thex direction through the
sectionm in the electrodes1 and4:

Jm
~x!5Im~l^C0uPi* uC0&!. ~18!

As with the mode propagating in they direction in the
electrodes2 and3 we have

Jl
~y!5Im~l^C̃0uP'

* uC̃0&!. ~19!

Now let us consider the scattering region~Fig. 2! con-
nected to four electrodes. Following Ando26 we define

U~6 !5~u1~6 !,u2~6 !,¯uLM~6 !!.

L~6 !5diag~l1~6 !,l2~6 !,¯lLM~6 !!.

Hereui(6) are the solutions of Eq.~11! which correspond to
the eigenvaluel i(6). The signs ‘‘6’’ refer to the propagat-
ing and evanescent modes in the positive~negative! x direc-
tion in the electrodes1 and4. Similar matricesŨ,L̃ can be
defined for the electrodes2 and3.
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For the modes which are superpositions only of
‘‘ 1’’ type ~or of the ‘‘2’’ type! we can write simple recur
rence formulas26

Cm11~6 !5F~6 !Cm~6 !

with

F~6 !5U~6 !L~6 !U21~6 !.

The same formulas take place for the electrodes2 and 3.
These relations will be explored to define boundary con
tions in the scattering region.

Next, we consider the solutions inside the scattering
gion which are shown in Fig. 2. At the boundary1 there is
the incident modeC1(1), and at the boundaries2, 3, and4
there are only outgoing modes. Introduce vertical vect
C1 ,C2 ,...,CM12 which describe the amplitudes of the wa
function on a square lattice in the scattering region along
y direction as shown in Fig. 2, and a pair of horizontal ve
tors Qu ,Qd which describe the amplitudes at the upper a
down boundaries of the scattering region. The aim is to w
closed equations for these vectors using the boundary co
tions. The boundary conditions are that the wave is incid
only through the left boundary1 and is given asC1(1), and
the other waves exit through all boundaries. Within the sc
tering region the equation for the amplitudes takes

~w2e2H0!Cm1PiCm211Pi* Cm1150, ~20!

wherem52,3,...,M11.
In addition we consider the analogous equations at ev

boundary. At the boundary1 we represent the vertical vecto
C1 at site 1 as a superposition of the incident and reflec
solutions:

C15C1~1 !1C1~2 !.

The vectorC0 belonging to the electrode1 can be expresse
as

C05F21~1 !C1~1 !1F21~2 !C1~2 !

5F21~2 !C11~F21~1 !2F21~2 !!C1~1 !.

Hence the solutions at the right edge of the electrode1 are
expressed in terms of the solutions at sites of the boundar
the scattering region and incident wave. As a result the eq
tion for the amplitudes at the first vertical sites of the sc
tering region has the form

~w2e2H1!C11Pi* C252Pi@F21~1 !2F21~2 !#C1~1 !,

FIG. 2. Configuration of the lattice model for the scattering region.
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H15H02PiF21~2 !.

At the boundary4 we can write similar equations

~w2e2H4!CM121PiCM1150,

H45H02Pi* F~1 !.

Since at the boundaries2 and3 we have different gauges, w
introduce two additional matrices which transform the p
mary gauge of the wave function:

Êu15diag~exp~ i g̃m~M11!/2!! ^ I ,

Êu25diag~exp~ i g̃m~M21!/2!! ^ I .

If we take into account these gauge transformations,
equation for the vectorQu at the boundary3 can be written

~w2e2H3!Eu1Qu1P'Eu2Quu50,

H35H̃02P'
* F̃~1 !.

At the boundary2

~w2e2H2!Eu1* Qd1P'
* Eu2* Qdd50,

H25H̃02P'F̃21~2 !.

HereQuu , Qdd denote the horizontal vectors adjacent to t
vectorsQu , Qd as shown in Fig. 2.

By means of these relations it is easy to write the Sch¨-
dinger equation for the amplitudes at the sites of the sca
ing region in closed form asK̂X5Y where X5col
3(C1 ,C2 ,...,CM12 ,Qu ,Qd) with the known matrixK and
vectorY. Numerical solution of this equation gives the sol
tion inside the scattering region, at its boundary, and ther
at each electrode. For the simplerL- andT-structures shown
in Fig. 1a and 1b the solutions are easily obtained if we
the solutions in the excluded electrodes equal to zero.

In conclusion we comment on the choice of the matrixG
defined in~7!. For an infinite matrixG we have the unitary
conditionGG151. If we were to truncate directly the matri
G in the numerical calculations the unitary condition wou
be violated. In turn this would give rise to breakdown of t
probability current conservation and what is more crucial,
appearance of undesirable exponentially growing and de
ing propagating solutions with small exponents. In order
avoid this difficulty we introduce a new Hermitian matrixW
which determines the matrixG as follows

G5exp~ i ãW/2!, ~21!

where

W5S 0 1 0 0 ¯

1 0 1 0 ¯

0 1 0 1 ¯

]

D .

Although in the computer simulations the matrixW is trun-
cated to a finite dimensionL, the relation~21! preserves the
unitarity of the matrixG.
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FIG. 3. The energy dependence of the transmiss
in the L-structure under the influence of the radia
tion field: a—stationary transmissiona50 for zero
magnetic field; b—the frequency of a radiation fie
is resonant with transitions between the edges of
first subband and the second onev529.6, a50.1,
g50. The solid line represents the case in which t
polarization of the radiation field is perpendicular t
the input electrode, the dashed line shows the ca
in which the polarization is parallel to the inpu
electrode. c—The frequency of the radiation field
tuned to transitions between the bound state and
first subbandv510.82, g50. The curve1 corre-
sponds toa50.2, the curve2 to a50.5. The dashed
line shows the steady case. d—Similar resonant d
with applied magnetic field produced by the radi
tion field: v510.82,a50.5. The curves1, 2, and3
correspond tog50,2,4 respectively.
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2.2. Numerical results

We begin by considering the simplestL-structure~Fig.
1a!. It has only one bound state with energye050.9291p2.14

A magnetic field slightly increases this value. Consider
first the case when the frequency of the radiation field
tuned to transitions between the edges of the second and
subbands,v'3p2. When the polarizationa of the radiation
field is perpendicular to the input electrode of the struct
the dipole matrix element mixing states of the second
first subbands equals

^1uyu2&5E dy f1~y!y f2~y!Þ0,

where f 1(y)5& sin(p(y21/2)), f 2(y)5& sin(2p(y
21/2)). If the polarization of the radiation field is parallel
the input electrode the dipole matrix element^kuxuk8& calcu-
lated in terms of the incident modes exp(ikx) is less than
^1uyu2& because of the oscillatory behavior of the functio
exp(ikx). Since the square of the dipole matrix element d
termines the radiation field effect, the electron transmiss
strongly depends on the polarization of the field as is in f
seen from Fig. 3b.

Second, consider the case when the frequency of
radiation field is resonant with transitions between the bo
state energy and the first subband. For zero magnetic
the radiation field induces the deep narrow resonant
shown in Fig. 3c. The width of the resonant dip depen
sensitively on the amplitude of the radiation field. Figure
shows the shift of the resonant dip versus the applied m
netic field.

The structure intermediate between theL- and
X-structure is theT-structure~Fig. 1b!. Like the L-structure,
it has only one bound state provided that the whole struc
has the same width, but there are two ways to direct
t
s
rst

e
d

-
n
t

e
d
ld
ip
s

g-

re
n

incident electron: through the electrode1 and through the
electrode2. For the former case the transmissionsT12 and
T13 coincide, provided thatg50. The polarization of a ra-
diation field is chosen perpendicular to the input electro
along they-axis ~Fig. 1b!. Consider the dipole matrix ele
ment between the bound state and the propagating
^x1uyuck,1&, wherex1(x,y) denotes the bound state with th
energye157.98 andck,1(x,y) is the propagating state fo
the steady case describing an electron incident on the
subband and the electrodeI. Since both states are even rel
tive to inversiony→2y around the symmetry liney50 ~for
g50), this dipole matrix element vanishes and the radiat
field produces no effect. In fact, our numerical calculatio
show that if the incident electron propagates in the first s
band at zero magnetic field there are no resonant phenom
resulting from the radiation field.

There are two ways to the dipole matrix element can
finite. The first one is to apply an external magnetic field, a
the second one is to consider electron transport in the sec
subband. These possibilities are shown in Fig. 4a and
The steady transmissions through theT-structure are shown
by thin lines. One can see that a magnetic field makes
transmissionsT12 andT13 nonequivalent. Application of the
radiation field gives rise to resonant dips which are ve
narrow, with widths proportional to the square of the amp
tude of the radiation field. In the vicinity of the resonance t
transmissionT13 exceeds the transmissionT12 which gives
rise to the anomalous Hall effect. This effect was first de
onstrated for the four-terminal structure.21

If an electron is incident on the second electrode,
dipole matrix element is not zero, and we expect reson
behavior for the transmissions to both electrodes1 and 3.
However, the radiation field produces a resonant dip only
the transmissionT23 ~Fig. 4c!. The reason for the absence
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FIG. 4. Transmissions through theT-structure.
a—Electron incidents on the electrode1 ~see Fig.
1b! and the first subband:v512, a50.2, g52.
b—Electron incidents on the second subband w
parametersv541.86, a50.5, g50. c—Electron
incidents on the electrode2, v512, a50.1, g50.
d—The same as in Fig. 4c with parametersv512,
a50.5, g54.
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a resonant dip for the transmission to the first electrode
related to the more complicated symmetry and will be giv
below. Application of an external magnetic field causes
resonant dips for all transmissions shown in Fig. 4d. A
because the bound state energy level is increased by a
ternal magnetic field, the location of the resonant dips
slightly shifted as is seen from Fig. 4c and 4d.

Consider the four-terminal junction~Fig. 1c! which is an
element of the Hall structures.6,7,9,19First, consider the radia
tion field effects for zero magnetic field, among which t
most interesting is the resonant control of the electron tra
missions by rotation of the radiation field polarization. A
was mentioned for theT-structure this effect has a pure
symmetric origin. However, the symmetry of theX-structure
is higher than that of theT-structure. Moreover, the
X-structure has two bound states. The one with the ene
e156.55 below the first subband is symmetrical relative
coordinate inversionsx→2x or y→2y, and the second
with the energye2536.72 below the second subband is a
tisymmetric.

As was observed for theT-structure, if the polarization
of the radiation field is perpendicular to the input electro
and the frequency of the field is tuned to the transition
tween the first subband and the energy of the first symm
cal bound state, there are no field-induced resonant effec
the transmissions. The reason is that the propagating sta
even, ck,1(x,y)5ck,1(x,2y), and so we havêx1uyuck,1&
50, which means that the transmissions exhibit no reson
effect. On the other hand, there is no symmetry of the pro
gating state relative tox→2x due to electrons incident o
the first electrode along thex-axis. Therefore, for the case o
the polarization parallel to the input electrode1 the dipole
matrix element satisfieŝx1uxuck,1&Þ0. In fact, one can see
from Fig. 5a a narrow resonant peak in the transmissionT14.
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However, as in the case of theT-structure, surprisingly, there
are no resonant effects for the transmissions to the electr
2 and3.

To understand this following21 we perform the gauge
transformation

c~r ,t !5exp~ iar cosvt !f~r ,t !,

and substitute it into Eq.~3!. As a result we obtain the fol-
lowing equation for the amplitudesfn(r ) of expansion~6!:

~e1nv!fn5~ i¹1a0~r !!2fn1
iv

2
~ar!~fn112fn21!.

~22!

Since we have assumed that the radiation field is reso
with transitions between the first bound state and the pro
gating one, for small perturbations we can restrict oursel
to two statesf0 andf21 in Eq. ~22! satisfying the following
equations:

¹2f01ef052
i

2
~ar!vf21 , ~23!

¹2f211~e2v!f215
i

2
~ar!vf0 , ~24!

where the functionsf0(r ) and f21(r ) correspond to the
propagating and the bound states, respectively. For the r
nant casee2v'e1 we can write the truncated Green’s fun
tion for the left side of Eq.~24!

G1~r ,r 8,e!'
x1~r !x1* ~r 8!

e2e12 id
~25!

whered accounts for the finite width of the level because
coupling of the structure with the electrodes and the mix
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FIG. 5. Transmissions through theX-structure for
zero magnetic field. In all pictures the electron
incident on the electrode1. a—The frequency of the
radiation field is tuned to transitions between th
energy of the first bound state and bottom of th
first subband,v54. The case of the polarization o
the radiation field along the input electrode is show
by thick lines, and the case of the polarization pe
pendicular to the input electrode is shown by th
lines. In both cases the amplitude of the radiati
field is a50.05. The electron is incident on the firs
subband (n51). b—v538.45,a50.5, the electron
is incident on the first subband. c—The frequency
tuned to transitions between the second bound s
and the first subband.v516.715,a50.2. d—As in
Fig. 5b, but the electron is incident on the seco
subband (n52).
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of propagating states with the bound state by the radia
field. Then a solution of Eq.~24! can be expressed via th
Green’s function~25! as follows:

f21~r !5
ivx1~r !

2~e2v2e12 id!

3E x1* ~r 8!~ar8!f0h~r 8!d2r 8. ~26!

Substituting Eq.~23! and carrying out a similar procedure o
expression in terms of the Green’s function, we finally obt

f0~r !5f0h~r !1
v2d10

4~e2e12v2 id!

3E G~r ,r 8,e!~ar8!x1~r 8!d2r 8. ~27!

Heref0h(r ) is the solution for a switched off radiation fiel
and

d105E x1* ~r !~ar!f0h~r !d2r

is the dipole matrix element between the bound state and
propagating one.

Similar to ~26! and ~27! we can write a solution of Eq
~24! for the case when the frequency of the radiation field
resonant with transitions between the second bound state
the Fermi energy of the incident electrone1v'e2

f0~r !5f0h~r !1
v2d20

4~e2e21v2 id!

3E G~r ,r 8,e!~ar8!x2~r 8!d2r 8,
n

n

he

s
nd

d205E x2* ~r !~ar!f0h~r !d2r ~28!

In order to analyze the transmission on the basis of
~27! we need the following symmetry properties of th
Green’s function in theX-structure:

G~x,y;x8,y8,e!5G~2x,y;2x8,y8,e!

5G~x,2y;x8,2y8,e!. ~29!

Now let us return to the transmissionT12 ~Fig. 1c! for the
case when the radiation field polarization is parallel to
input electrode~x-axis!. From Eqs.~27! and~29! we can see
that the last resonant term in~27! is odd relative tox→2x in
the electrodes2 and3, provided that the bound statex1(r ) is
even. Thus, the last term in~27! is not able to contribute to
the propagating mode in the electrodes2 and3 because for
the electron transport in the first subband it should be e
with respectx→2x. Next, since the last term in~27! is even
with respecty→2y, it contributes to the even transpo
modef0 in the electrodes1 and4. As we see from Fig. 5a
computer calculations completely confirm that conclusion
the incident electron belongs to the first subband withn51
~even state relative toy→2y), but the outgoing mode can
be represent as a superposition of states of the first and
ond subband (n51,2), these symmetry restrictions are r
moved for the polarization parallel to the input electrode.
a result the radiation field induces resonant anomalies in
transmissionsT12, T13 ~see Fig. 5b!. Briefly, this symmetry
rule can be formulated as follows. If the parity of the sta
excited by the dipole transition (ar)x1(r ) does not conflict
with the parity of the outgoing modes, then the transmiss
to the corresponding electrode can display resonant featu
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FIG. 6. Views of the amplitudes of the quasienergy wave functione520.02, a50.2, v516.715. a—uc0(r )u, b—uc1(r )u, c—uc21(r )u, d—uc0(r )
2c0h(r )u. Definitions of the amplitudes are given in~6!.
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and vice versa. Later we will demonstrate numerous
amples of the application of this symmetry rule.

First, we apply the symmetry rule to the case of radiat
field mixing of the second bound state, which is odd relat
to x→2x or y→2y. For the radiation field polarization
directed parallel to the input electrode the dipole matrix e
ment d20 vanishes, and consequently there are no radia
field induced effects. In the opposite case, when the po
ization is perpendicular to the input electrode, the dipole m
trix element is not equal to zero. However, the radiation fi
contribution to the electrodes2 and 3 described by the las
term in Eq. ~26! is odd, opposite to the symmetry of th
incident mode. So the transmissions to the electrodes2 and3
coincide with steady results, as shown in Fig. 5c. Fina
Fig. 5d shows the case when the incident electron belong
the second subband. In contrast to the case in Fig. 5b,
field-induced effects take place when the polarization is p
pendicular to the input electrode. Note that the same sym
try arguments explain the absence of radiation field effect
the electron transmission from electrode2 to electrode1
shown in Fig. 4c for theT-structure.

To confirm the approach using the quasi energy am
-

n
e

-
n
r-
-

d

,
to
he
r-
e-
in

i-

tudes~26! and~27! and to illustrate symmetry rules, in Fig.
we present numerical solutions of the full Schro¨dinger equa-
tion ~4!. In Fig. 6a, 6b, and 6c the amplitudescn(r ) with
n50,1,21 respectively are shown for parameters cor
sponding to the case shown in Fig. 5c. One can see tha
fact, only two amplitudes,c0 , c1 , are important in the reso
nant case. Moreover, in agreement with Eq.~28! we see that
the amplitudec1(r ) exactly reproduces the second bou
wave functionx2 and that the next amplitudec21 is negli-
gible. Second, the difference between the radiation field p
turbed solutionc0 and the steady solutionc0h is shown in
Fig. 6d. One can see that symmetry of the outgoing par
this difference in the electrodes coincides with that predic
by the last term in Eq.~28!. The parity is even in the elec
trodes1 and4 and is odd in the electrodes2 and3. Also we
can see from Fig. 6d that the odd contributions are decay
in the electrodes1 and3.

As was mentioned above an external magnetic fi
breaks the symmetry of the structure, resulting in a m
complicated picture of radiation field effects. Results of the
calculations are presented in Fig. 7. Figure 7a correspond
Fig. 5a, with the difference that we haveg51, and presents



is-

1066 JETP 87 (6), December 1998 E. N. Bulgakov and A. F. Sadreev
FIG. 7. The energy dependences of the transm
sions in applied magnetic field in theX-structure.
a—v54, a50.05, g51.0, the polarization of the
radiation field is parallel to the input electrode: b—
v515.08,a50.5, g52, polarization of the radia-
tion field is perpendicular to the input electrode.
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the
the
a case in which the radiation field excites the first bound s
in the first subband. One can see all transmissions und
resonant peaks or dips, in contrast to Fig. 5a. Figure 7b
sents a case in which the frequency of the radiation field
tuned tov5(e22e1)/2. One can see that exciting of tw
bound states results in two resonant peaks in the trans
sions. The first bound state gives rise to sharp resonant p
and dips, while the second produces wide peaks and dip

From Fig. 7b we can see that in some narrow region
energies the transmissionT13 coincides withT12 and may
even slightly exceed it. Obviously, it would give rise to th
negative Hall resistance as was shown in Ref. 21. Moreo
we can see from Fig. 7b that the transmissionT12 undergoes
peaks, while the transmissionT13 does dips. As a result we
may observe resonant peaks in the Hall resistance as is
onstrated in Fig. 8.

From Fig. 7a and 7b~see also Ref. 21! in the narrow
region of resonance the transmissionT13 can slightly exceed
the transmissionT12 in an external magnetic field. Thi
means that the radiation field can even cause anomalie
the Hall resistance to be negative.21 Figure 8 illustrates vari-
te
go
e-
is

is-
ks

.
f

er

m-

of

ous resonant anomalies of the Hall resistance induced by
radiation field: dips~Fig. 8a! and peaks~Fig. 8b, 8c, and 8d!.
The resonance between the first bound state and the F
energy of the incident electron produces a resonant dip~Fig.
8a!. In the case of the Fermi energye'(e21e1)/2 and
v'(e22e1)/2 the radiation field induces two wide peak
contributed by two bound states. Figure 8c shows that
radiation field transforms the dip in the Hall resistance6 into
a resonant peak. Finally, Fig. 8d shows a case like Fig.
but the radiation field excites the second bound state.

3. CONCLUSION

The resonant behavior in the electron transmission ar
because the radiation field resonantly substitutes the bo
states into the state of the incident electron propaga
through the scattering region of the structures to prod
various interference phenomena. These phenomena
clearly seen in the current density patterns shown in Fig
The resonant anomalies are very specific to the forms
structure and the type of bound state. The symmetry of
the
-
ce
FIG. 8. The Hall resistenceRH in the X-structure
versus an external magnetic field in response to
radiation field. The radiation field induced resis
tance is shown by solid lines, the steady resistan
is shown by dotted line. a—e510.95, v54.3, a
50.05; b—e522, v515.08, a50.5; c—e
536.75, v530.17, a50.1; d—e520.5, v
516.715,a50.5.
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FIG. 9. Current density flowing in theX-structure
when the radiation field is switched off~a! and
switched on ~b!; v54.3, a50.05, e510.95,
g51.21.
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with
structure and corresponding parity of the bound state p
an important role for the radiation field-induced effects b
cause of symmetry rules for the dipole matrix element a
for the resonant contribution, which is described by the ri
side of Eqs.~27! and ~28!. As a result the direction of the
radiation field’s polarization relative to the input electro
has strong effect on the resonant anomalies. This sugges
idea for controlling electron transmissions through the co
sponding electrodes by simple rotation of the polarization
the radiation field.

In conclusion we give dimensional estimates for the
diation field which is able to produce resonant effects in
2DEG. The Fermi energy in the semiconductor laye
AlGaAs structures depends on the density of the electron
and typically lies between 10 meV and 100 meV. The ch
acteristic sizesd of the structures are between 100 nm a
1 mm. Accordingly, the frequency of the radiation field tun
to transitions between the bound states and the first elec
subband will be roughly proportional to the Fermi energ
The amplitude of the radiation field is of orde
E'EFav/ed;103– 104 V/cm, wherea and v are dimen-
sionless.
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