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Electron transmission in the two-, three-, and four-terminal nanostructures is considered under

the influence of a radiation field. The frequency of the radiation field is tuned to the

transition between the energy of a bound state and the Fermi energy of the incident electrons.
The radiation induced resonant peaks and dips of the electron transport are exhibited for

zero and low magnetic fields. It is shown that rotation of the radiation field polarization can
effectively control the electron transport into different electrodes attached to the structures

because of the symmetry of the structures. The resonant anomalies of the Hall resistance are found
in a weak magnetic field. €998 American Institute of Physid$$1063-776(98)00412-Q

1. INTRODUCTION theory of waveguide¥ It has been realized that the intro-
For several decades the transport of electrons in strur:qu(:tion of bends into waveguides generally leads to bound

tures of low dimensionality and complicated geometry hasstates, or localized modes, which exist below the cut-off fre-

; st A111,12 _
been the focus of extensive theoretical and experimentdUeNCy for the waveguide. Carirgt al.” > have demon
study. Electrons can be confined to very narrow regions fapStrated theoretically and experimentally the presence of

ficated on an interface of an AlGaAs/GaAs heterostructureP@UndTE modes for rectangular bent waveguides and shown

Since the electrons in such regions can have high mobilitiefat the number of boun@iE modes is bend-dependent. For
in the two dimensions available to them, such systems ari€ two-dimensional Schdinger equation it was proved that

called two-dimensional electron gas€2DEGS. The study any gurvgd two-dimensional waveguide of constant width
of electronic transport properties of 2DEGs is of great cur-2nd infinite length posses bound stal&s® Bound states
rent interest not only from the standpoint of the basic quanWere found in the same ye&t989 in a four-terminal junc-
tum effects involved but also for potential engineering appli-fion of narrow wires by Schifi and independently by
cations. An idealized sample becomes an electron wave?€eter (see also Refs. 19 and 20
guide, wherein the quantum transport properties are solely ~For the stationary processes of the energy conservated
determined by the geometry of the structure and the wavelikglectron transmission only quasi-bound states with energies
nature of the electrons. A remarkable manifestation of thavithin the conduction subbands are importahtn particu-
successful achievement of quantum ballistic transportar, it was shown that the quasi-bound states in the Hall
through a semiconductor nanostructure is the appearance jfction result in resonant dips of the resistance in high mag-
quantized steps on the conductance through a narrow strupetic fields when the magnetic length is comparable with the
ture as the number of one-dimensional channels is succesize of the junction. The Hall resistance sensitively depends
sively varied"? the quenching of the Hall effect, and the last on the geometry of a junction and can become negative for a
plateau and the negative bend resistance in the crosgnoothed junction for small magnetic fields.
geometry’™® Although the bound states below the lowest subband
Ford et al® presented a systematic investigation of thethreshold do not participate in stationary transmission, the
influence of cross geometry on the Hall effect. They fabri-possibility of observing of them, at least in principle, was
cated various differently shaped cross sections based ahown by Berggren and Ji for the case of two intersecting
GaAs-AlGa _,As, which demonstrated that near zero electron waveguides with finite electrod@sin that case
magnetic field the Hall resistance can be quenched, enhancbgdund states can be probed by resonant tunneling through the
over its classical value, or even negative. This effect haglectrodes below the subband. However, it is possible to mix
been considered in detail theoretically by Sctetlal® and  the bound state with electron transmission through electron
Amemiya and KawamuraAnother interesting feature of the waveguides with infinite electrodes directly by application of
cross geometries is a bound state found numerically by radiation field, provided that the dipole matrix elements
Schultet al® and by Peeters. between the bound state and propagating ones are not equal
The question of the existence of electromagnetic modeto zero. Such a possibility was demonstrated for the four-
trapped by special geometries has been a classic one in therminal’s Hall junctior? Let E; be the energy of the bound
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L FIG. 1. The types of structures considered:

1 :’ X l 4 L-structure (a), the T-structure (b), and
Y L X-structure(c).

I L

[
=1

state below the subbands which for zero magnetic field cawhere ag(r)=(—yy,0,0). We map this equation onto a
be specified as square lattice with elementary unit. The lattice site is
52 specified agm, ). The total vector potentiad,+ acoswt is
En(K)= 5——5 (K>+ 7?n?), accounted for by a Peierls phase facorhen Eq.(3) trans-
2m*d forms as follows:
whered is the width of the electrodes,is the number of the
subband, and is the wave number of the incident electron. iWZM=4¢(m,I)—exp(i7l)¢(m+ 1,1)
Tuning a perturbation frequency near the resonance ot
hw=E,(k) —Eg, one can expect resonant anomalies in the _ i _
electron transmission through the many-terminal junctfons. exp iy e(m=1.1)
The aim of the present article is to consider the electron —exp(—id coswt) y(m,l +1)
transmission effected by mixing of bound states with the
propagating solutions in th¥-, T-, and L-types of electron
waveguides which are shown in Fig. 1.

—exp(id coswt) y(m,1 —1), 4

wherey= yw?, @=aw. In the four-terminal junction we use
also a different gaugeay(r)=(0,yx,0) for which the

2. CONDUCTANCE ANOMALIES INDUCED BY THE Schralinger equation3) will map onto a square lattice as
RADIATION FIELD follows:
2.1. Numerical method - &FJJ(m,I) B B B

In this section we consider single electron transmission W™ ———— =4¥(m,)—¢(m+11)—y(m-1,)
through the rectangular structures, the geometries of which
are shown in Fig. 1 and specified below bs T-, and —exp(—id coswt—iym)y(m,l +1)
X-structures. They share the property of having at least one -
bound state. The Schidinger equation for an electron of a —expiid coswt+iym)g(m,1 =1), (5)

massm* subjected to a magnetic fiell applied normal to B o~
the junction and to a radiation field,(t) directed in the Whereg(m.l)=exp(=iyml)y(m,|). Because of the processes
plane of the junction can be written of absorption and emission of photons, we write the wave

function in the electrodé$?*

ap(rt)  h? v e A A 2
pr _W' +%( o(r)+Aqcoswt) | ¥(r,t).
(1)

Here we use the gaugky(r)=(—By,0,0). The radia-
tion field is considered in the long-wavelength approxima-
tion, in which the wavelength of the radiation field is much W2(e+nw)g,(m,)=4¢,(m,1)—expliy) g, (m+1])
greater than the size of the junction. We use the following

if

lp(r,t):; exf —i(e+nw)t]gy(r). (6)

Substitution of(6) into (4) gives

dimensionless transformations: —exp(—iyl) (m—1])
At r 2m* d?E
Comd o gz =2 Tashml =1
2m* d? 2mdA 27d°B
e e 2 ~ S Thg(mi+1), @
h bo bo s

where ¢o=ch/e is the magnetic flux quantum. In terms of \yhere
the dimensionless variabl¢®) the Schrdinger equatior(1)
takes the form [he=i%"")s 1(3).

a(r,t)
at

Here we used the standard expansion of an exponential in

=iV + (ag(r) +acoswt)) *y(r.b), ©) Bessel functiorf®
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exp(id cosot) = S iMJ, (F)expimot). @ (WetQ)T(mD)=4¥(m,)—exp(—iymI*¥

X (m,l+1)—exp(iym) LV (m,| —1)
Let us introduce column vectors for each site of the _ _
square lattice describing the amplitudes of the wave function —¥(m+1,1)—¥(m-1,1). (12

(6)

Introducing again the column vect@; which describes the
w(m,l)=col(...,1(m,1),po(m,1),¢_1,(m,1),...). amplitudes of thdth line along thex-direction, we obtain
from Eq.(12)
Then Eq.(7) takes more compact form o ~ ~
(W2e—Hg)C,+P,C,_1+P¥C,,=0, (13
(W2e+ Q)W =4¥(m,|)—exp(iy)¥(m+1,l)

—exp—iFHT(m—1,1)
—T¥(m,-1)—-T*¥(mI+1), (9

where
Ho=41,®1-D®I-D®l—1,0Q, P, =P*®T.

Using the relatiorC,=\'C, we obtain from(13) the linearly
where we have introduced two matric@s=diagfv’nw) and  independent solutions in the electrodzand 3:
I'={T',s. Following Andc® we take the electrodelsand4 - - -
i ! irecti isti G\ (P.(Ao—w2) -P\(C
(Fig. 19 to be infinitely long in thex direction and consisting NI RER € L[> (14)
of M lattice sites in they direction. We introduce a general- 1 0 Co/

Co

ized t . . ,
1zed vector From the Schrdinger equationg4) and (5) the following
Cr=col(W(mM),¥(mM-1),- ,¥(m,1)). continuity equation for the probability density follows:
2
The dimension of this vector il XL wherelL is the dimen- _W7op _ e LR LS I [ (15)
sion of the vector’(m,l). In computer simulations the di- 2 at m m

mensionL, which is the number of amplitudes of the wave
function (6), was taken to be a finite number chosen by nu
merical accuracy’ We also introduce a diagonal matrix

wherej, = (i,i%) is the probability current density. In
“particular, for the gaugeg=(— vy,0,0) in the electrode&
and4 we have

Py =i exp(—i71), P = Im{exp(i 7)Y, e 1.}

the unit matriced of dimensionM XM and| of dimension ](y> Im{exp(—i& coswt) ¥, | ¥mi+1}- (16)

L XL, and the up-diagonal matrix
For the gaugeay=(0,yx,0) in the electrode® and 3 we

0 have

1 00
. 0 01 0 - jﬁ%(,)|=|m{'~//:1,|:0m+1,l}:
0O 0 0 1 - . i i NTE T
lﬁnyy)lz|m{exp(—laCOSwt—l)’m)lﬂﬁmwm,Hl}- 17)

From these expressions for the probability current den-

of dimensionM X M. sity it is easy to find the stationary current carryed by the

Then Eq.(9) takes the form presented by Arffo propagating mode with\|= 1 in thex direction through the
(W2e—Ho)Crn+ P,Crn_1+ P¥ Crms1=0, (10) sectionmin the electroded and4:
I =Im(\(ColPf|Co)). (18
where
As with the mode propagating in thedirection in the
Ho=4l,®@1-Del*-D"el'-1,00, P=Pal. electrode?2 and3 we have
To obtain the linearly independent modes of Ef0) we IV =Im(A(Co|P*|Cy)). (19
6
sef Now let us consider the scattering regidfig. 2) con-
Cn=A"Cy, nected to four electrodes. Following Arfdave define
which gives U(E)=(ug(£),ua(£),-um(£)).
A(x)=diagA{(x),Ao(E), -\ *)).
C]_ P”(HO_sz) _Pﬁ Cl ( ) g 1( ) 2( ) LM( ))
A Co = 1 0 Co)- (13) Hereu;(*) are the solutions of Eq11) which correspond to

the eigenvalué;(£). The signs " refer to the propagat-
In order to find similar modes in the perpendicular elec-ing and evanescent modes in the positinegative x direc-
trodes(2 and3 in Fig. 19 we write the Schrdinger equation tion in the electrode4 and4. Similar matricedJ, A can be
(5) as follows: defined for the electrodesand 3.
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Hi=Ho—P,F~1(—).

.
-

At the boundaryt we can write similar equations

FrEE P E e
Quiiiiiiiiie 2¢—H,)Cyisot P.Cryss=0
PR SR A S (We 4) M+2 M+17 s
1 53533 \
IS SSSSSPIR Ha=Ho= Py F(+).
Qdd******""’**
Q, ’223’ T *5Hl 1 Since at the boundari€sand3 we have different gauges, we
+ . g . . .
introduce two additional matrices which transform the pri-
2 mary gauge of the wave function:
FIG. 2. Configuration of the lattice model for the scattering region. Eul: diaQexp(iE/m(M +1)/2))®]1,

E,=diagexpiym(M—1)/2))®1.
For the modes which are superpositions only of the vz gexprym( )12))

“ +” type (or of the “—” type) we can write simple recur- If we take into account these gauge transformations, the

rence formula® equation for the vecto®,, at the boundarB can be written
Cinr1(£)=F(£)Ciy(£) (W?e—H3)Ey1Qu+ P, EpQuu=0,

with

F(=)=U(=)A(x)U L(=*).

The same formulas take place for the electrofesnd 3.
These relations will be explored to define boundary condi-  (W2e—H,)E}; Qg+ PYE},Qqq=0,
tions in the scattering region. _ _

Next, we consider the solutions inside the scattering re- Hy=Ho—P,F~(—).

gion which are shown in Fig. 2. At the boundatythere is : .
the incident mode,(+), and at the boundarie 3 and4 HereQ,.,, Qq4q denote the_hor!zontal vectors adjacent to the
vectorsQ,, Q4 as shown in Fig. 2.

here are onl ing m . Intr vertical v r . o . .
there are only outgoing modes. Introduce vertical vectors By means of these relations it is easy to write the Schro

C1,Cz,....Cu2 which describe the amplitudes of the wave dinger equation for the amplitudes at the sites of the scatter-
function on a square lattice in the scattering region along the . } )
region in closed form asKX=Y where X=col

y direction as shown in Fig. 2, and a pair of horizontal vec-'""9 _ _
tors Q, ,Qq which describe the amplitudes at the upper and* (€1:C2:---.Cu+2,Qu.Qq) with the known matrix< and

down boundaries of the scattering region. The aim is to write/€ctor Y. Numerical solution of this equation gives the solu-
closed equations for these vectors using the boundary condiOn inside the scattering region, at its boundary, and thereby
tions. The boundary conditions are that the wave is incidenft €ach electrode. For the simplerand T-structures shown
only through the left boundary and is given a€,(+), and " Fig. 1a and 1b the solutions are easily obtained if we set

the other waves exit through all boundaries. Within the scatth® solutions in the excluded electrodes equal to zero. -
tering region the equation for the amplitudes takes In conclusion we comment on the choice of the maktix

defined in(7). For an infinite matrixl" we have the unitary
(W?e—Hg)Cr+ P /Cn_1+ P Cpny1=0, (200 conditionT'T'* =1. If we were to truncate directly the matrix
wherem=23.. . M+1. I" in the numerical calculations the unitary condition would

In addition we consider the analogous equations at ever99 violated. In turn this would give rise to breakdown of the

boundary. At the boundary we represent the vertical vector probability current conservation and what is more crucial, to
C, at site 1 as a superposition of the incident and reflecte@PPearance of undesirable exponentially growing and decay-
ing propagating solutions with small exponents. In order to

At the boundary2

solutions: L, . "
avoid this difficulty we introduce a new Hermitian mathix
C1=Cy(+)+Ca(—). which determines the matrik as follows
The vectorC, belonging to the electrode can be expressed I =expliaWi2) (21)
as

Co=F ~1(+)Cy(+)+F X(—)Cy(—) where

=F H(—)Cy+(FH+)=F (=))Cy(+).

Hence the solutions at the right edge of the electrbdee W=
expressed in terms of the solutions at sites of the boundary of
the scattering region and incident wave. As a result the equa-

tion for the amplitudes at the first vertical sites of the scat- ) ) ) )
tering region has the form Although in the computer simulations the matkixis trun-

) . . . cated to a finite dimensioh, the relation(21) preserves the
(Woe—H1)Cy+ P Co=—Py[FH(+)=F~H(—)]Cy(+), unitarity of the matrixT".

0 1 0O
1 010
0 1 0 1
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FIG. 3. The energy dependence of the transmission
in the L-structure under the influence of the radia-
tion field: a—stationary transmissia=0 for zero
magnetic field; b—the frequency of a radiation field
is resonant with transitions between the edges of the
first subband and the second omne-29.6,a=0.1,
y=0. The solid line represents the case in which the
polarization of the radiation field is perpendicular to
the input electrode, the dashed line shows the case,
in which the polarization is parallel to the input
electrode. c—The frequency of the radiation field is
tuned to transitions between the bound state and the
first subbandw=10.82, y=0. The curvel corre-
sponds ta=0.2, the curve? to a=0.5. The dashed
line shows the steady case. d—Similar resonant dips
with applied magnetic field produced by the radia-
tion field: w=10.82,a=0.5. The curved, 2 and3
correspond toy=0,2,4 respectively.

19.9 19.95 20.0 20.05 6 20.1 20.0 202 204 20.6

2.2. Numerical results incident electron: through the electrodeand through the
electrode2. For the former case the transmissionhs and

14). It has only one bound state with energy=0.929172. 14 T_13 _coinc_:ide,_ provided thaty= 0._The polariza_tion of a ra-

A magnetic field slightly increases this value. Consider afiiation field is chosen perpendicular to the input electrode
first the case when the frequency of the radiation field i2/0nd they-axis (Fig. 1b. Consider the dipole matrix ele-
tuned to transitions between the edges of the second and firdent between the bound state and the propagating one,
subbandsw~372. When the polarizatioa of the radiation (xalyl$n ), wherex,(x,y) denotes the bound state with the
field is perpendicular to the input electrode of the structureENerdy €1=7.98 andy 1(xy) is the propagating state for
the dipole matrix element mixing states of the second andhe steady case describing an electron incident on the first

We begin by considering the simpldststructure(Fig.

first subbands equals subband and the electrotleSince both states are even rela-
tive to inversiony— —y around the symmetry ling=0 (for
(1]y|2)= j dy f,(y)y fo(y) £0, v=0), this dipole matrix element vanishes and the radiation
field produces no effect. In fact, our numerical calculations

where  f,(y)=vZsin(@(y—1/2)), f,(y)=v2sin(2=(y  show that if the incident electron propagates in the first sub-
—1/2)). If the polarization of the radiation field is parallel to band at zero magnetic field there are no resonant phenomena
the input electrode the dipole matrix elemékix|k’) calcu-  resulting from the radiation field.
lated in terms of the incident modes eikpj is less than There are two ways to the dipole matrix element can be
(1]y|2) because of the oscillatory behavior of the functionsfinite. The first one is to apply an external magnetic field, and
exp(kx). Since the square of the dipole matrix element dethe second one is to consider electron transport in the second
termines the radiation field effect, the electron transmissiorsubband. These possibilities are shown in Fig. 4a and 4b.
strongly depends on the polarization of the field as is in faciThe steady transmissions through fhstructure are shown
seen from Fig. 3b. by thin lines. One can see that a magnetic field makes the
Second, consider the case when the frequency of th#sansmissiond';, andT,3; nonequivalent. Application of the
radiation field is resonant with transitions between the boundadiation field gives rise to resonant dips which are very
state energy and the first subband. For zero magnetic fieldarrow, with widths proportional to the square of the ampli-
the radiation field induces the deep narrow resonant dipude of the radiation field. In the vicinity of the resonance the
shown in Fig. 3c. The width of the resonant dip dependgransmissionT; exceeds the transmissidn, which gives
sensitively on the amplitude of the radiation field. Figure 3drise to the anomalous Hall effect. This effect was first dem-
shows the shift of the resonant dip versus the applied magnstrated for the four-terminal structifre.
netic field. If an electron is incident on the second electrode, the
The structure intermediate between the- and  dipole matrix element is not zero, and we expect resonant
X-structure is thel-structure(Fig. 1b). Like the L-structure, behavior for the transmissions to both electrodeand 3.
it has only one bound state provided that the whole structurélowever, the radiation field produces a resonant dip only for
has the same width, but there are two ways to direct amhe transmissiofl ,; (Fig. 40. The reason for the absence of
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T T
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a T T
0.8} N 0.8+

——\_j f\
0.6k 0.6+
T
0.47 04r Ty V
b

L T, L

0.2 13 0.2 FIG. 4. Transmissions through th&-structure.
N

a—Electron incidents on the electrode(see Fig.

- ’ ) g 1b) and the first subbandw=12, a=0.2, y=2.
. X 20.18 49.8 499 50 50.1
2012 20.14 20.16 € € b—Electron incidents on the second subband with
T T parametersw=41.86, a=0.5, y=0. c—Electron
1.0 10 incidents on the electrod® w=12,a=0.1, y=0.
T d—The same as in Fig. 4c with parameters 12,
0.8 0.8t a=0.5,y=4.
rc
0.6}
0.6 T23
0.4 T 04r1
L T,
0.2 2 o2t
19.9 26.0 6 20.1 20.55 206 20.65 20.7 e‘ 20.75

a resonant dip for the transmission to the first electrode i$lowever, as in the case of tfiestructure, surprisingly, there

related to the more complicated symmetry and will be givenare no resonant effects for the transmissions to the electrodes

below. Application of an external magnetic field causes the? and 3.

resonant dips for all transmissions shown in Fig. 4d. Also  To understand this followirfg we perform the gauge

because the bound state energy level is increased by an exansformation

ternal magnetic field, the location of the resonant dips is .

slightly shifted as is seen from Fig. 4c and 4d. Y(r.t) =expliar coswt) 4(r,1),
Consider the four-terminal junctiaffrig. 19 which is an  and substitute it into Eq3). As a result we obtain the fol-

element of the Hall structurés.®*°First, consider the radia- |owing equation for the amplitudes, (r) of expansion(6):

tion field effects for zero magnetic field, among which the .

most interesting is the resonant control of the electron trans- i 2 lw _

missions by rotation of the radiation field polarization. As (e+Nw)dn=(IV+ao(N)"¢nt 5 (AN(Pnr1™ Pn-a)-

was mentioned for th@-structure this effect has a purely (22

symmetric origin. However, the symmetry of thestructure  gjnce we have assumed that the radiation field is resonant

is higher than that of theT-structure. Moreover, the it transitions between the first bound state and the propa-

X-structure has two bound states. The one with the energyaiing one, for small perturbations we can restrict ourselves

€,=6.55 below the first subband is symmetrical relative to; o statesp, andé_; in Eq. (22) satisfying the following
coordinate inversionx— —x or y——y, and the second equations:

with the energye,=36.72 below the second subband is an-
tisymmetric. 2 ]

As was observed for th&-structure, if the polarization Vidotebo=— E(ar)“’d’*l’ (23
of the radiation field is perpendicular to the input electrode
and the frequency of the field is tuned to the transition be-
tween the first subband and the energy of the first symmetri-
cal bound state, there are no field-induced resonant effects in .
the transmissions. The reason is that the propagating SIate\pﬁ\g:)%raeg;rtliiJinncél?::ﬁgéz)nsgfaig 1(rre)sgggs/se?;ngoﬁhtgerzeso
even, Y 1(X,Y) = ia(x,—Y), and so we havéx,|y|y1) ’ ' ]

=0, which means that the transmissions exhibit no resonarﬂant case= w=e; We can write the truncated Green'’s func-
effect. On the other hand, there is no symmetry of the propat-Ion for the left side of Eq(24)
gating state relative ta— —Xx due to electrons incident on xa(Dx¥(r")
the first electrode along theaxis. Therefore, for the case of Gy(r,r' e)=

the polarization parallel to the input electrodehe dipole
matrix element satisfieby|x| ¥ 1)# 0. In fact, one can see where s accounts for the finite width of the level because of

from Fig. 5a a narrow resonant peak in the transmis$ign  coupling of the structure with the electrodes and the mixing

V241t (= w)d_y=5(anwdy, (29

€e—€,—id (25
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T T
1.0 1.0
a
0.8r 08}
T
0.6} 0.6} " -
FIG. 5. Transmissions through théstructure for
zero magnetic field. In all pictures the electron is
041 T4 0.4y incident on the electrode a—The frequency of the
/ T, radiation field is tuned to transitions between the
0.2f 0.2 energy of the first bound state and bottom of the
T]g \/ first subbandw=4. The case of the polarization of
e . . the radiation field along the input electrode is shown
10 10.5 445 45 45.5 46 by thick lines, and the case of the polarization per-
€ € pendicular to the input electrode is shown by thin
T T lines. In both cases the amplitude of the radiation
1.0 c 0.4 field isa=0.05. The electron is incident on the first
08t Ty, subbandf=1). b—w=38.45,a=0.5, the electron
' T4 0.3 is incident on the first subband. c—The frequency is
tuned to transitions between the second bound state
061 and the first subband=16.715,a=0.2. d—As in
0.2t Fig. 5b, but the electron is incident on the second
0.4} T subband (=2).
14
0.2f n, |0 k///”’—‘—_—_
V
19.9 20.0 20.1 e 445 45 45.5 c 46

of propagating states with the bound state by the radiation
field. Then a solution of Eq(24) can be expressed via the

Green’s function(25) as follows:

fwx4(r)
1= e 19)

< [ @ gorar

Substituting Eq(23) and carrying out a similar procedure of
expression in terms of the Green'’s function, we finally obtain

?dyo

bolr) = bon(r) + zr—

xf G(r,r',e)(ar")x,(r")d?r’.

Here ¢gn(r) is the solution for a switched off radiation fiel

and

dlozf X5 (r)(ar) gon(r)dr

is the dipole matrix element between the bound state and ti}

propagating one.

Similar to (26) and (27) we can write a solution of Eq.
(24) for the case when the frequency of the radiation field is
resonant with transitions between the second bound state arﬁq

El_w_iﬁ)

the Fermi energy of the incident electrerr w~ e,

2dao

bo(r)= on(r)+ A(e— eyt w—10)

Xf G(r,r',e)(ar’) xo(r")d?r’,

(27)

dzo:f X3 (r)(ar) gon(r)dr (29)

In order to analyze the transmission on the basis of Eq.
(27) we need the following symmetry properties of the
Green’s function in theX-structure:

(26) G(Xay;X’:yryf):G(_X:y;_X,ay’vf)

=G(X,—~y;x",—y',e). (29

Now let us return to the transmissidn, (Fig. 19 for the
case when the radiation field polarization is parallel to the
input electrodgx-axis). From Eqs.(27) and(29) we can see
that the last resonant term (&7) is odd relative tok— — x in
the electrode® and3, provided that the bound statg(r) is
even. Thus, the last term i27) is not able to contribute to
d the propagating mode in the electrodzand 3 because for

the electron transport in the first subband it should be even

with respecix— — x. Next, since the last term i27) is even

with respecty— —vy, it contributes to the even transport

mode ¢, in the electroded and4. As we see from Fig. 5a

computer calculations completely confirm that conclusion. If
fe incident electron belongs to the first subband withl
(even state relative tg§— —y), but the outgoing mode can
be represent as a superposition of states of the first and sec-
ond subbandr{=1,2), these symmetry restrictions are re-
oved for the polarization parallel to the input electrode. As
a result the radiation field induces resonant anomalies in the
transmissiond ;,, T13 (see Fig. 5h Briefly, this symmetry
rule can be formulated as follows. If the parity of the state
excited by the dipole transitioraf) y;(r) does not conflict
with the parity of the outgoing modes, then the transmission
to the corresponding electrode can display resonant features,
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FIG. 6. Views of the amplitudes of the quasienergy wave functen20.02,a=0.2, o=16.715. a—tlo(r)|, b— s (r)|, c—&_1(r)|, d—o(r)
— ¢on(r)|. Definitions of the amplitudes are given (6).

and vice versa. Later we will demonstrate numerous extudes(26) and(27) and to illustrate symmetry rules, in Fig. 6
amples of the application of this symmetry rule. we present numerical solutions of the full Sollirmger equa-
First, we apply the symmetry rule to the case of radiatiortion (4). In Fig. 6a, 6b, and 6¢c the amplitudes,(r) with
field mixing of the second bound state, which is odd relativen=0,1,—1 respectively are shown for parameters corre-
to x——x or y——y. For the radiation field polarization sponding to the case shown in Fig. 5¢c. One can see that, in
directed parallel to the input electrode the dipole matrix elefact, only two amplitudesy,, ¢, are important in the reso-
mentd,y vanishes, and consequently there are no radiationant case. Moreover, in agreement with E2) we see that
field induced effects. In the opposite case, when the polarthe amplitudey,(r) exactly reproduces the second bound
ization is perpendicular to the input electrode, the dipole mawave functiony, and that the next amplitudé_, is negli-
trix element is not equal to zero. However, the radiation fieldgible. Second, the difference between the radiation field per-
contribution to the electrode? and 3 described by the last turbed solutiony, and the steady solutiotfy, is shown in
term in Eq.(26) is odd, opposite to the symmetry of the Fig. 6d. One can see that symmetry of the outgoing part of
incident mode. So the transmissions to the electr@dwsd3  this difference in the electrodes coincides with that predicted
coincide with steady results, as shown in Fig. 5c. Finally,by the last term in Eq(28). The parity is even in the elec-
Fig. 5d shows the case when the incident electron belongs tmodesl and4 and is odd in the electrodé&and3. Also we
the second subband. In contrast to the case in Fig. 5b, thean see from Fig. 6d that the odd contributions are decaying
field-induced effects take place when the polarization is perin the electroded and3.
pendicular to the input electrode. Note that the same symme- As was mentioned above an external magnetic field
try arguments explain the absence of radiation field effects ilbreaks the symmetry of the structure, resulting in a more
the electron transmission from electro@eto electrodel  complicated picture of radiation field effects. Results of these
shown in Fig. 4c for theél-structure. calculations are presented in Fig. 7. Figure 7a corresponds to
To confirm the approach using the quasi energy amplifig. 5a, with the difference that we haye=1, and presents
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FIG. 7. The energy dependences of the transmis-
sions in applied magnetic field in thé-structure.
a—w=4, a=0.05, y=1.0, the polarization of the
radiation field is parallel to the input electrode: b—
w=15.08,a=0.5, y=2, polarization of the radia-
tion field is perpendicular to the input electrode.

10.5 10.6 10.7 108 21 22 23 24 25

a case in which the radiation field excites the first bound stateus resonant anomalies of the Hall resistance induced by the
in the first subband. One can see all transmissions undergadiation field: dipgFig. 83 and peakgFig. 8b, 8c, and 8d
resonant peaks or dips, in contrast to Fig. 5a. Figure 7b preFhe resonance between the first bound state and the Fermi
sents a case in which the frequency of the radiation field ignergy of the incident electron produces a resonantFlmp
tuned tow=(e,— €1)/2. One can see that exciting of two 8a). In the case of the Fermi energy~(e,+€;)/2 and
bound states results in two resonant peaks in the transmisg~(e,— €;)/2 the radiation field induces two wide peaks
sions. The first bound state gives rise to sharp resonant peakentributed by two bound states. Figure 8c shows that the
and dips, while the second produces wide peaks and dips.radiation field transforms the dip in the Hall resistghiteo
From Fig. 7b we can see that in some narrow region ofa resonant peak. Finally, Fig. 8d shows a case like Fig. 8a,
energies the transmissioh; coincides withT,, and may but the radiation field excites the second bound state.
even slightly exceed it. Obviously, it would give rise to the
negative Hall re5|st_ance as was shown in Ref. 21. Moreoveg_ CONCLUSION
we can see from Fig. 7b that the transmissiga undergoes
peaks, while the transmissidn ; does dips. As a result we The resonant behavior in the electron transmission arises
may observe resonant peaks in the Hall resistance as is defnecause the radiation field resonantly substitutes the bound
onstrated in Fig. 8. states into the state of the incident electron propagating
From Fig. 7a and 7lsee also Ref. 21in the narrow through the scattering region of the structures to produce
region of resonance the transmissibypy can slightly exceed various interference phenomena. These phenomena are
the transmissionT, in an external magnetic field. This clearly seen in the current density patterns shown in Fig. 9.
means that the radiation field can even cause anomalies @he resonant anomalies are very specific to the forms the
the Hall resistance to be negatit’eFigure 8 illustrates vari-  structure and the type of bound state. The symmetry of the

Ry Ry
0.8
a 0.6r b
0.6 r// o5l
""" 041
041
031
02t 0.2¢
’ ot/ ./ X FIG. 8. The Hall resistenc®,; in the X-structure
R At * versus an external magnetic field in response to the
+ + a—— : radiation field. The radiation field induced resis-
0 0.5 1.0 1.5 y 2.0 0 1 2 y 3 tance is shown by solid lines, the steady resistance
Ry Ry is shown by dotted line. a€=10.95, v=4.3, a
0.15 =0.05; b—e=22, ©=15.08, a=0.5; c—e
0.10 =36.75, »=30.17, a=0.1; d—=205 o
’ =16.715,a=0.5.
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-0.05
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