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This paper presents the results of a nonempirical calculation of the static and dynamic properties
of K,NaAlFg, K;AIFg, and NaAlFg crystals with the elpasolite structure. The calculation

is based on a microscopic model of an ionic crystal that allows for the deformability and
polarizability of the ions. The deformability parameters of the ions are determined by

minimizing the total energy of the crystal. The total energy is regarded as a functional of the
electron density, using the local Thomas—Fermi approximation and taking into account
exchangdcorrelation effects. The results of the calculations of the equilibrium lattice parameters
and of the permittivities are in good agreement with the experimental data. Unstable

vibrational modes are found in the spectrum of the lattice vibrations, with these modes occupying
the phase space in the entire Brillouin zone. 1@98 American Institute of Physics.
[S1063-776(98)01311-7

1. INTRODUCTION have been virtually no calculations of the frequency spec-
trum of the lattice vibrations in crystals of the elpasolite fam-
The family of crystals with the elpasolite structure ily. Such a calculation of the incomplete vibrational spec-
A,BB3* X, can be classified as perovskite-like compounds, arum of the CsNaTmBr; crystal in the rigid-ion model is
typical structural feature of which is the presence of octahegiven in Ref. 1. Since the unit cell of elpasolite contains ten
dral groups. Most crystals of this family, like the representa-atoms, a large number of unknown parameters are needed in
tives of the perovskite family, experience diverse structurathe rigid-ion model to take into account short-range forces
phase transitions associated with instability of the crystal lat{Ref. 1 used nine parametgr&or this reason, it is difficult
tice against various vibrational lattice modes. to use the rigid-ion model to study the crystal lattice’s insta-
Crystals of the elpasolite family in the high-symmetry bility against one vibrational mode or another as a function
phase belong to the cubic space grcn')ﬁ, with a face- of the chemical composition of the compounds.
centered lattice. The unit cell contains one molecule. De-
pending on the chemical composition, various distorted low-
symmetry phases are observed, with sequences of structural
phase transitions being detected in many crystals of this
family. z
Compounds with the elpasolite structure have been in-
tensively studied by various methods, and by now there is
much experimental information for many crystals of the
given family concerning the structures, the physical proper-
ties, and their changes during phase transformations. In par
ticular, Raman scattering and inelastic neutron scattering in
certain crystals have been used to determine the soft vibra
tional modes of the crystal latticeThe experimental data on
the structures of the low-symmetry phases and the soft
modes of the lattice vibrations are evidence that, in most of
the compounds of the elpasolite family that have been stud-
ied, the phase transitions are associated with small rotation: e ’
of the B** X¢ octahedra. However, it is also experimentally V’*f o
known that the structures of the distorted phases in certair © /Q
elpasolites correspond not only to rotations of the octahedra, a x
but also to substantial displacements of the A and B iong G 1. structure of the elpasolite,KaAlF;. One molecule and the face-
from the equilibrium positions of the cubic phase. Therecentered Na lattice are shown.

-
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The goal of this paper is to calculate from first principles =~ The characters of the various symmetry elements in the
the equilibrium volume, the total spectrum of the lattice vi- vibrational representation are as followmly the symmetry
brations, and the radio-frequencyrf) permittivity in  elements associated with tlzedirection are shown below,
K,NaAlFg, K3;AIFg, and NaAlFg crystals in terms of the 7=ay/2, anda, is the lattice parametgr
generalized Gordon—Kim model proposed by Ivanov and the identity element
Maksimqv.2 ' Y(E)=30,

Section 2 presents the results of a group-theoretical
analysis of the normal modes of the lattice vibrations of the
elpasolite structure for all symmetry points and directions of  x(C4,)=1+3exgiq-(27,0,0)),
the Brillouin zone. The results of such an analysis appear in  rotation about a twofold axis
the literature for only two symmetry point§ and X) of the _ .

Brillouin zonel® The model and the method of computing X(C22)=(= D1+ 3expliq-(27.27,0)
the frequencies of the lattice normal modes and the rf per- +expiq-(7,7,0))+expiq- (37,37,0))],
mittivity are presented in Sec. 3. The results of the calcula- rotation about a twofold axis along a face diagonal
tions and a discussion of the results are presented in ,
Sec. 4, X(Cax)=(—D)[1+exniq-(27,27,27)],

reflection in a plane perpendicular to a twofold axis

X(C“z): 1+5expiqg-(0,0,27)),

rotation about a fourfold axis

2. SYMMETRY ANALYSIS OF THE NORMAL MODES
reflection in a plane perpendicular to a face diagonal

The crystal structure of elpasolite in the high-symmetry } )
X(C(,Xy)z1+3exp(|q-(27,27,0))+exp(|q-(7-,7-,0))

phase is cubic with space gro@ﬁ(Fm3m). The ions oc-

cupy ten interpenetrating fcc lattices, as shown in Fig. 1. +exp(iq- (37,31,0)),

TABLE I. Displacements of ions of an elpasolite in the normal modes of the center and of boundan¥ pbint
the Brillouin zone.

Irreducible Normal mode Number of modes
representation

Zone center
Alg _Flz= F22=_F3y=F4y=F5x=_F6x 1

g _Flz:_FZZ:F3y:F4y:_F5x:FGx 1
- Flz= F22= F3x= - F4x= F5y= F6y

- Fly= F2y= Fs;=—Fe,
Tlg —F1=Fox=—F3,=Fy4 1
- F3y= F4y= —Fsx=Fex

T29 le:Kly:Klz:7K2x:7K2y:7K22;
—Fu=- Fly= Fox= I:2y= F3y= Fa,=— I:4y= —Fy,
=—F5x=—Fs5,=Fex=Fe;
le=_KZX;_KlyzKZy;KlZZKZZ; 2
Fix= —Fo=—F3,=Fy4;;
- I:ly= F2y= Fs;=Fez ;FBy= - I:4y= —Fsx=Fex
K= =Koy Ky = =Koy i =K1, =Ky,
- Fly: F2y7 Fs;=Fez;
- Fly= F2y= - F5Z= FGZ VT F3y= F4y= F5x= - FGx

Fiy=Fsy=—F5=—Fe¢
Tou F1x=Fox=—F3=—Fux 1
F3,=F4;= —Fs,= —Fg;

T all ions are displaced 4
point X
3 Fay=—Fay=Fs=—Fe 1
Ts Fax=—Fax=Fsy=—Fg 1
7 Fay=—Fay=—F5=Fe 1
T8 Fs,=F4,= —Fs,= —Fg, 1
Te K= =Kz, 1
T all ions are displaced 3
Ty all ions are displaced 3

T10 all ions are displaced 6
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inversion 100

x(D=(—3)[1+expiq-(27,27,27))],

inverted rotation by 60°

x(Sg)=0,

inverted rotation by 90°

x(Sg7)=(=1D)[1+expiq-(0,2r,27))
+expiq-(0,7,7)) +exp(iq- (0,3r,37))]. 40 20 120 160 200

The expansion of the modal representatibinto irre- Volume , &’
ducible representations can be found by the standard
proceduré:

Energy, eV

Ci=n"1S x(@ax'(@9). ) “

wheren is the order of the group of wave vectqr and
x"(q,9) is the character of the small representation of the

Energy, eV
£
(=)

group of vectorq. This decomposition has the following 20f

form for the symmetry points and directions of the Brillouin

zones of the fcc lattic&he symbols for the wave vectors and 0

irreducible representations are from Kovalev's taSlder 40 80 120 160 200

e3

the zone center, the standard symbols for the representations Volume, A

of the space groups are shown in parentheses
(a) Center of the Brillouin zoneg=(0,0,0)

T=71(A1g) + 73(Eg) + 75(T1g) + 274(T2g) + 79(T2y)

>
(M)
+ STlO(TlU) . ?;
()
Here the splitting of the longitudinal and transverse optical &G
frequencies of symmetnyi;, by the macroscopic electric
field is neglected.
(b) q=(0,0,2um/7)
T:7’Tl+ 7'2+2T3+27'4+975. 40 80 120 23 160 200
Volume, A
The mode with symmetry is doubly degenerate. At the
zone boundary oint X) FIG. 2. Dependence of the total energy of the crystal on the voldae:
P ! K3AIFg; (b) K;NaAlFg; () NagAlFg. The origin of the energy readings in
T= 37'1"‘ T3+ AT+ T+ 1o To+ 1o+ 37_9+ 67’10 (a), (b), and(c) corresponds to 72 784 eV, 60 751 eV, and 36 683 eV.
79 and 7, correspond to doubly degenerate modes.
(¢ q=Qum/ 1, 2uw/7,0) (point K corresponds ta
= (37/47,3m147,0)) 3. MODEL. METHOD OF CALCULATION
T=10r,+47,+873+874. The model of the ionic crystal proposed by Ivanov and

Maximov? which takes into account the polarizability of the
ions, is used to compute the frequency spectrum of the lattice
T=8r+27,+ 1073, vibrations of crystals of the elpasolite family. In this model,
the ionic crystal is represented as consisting of individual
73 corresponds to doubly degenerate modes. At the zongersecting spherically symmetric ions. The total electron

boundary(point L), density of the crystal in this case can be written

d) g=(unm/r,uml 7,7l 7)

T:4Tl+ T2+ T3+47'4+ 57'5+ 57'6,

75 and 74 correspond to doubly degenerate modes. p(r):Ei pi(r—Ri),
(e) q=(0,7/ 7,7/27) (point W)
T=5r 427y 4 5yt 2744 87, where symmetrization is carried out over all the ions of the
crystal.
75 corresponds to doubly degenerate modes. The total energy of the crystal in terms of the density-
The displacements of the ions in certain normal modesunctional method, taking into account only pairwise interac-

are given in Table I. tion, has the form
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FIG. 3. Calculated dispersion curves for cubigN@AIF;. (Imaginary frequencies are indicated by negative vajues.
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whereZ; is the charge of théh

®;;(R, R, |Ri—R;)=E{pi(r—

ion,
Ri)+pj(r—R)}

_E{P(V—Ri)}_E{P(r_Rj)} )

)

using the local approximation for the kinetic and exchange
(correlation energies, an& (R ) is the self-energy of the
ion. The electron density of an individual ion and its self-
energy are calculated taking into account the crystal poten-
tial, approximated by a charged sphétiee Watson Spheje

ZOR,, <Ry,

r)= . y
YO zowe, 1R,

whereR,, is the radius of the Watson sphere. The rﬁlﬂviiof
the spheres at individual ions are found by minimizing the

energyE{p} is calculated by the density-functional mettfod, total energy of the crystal.
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FIG. 4. Calculated dispersion curves for cubigMF¢. (Imaginary frequencies are indicated by negative values.
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FIG. 5. Calculated dispersion curves for cubic;Nirg. (Imaginary frequencies are indicated by negative vajues.

To calculate the lattice dynamics in the expression for i )
the energy of the crystal, EQ), it is necessary to add terms Whereé N is the number of atoms per unit ce; are the
that describe the energy changes caused by displacing tif@ordinates of atorminside the unit cell, an@*%(q;jj") is
ions from their equilibrium positions. When the frequenciesth® contribution to the dynamic matrix from long-range Cou-
of the lattice vibrations of the ionic crystals were calculated,/0mP interactions. The matrices entering into E4) have
the electronic polarizability of the ions and the “breathing” the form
of the ion in the crystal environment were taken into account
both in terms of the phenomenological models of Ref. 6 and ,_ 2 -1~ Aa_12 _qp
the microscopic approach of Ref. 7. In the model considered V==0,/Pir;  W=RyyPyiSur:
here, the expression for the dynamic matrix has the form

ap_ ORI X)) [ L,

N

D

Q*A(a;jjHZ)
N IE)UR:(I’\)UR—’_(’I\)UWIQVTN]\-/&);W]\-IAS\NR'
+ D] '>+k§1 [P (q:]k)VA(gkj")

. ) The matrix® is defined as
+V* (K] PIR(aikj )]

N

10
+ 2 VE(gikj) D, (a;kk ) VA(giK'j ) azd)(jj,)
et PR =2 o e —ial),
S ! aR(.>aRB(.,
2 2 Wk PR k) J J
~ e
3 N 10
FORUGOW A (k)] + X X wre az@(,-,-,)
7y =Lk =1 ®,,(q;jj") =2 ————exp(—iql),
. ! , ’ﬁ’ . I Uj(?l)jl
X(Q:kDPyy (q:kk )W P(g;k'j")
3 N S5
T2 2 Wk, (kKO VA K ) q>3ﬁv(q;jj')=Qaﬁ(q;jj')+raﬁ(q;jj')+%, (5)
y=lkk'=1 j
+V*(a; kDY, (KK )WY (q;k’ )] ¢, (4)  T*P(q) is the matrix of the short-range part of the dipole—

dipole interactiong; is the polarizability of thgth ion,
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TABLE II. Equilibrium values of the lattice parameters, the polarizabilities of the ions, and the rf permittivities.
ag, A Polarizability, A3 £,
Crystal Model Calc. Exp. ag: ag ana ap ap  Calc. Exp.
K,NaAlFg | 812 8.11Ref. 9
I 8.12 0.696 0.122 0.034 1.123 227 1Ref. 9
n  7.94
v 7.94 0.836 0.122 0.034 0.720 1.80
K3AIF, | 820 8.38Ref. 9
I 8.20 0.696 0.696 0.034 1123 223 1Bef. 9
n 812
vV 812 0.726 0.836 0.034 0.749 1.86
NagAlF g | 8.09 7.95Ref. 10
I 8.09 0.122 0.034 1.123 205 1(R%f. 9
n 786
vV 7.86 0.122 0.034 0720 1.61
,. (10 and(6), entering into the dynamic matrix of E¢4). Cheby-
J CI)(J-J- r) shev polynomials were used for the approximations.
Ro(Gh]) =2 —p——exp(—ial),
ﬁRa( )(91)]-,
] 4. RESULTS AND DISCUSSION
(92(D( I?) This section presents the results of calculations of the
@ijn=3 ) exp(—iql), total energy, the equilibrium volume, and the lattice vibra-
[ tion spectra for three crystals and four models. The calcula-
avi&RB(j ’) tions in Model | use the electron density of free spherically
symmetrical iongthe rigid-ion model. Model 1l takes into
aEsh( I?) account the polarizability of the ions. In Model 111, the effect
Bl-iil)— “\ _ of the crystal environment is taken into account by using the
ZCHINEDY exp(—idl), . |
JR ( _ poter_mal of the Watson sph_ere _W_hen calculating the electron
Bl j density of the ions. For simplicity, we used the Watson-
| sphere potential for only two types of ions in the crystals
(;ES*‘( 0) under discussion: for the Kion and the F ion. As shown
@ (qjj)= E i — = exg—iql), by our estimate_s fqr Al" and N4 ions, the electron densi_ty
;s of the free ions is virtually the same as the electron density of
these ions in the Watson sphere. Finally, Model IV takes into
3Esf( I 0) account the deformability and polarizability of the ions.
ACIIREDY 'J’ exp(—iql),
TABLE Ill. Limiting frequencies of the §=0) vibrations of K;NaAlIF.
Dry=D i, (6)
Models
andE"is the short-range crystal field created at jtfeion.
The expression for the rf permittivity,, can be written @i Type of
N cm -) Degeneracy vibration | Il 1] \%
e 479, o} 1 To 537.9 4357 5585 4786
2= Oap™ 92 yzl kkz 1 qv[quw]ﬂ(o kK’). wi 2 Tiu 399.3 3802 4275 4032
wg 1 Asg 3949 2689 4564 386.6
The Coulomb contribution to the dynamic matrix o} 1 Tau 299.5 1949 3594 2705
Q*A(q;jj') was calculated by the Ewald method. The cal- @5 2 Tu 279.1 1948 3566 265.5
culation for the ion was carried out according to Liberman's s 2 B, 2275 2268 2680 2614
s SR ) b 1 To 1979 176.0 2135 2025
program? and the er?ergylof the pairwise interaction from w0y 3 To, 2647 1480 3086 2021
Eq. (3) and the polarizability of the ion were calculated ac- o) 2 T, 150.3 146.0 178.8 173.6
cording to Ivanov and Maksimov's programusing the w1o 3 Tou 117.8  96.3 166.0 146.8
Thomas—Fermi approximation for the kinetic energy and the % 1 Tau 1240 1029 120.8 108.3
Hedin—Lundquist approximation for the exchange energy. ®:2 3 Tag sr.7i  3r7i 302 251
: L w13 3 Ti 0.0 0.0 0.0 0.0
The technique of approximating the dependences of the en- . .
. X w1 3 Tag 88.8 735 707  12.1i
ergy on the distanc® and the potentials of the Watson ol 2 To, 87.8 4671 6L1  47.0i

sphere was used to compute the partial derivatives in (Bys.
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TABLE IV. Limiting frequencies of the §=0) vibrations of KAIFg. TABLE V. Limiting frequencies of the §=0) vibrations of NgAIFg.
Models Models

w; Type of w; Type of

(cm™)  Degeneracy vibration | 1l ] v (cm™)  Degeneracy vibration | 1] 11l v
o} 1 Tiu 4899 3850 517.8 43238 o} 1 Tau 4879 380.1 5793 5135
wy 2 Ty 297.8 381.3 3294 3495 wy 2 Ty 3495 3053 454.1 4359
w3 1 Agq 3775 2686 4329 3614 w3 1 Agg 3356 2156 480.6  400.8
w'; 1 Ty 314.8 247.9 352.2 269.8 wk 1 Ty 257.7 191.9 372.9 280.2
wy 2 Ti 3054 2415 3501 269.7 ws 2 T 2484 190.0 366.0 274.0
wg 2 Eqg 229.4 229.1 260.6 257.7 wg 2 Eqy 151.0 149.0 294.1 291.0
w5 1 Ti 1755 1438 1889 1723 w5 1 T 1715 1545 2216 210.4
wg 3 Tog 249.0 150.6 287.6 193.8 wg 3 Tag 258.3 170.3 314.5 227.9
a)g 2 Ty 166.6 143.8 171.3 162.4 wg 2 Ty 123.2 1144 188.7 184.3
w1 3 Tou 109.9 93.1 1484 1328 w1 3 Tou 98.8 85.2 1474 1356
ol 1 T 1172 748 1125 942 o4, 1 T 703 340 1167 1019
1o 3 Tig 31.6i 31.6i 24.7i 26.6i w1 3 Tig 57.6i 58.5i 81.9i 82.1i
w13 3 Tiu 0.0 0.0 0.0 0.0 w13 3 Tau 0.0 0.0 0.0 0.0
w14 3 Tog 66.2 85.1i 53.5 42.3i w14 3 Tog 81.6i 95.3i 80.9i 64.4i
wls 2 Ti 58.8 69.6i  38.8 58.2i wls 2 T 90.7i 96.4i 581  86.4i

The results of the calculations are shown in Figs. 2—5rom Tables Il1-V, taking the polarizability of the ions into
and in Tables 1I-V. The equilibrium values of the lattice account in all the compounds under consideration reduces
parameters were determined by minimizing the total energwalmost all the frequencies of the lattice vibrations, increases
of the crystal as a function of volumiig. 2). The lattice the number of unstable modes, and appreciably reduces the
parameters are shown in Table Il along with the experimensplitting of the longitudinal and transverse vibrational fre-
tal values. For all three materials, the calculated lattice paguencies of the polar modes.
rameters agree with the experimental data to within 2%. The It can be seen from Figs. 3—-5 and Tables IlI-V that the
radii of the Watson spheres for the'kand F ions, found by  cubic phase in the compounds under consideration is most
minimizing the total energy, are 2.0 au and 2.2-2.3 au, reunstable in the NglF; crystal and most stable in
spectively. K,NaAlFg. This conclusion qualitatively agrees with the re-

Table Il shows the calculated polarizabilities of the ionssults of experimental studies of structural phase transitions in
and the rf permittivities of the materials under considerationthese crystalS. It has been established that the phase-
This table also shows the experimental values.of As can  transition temperature in NAlFg significantly exceeds the
be seen from the table, the calculated polarizabilities of theransition temperature in JAlFg, while no phase transitions
fluorine ions are substantially different in the free-ion ap-are detected in the #fNaAlFg crystal up to liquid-nitrogen
proximation(and taking into account the crystal environmenttemperatures.

within the Watson spheyeand this in turn results in a dif- There are three types of instability of the cubic structure
ference in the calculated rf permittivities for all three mate-at the center of the Brillouin zone. One is the ferroelectric
rials. instability associated with transverse vibrations of the polar

The calculated dispersion curves of the frequencies ofmode T,,. In this mode, all the atoms in a unit cell are
the lattice vibrations for the three compounds are shown imisplaced from the equilibrium positions of the cubic phase.
Figs. 3-5. In order not to clutter the figures, we show inFerroelectric phase transitions, as far as we know, have not
them the calculated results only for Model IV, since thebeen experimentally observed in halide crystals with the el-
w(q) dependences are qualitatively the same for all foupasolite structure. Another instability is associated with the
models, while the quantitative differences in the frequenciesriply degeneratd’;; mode.
of the lattice vibrations calculated in Models -1V are shown Only the four fluorine atoms are displaced from the equi-
in Tables 1lI-V, which display the limiting frequencies of librium positions in this mode, and these displacements
the (Q=0) vibrations. As can be seen from Figs. 3—5 andcause the Alf octahedron to rotate as a whakee Table)l
Tables lI-1V, there are imaginary frequencies of the latticeFinally, a third type of instability is associated with the triply
vibrations in all compounds under discussion; this is evi-degeneratelT,; mode. In one of the eigenvectors of this
dence of structural instability of the cubic phase in thesenode, the displacements of the atoms cause thg Atfa-
materials. It should be emphasized that the unstable modégedron to rotate about the body diagonal while the potassium
occupy all the phase space in the Brillouin zone. In the(sodiun) atoms located on that diagonal are simultaneously
K;AIFg and NaAlFg crystals, there is instability of the displaced toward each other. Note that there is another,
structure in all four models. In the JNaAlFs crystal, the stable mode with the sang,y symmetry in the vibrational
cubic phase is stable at zero temperature only in the model agfpectrum of the crystals under considerati@®e Tables
the deformed ion that neglects polarizability. As can be seefll-V).
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5. CONCLUSION *)E-mail: zinenko@ph.krasnoyarsk.su

The static and dynamic properties of three crystals with——
the elpasolite structure have thus been calculated in this pa-
per in terms of a simple nonempirical model of an ionic
crystal. The calculated_e_q_uilibrium values of the Iattic_e pa-lW Bilver and H. U. Gdel, 3. Phys. (20, 3808(1687
ramet_ers and the permittivity are in good agreement with the?o_' V. Ivanov and E. G. Ma’ksimO\X .Zh'.kE:p. Teor. Fizioa 1841(1995
experimental data. Unfortunately, we cannot compare theDETPSL 1008(1995] .
calculated frequencies of the lattice vibrations with measurety. couzi, s. Khairoun, and A. Tressand, Phys. Status Soli@igA423
results, since such measurements have apparently not beer9ss.
made for the crystals considered here. Our results concerning?- A. Maradudin and V. Vosko, Rev. Mod. Phy40, 1 (1968.
the instability of the cubic structure and the presence of un- g-B\iézsr:’a:\fgx’fgr‘;(cgga'?epresemations of the Space Groupsrdon
stable modes in a large phase space of thle Brillouin zone are, \iisslein and U. Sch'mer., Phys. Status SolidiL, 309 (1967.
apparently common to crystals with the given structure. "A. Chizmeshya, F. M. Zimmermann, R. A. LaViolette, and G. H. Wolf,
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