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Lattice dynamics of K 2NaAlF6, K3AlF6, and Na3AlF6 crystals with the elpasolite structure
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This paper presents the results of a nonempirical calculation of the static and dynamic properties
of K2NaAlF6, K3AlF6, and Na3AlF6 crystals with the elpasolite structure. The calculation
is based on a microscopic model of an ionic crystal that allows for the deformability and
polarizability of the ions. The deformability parameters of the ions are determined by
minimizing the total energy of the crystal. The total energy is regarded as a functional of the
electron density, using the local Thomas–Fermi approximation and taking into account
exchange~correlation! effects. The results of the calculations of the equilibrium lattice parameters
and of the permittivities are in good agreement with the experimental data. Unstable
vibrational modes are found in the spectrum of the lattice vibrations, with these modes occupying
the phase space in the entire Brillouin zone. ©1998 American Institute of Physics.
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1. INTRODUCTION

The family of crystals with the elpasolite structu
A2BB31X6 can be classified as perovskite-like compound
typical structural feature of which is the presence of octa
dral groups. Most crystals of this family, like the represen
tives of the perovskite family, experience diverse structu
phase transitions associated with instability of the crystal
tice against various vibrational lattice modes.

Crystals of the elpasolite family in the high-symmet
phase belong to the cubic space groupOh

5 , with a face-
centered lattice. The unit cell contains one molecule. D
pending on the chemical composition, various distorted lo
symmetry phases are observed, with sequences of struc
phase transitions being detected in many crystals of
family.

Compounds with the elpasolite structure have been
tensively studied by various methods, and by now there
much experimental information for many crystals of t
given family concerning the structures, the physical prop
ties, and their changes during phase transformations. In
ticular, Raman scattering and inelastic neutron scatterin
certain crystals have been used to determine the soft vi
tional modes of the crystal lattice.1 The experimental data o
the structures of the low-symmetry phases and the
modes of the lattice vibrations are evidence that, in mos
the compounds of the elpasolite family that have been s
ied, the phase transitions are associated with small rotat
of the B31X6 octahedra. However, it is also experimenta
known that the structures of the distorted phases in cer
elpasolites correspond not only to rotations of the octahe
but also to substantial displacements of the A and B i
from the equilibrium positions of the cubic phase. The
9441063-7761/98/87(11)/8/$15.00
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have been virtually no calculations of the frequency sp
trum of the lattice vibrations in crystals of the elpasolite fa
ily. Such a calculation of the incomplete vibrational spe
trum of the Cs2NaTmBr6 crystal in the rigid-ion model is
given in Ref. 1. Since the unit cell of elpasolite contains t
atoms, a large number of unknown parameters are neede
the rigid-ion model to take into account short-range forc
~Ref. 1 used nine parameters!. For this reason, it is difficult
to use the rigid-ion model to study the crystal lattice’s ins
bility against one vibrational mode or another as a funct
of the chemical composition of the compound

FIG. 1. Structure of the elpasolite K2NaAlF6. One molecule and the face
centered Na lattice are shown.
© 1998 American Institute of Physics
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945JETP 87 (5), November 1998 Zinenko et al.
The goal of this paper is to calculate from first principl
the equilibrium volume, the total spectrum of the lattice
brations, and the radio-frequency~rf! permittivity in
K2NaAlF6, K3AlF6, and Na3AlF6 crystals in terms of the
generalized Gordon–Kim model proposed by Ivanov a
Maksimov.2

Section 2 presents the results of a group-theoret
analysis of the normal modes of the lattice vibrations of
elpasolite structure for all symmetry points and directions
the Brillouin zone. The results of such an analysis appea
the literature for only two symmetry points~G andX! of the
Brillouin zone.1,3 The model and the method of computin
the frequencies of the lattice normal modes and the rf p
mittivity are presented in Sec. 3. The results of the calcu
tions and a discussion of the results are presented
Sec. 4.

2. SYMMETRY ANALYSIS OF THE NORMAL MODES

The crystal structure of elpasolite in the high-symme
phase is cubic with space groupOh

5(Fm3m). The ions oc-
cupy ten interpenetrating fcc lattices, as shown in Fig. 1.
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The characters of the various symmetry elements in
vibrational representation are as follows~only the symmetry
elements associated with thez direction are shown below
t5a0/2, anda0 is the lattice parameter!:

the identity element

x~E!530,

rotation about a fourfold axis

x~C4z!5113exp~ iq•~2t,0,0!!,

rotation about a twofold axis

x~C2z!5~21!@113exp~ iq•~2t,2t,0!!

1exp~ iq•~t,t,0!!1exp~ iq•~3t,3t,0!!#,

rotation about a twofold axis along a face diagonal

x~C2xy!5~21!@11exp~ iq•~2t,2t,2t!!#,

reflection in a plane perpendicular to a twofold axis

x~Csz
!5115exp~ iq•~0,0,2t!!,

reflection in a plane perpendicular to a face diagonal

x~Csxy
!5113exp~ iq•~2t,2t,0!!1exp~ iq•~t,t,0!!

1exp~ iq•~3t,3t,0!!,
t
TABLE I. Displacements of ions of an elpasolite in the normal modes of the center and of boundary poinX of
the Brillouin zone.

Irreducible
representation

Normal mode Number of modes

Zone center
A1g 2F1z5F2z52F3y5F4y5F5x52F6x 1

Eg 2F1z52F2z5F3y5F4y52F5x5F6x 1
2F1z5F2z5F3x52F4x5F5y5F6y

2F1y5F2y5F5z52F6z

T1g 2F1x5F2x52F3z5F4z 1
2F3y5F4y52F5x5F6x

T2g K1x5K1y5K1z52K2x52K2y52K2z ;
2F1x52F1y5F2x5F2y5F3y5F3z52F4y52F4z

52F5x52F5z5F6x5F6z

K1x52K2x ;2K1y5K2y ;K1z5K2z ;
F1x52F2x52F3z5F4z ;

2

2F1y5F2y5F5z5F6z ;F3y52F4y52F5x5F6x

K1x52K2x ;K1y52K2y ;2K1z5K2z ;
2F1y5F2y2F5z5F6z ;
2F1y5F2y52F5z5F6z ;2F3y5F4y5F5x52F6x

F1y5F2y52F5y52F6y

T2u F1x5F2x52F3x52F4x 1
F3z5F4z52F5z52F6z

T1u all ions are displaced 4

point X
t3 F3y52F4y5F5x52F6x 1
t5 F3x52F4x5F5y52F6y 1
t7 F3y52F4y52F5x5F6x 1
t8 F3z5F4z52F5z52F6z 1
t6 K1z52K2z 1
t1 all ions are displaced 3
t9 all ions are displaced 3
t10 all ions are displaced 6
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inversion

x~J!5~23!@11exp~ iq•~2t,2t,2t!!#,

inverted rotation by 60°

x~S6!50,

inverted rotation by 90°

x~S4z!5~21!@11exp~ iq•~0,2t,2t!!

1exp~ iq•~0,t,t!!1exp~ iq•~0,3t,3t!!#.

The expansion of the modal representationT into irre-
ducible representations can be found by the stand
procedure:4

Cl5n21(
g

x~q,g!xl~q,g!, ~1!

where n is the order of the group of wave vectorq, and
xl(q,g) is the character of the small representation of
group of vectorq. This decomposition has the followin
form for the symmetry points and directions of the Brillou
zones of the fcc lattice~the symbols for the wave vectors an
irreducible representations are from Kovalev’s tables;5 for
the zone center, the standard symbols for the representa
of the space groups are shown in parentheses!:

~a! Center of the Brillouin zone,q5(0,0,0)

T5t1~A1g!1t3~Eg!1t5~T1g!12t4~T2g!1t9~T2u!

15t10~T1u!.

Here the splitting of the longitudinal and transverse opti
frequencies of symmetryT1u by the macroscopic electri
field is neglected.

~b! q5(0,0,2mp/t)

T57t11t212t312t419t5 .

The mode with symmetryt5 is doubly degenerate. At th
zone boundary~point X!,

T53t11t314t41t51t61t71t813t916t10,

t9 andt10 correspond to doubly degenerate modes.
~c! q5(2mp/t, 2mp/t,0! ~point K corresponds toq

5(3p/4t,3p/4t,0))

T510t214t218t318t4 .

~d! q5(mp/t,mp/t,mp/t)

T58t112t2110t3 ,

t3 corresponds to doubly degenerate modes. At the z
boundary~point L!,

T54t11t21t314t415t515t6 ,

t5 andt6 correspond to doubly degenerate modes.
~e! q5(0,p/t,p/2t) ~point W!

T55t112t215t312t418t5 ,

t5 corresponds to doubly degenerate modes.
The displacements of the ions in certain normal mo

are given in Table I.
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3. MODEL. METHOD OF CALCULATION

The model of the ionic crystal proposed by Ivanov a
Maximov,2 which takes into account the polarizability of th
ions, is used to compute the frequency spectrum of the lat
vibrations of crystals of the elpasolite family. In this mode
the ionic crystal is represented as consisting of individ
intersecting spherically symmetric ions. The total electr
density of the crystal in this case can be written

r~r !5(
i

r i~r2Ri !,

where symmetrization is carried out over all the ions of t
crystal.

The total energy of the crystal in terms of the densi
functional method, taking into account only pairwise intera
tion, has the form

FIG. 2. Dependence of the total energy of the crystal on the volume:~a!
K3AlF6; ~b! K2NaAlF6; ~c! Na3AlF6. The origin of the energy readings in
~a!, ~b!, and~c! corresponds to 72 784 eV, 60 751 eV, and 36 683 eV.
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FIG. 3. Calculated dispersion curves for cubic K2NaAlF6. ~Imaginary frequencies are indicated by negative values.!
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F i j ~Rw
i ,Rw

j ,uRi2Rj u!, ~2!

whereZi is the charge of theith ion,

F i j ~Rw
i ,Rw

j ,uRi2Rj u!5E$r i~r2Ri !1r j~r2Rj !%

2E$r~r2Ri !%2E$r~r2Rj !% ,

~3!

energyE$r% is calculated by the density-functional method2
using the local approximation for the kinetic and exchan
~correlation! energies, andEi

self(Rw
i ) is the self-energy of the

ion. The electron density of an individual ion and its se
energy are calculated taking into account the crystal po
tial, approximated by a charged sphere~the Watson Sphere!

v~r !5H Zi
ion/Rw , r ,Rw

Zi
ion/r , r .Rw

,

whereRw is the radius of the Watson sphere. The radiiRw
i of

the spheres at individual ions are found by minimizing t
total energy of the crystal.
FIG. 4. Calculated dispersion curves for cubic K3AlF6. ~Imaginary frequencies are indicated by negative values.!
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FIG. 5. Calculated dispersion curves for cubic Na3AlF6. ~Imaginary frequencies are indicated by negative values.!
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To calculate the lattice dynamics in the expression
the energy of the crystal, Eq.~2!, it is necessary to add term
that describe the energy changes caused by displacing
ions from their equilibrium positions. When the frequenc
of the lattice vibrations of the ionic crystals were calculate
the electronic polarizability of the ions and the ‘‘breathing
of the ion in the crystal environment were taken into acco
both in terms of the phenomenological models of Ref. 6 a
the microscopic approach of Ref. 7. In the model conside
here, the expression for the dynamic matrix has the form

D j j 8
ab

5
exp~2 iq~xj2xj 8!!

AM jM j 8
H 1

2
Zj

ionQab~q; j j 8!Zj 8
ion

1FRR
ab~q; j j 8!1 (

k51

N

@FRv
a ~q; jk !Vb~q;k j8!

1V* a~q;k j !FvR
b ~q;k j8!#

1 (
k,k851

N

V* a~q;k j !Fvv~q;kk8!Vb~q;k8 j 8!

1 (
g51

3

(
k51

N

@W* ga~q;k j !FwR
gb ~q; jk !

1FRw
ag ~q; jk !Wgb~q;k j8!#1 (

g,g851

3

(
k,k851

N

W* ga

3~q;k j !Fww
g,g8~q;kk8!Wg8b~q;k8 j 8!

1 (
g51

3

(
k,k851

N

@W* ga~q;k j !Fwv
g ~q;kk8!Vb~q;k8 j 8!

1V* a~q;k j !Fwv
g ~q;kk8!Wgb~q;k8 j 8!#J , ~4!
r

the
s
,

t
d
d

where N is the number of atoms per unit cell,xj are the
coordinates of atomj inside the unit cell, andQab(q; j j 8) is
the contribution to the dynamic matrix from long-range Co
lomb interactions. The matrices entering into Eq.~4! have
the form

V̂52F̂vv
21P̂vR , Ŵ5R̂ww

21F̂ww
21ŜwR ,

R̂ww512F̂ww
21F̂wvF̂vv

21 , ŜwR5F̂wvF̂vv
21F̂vR2F̂wR ,

P̂vR5F̂vR1F̂vwR̂ww
21F̂ww

21ŜwR .

The matrixF̂ is defined as

FRR
ab~q; j j 8!5(

l

]2FS l 0
j j 8 D

]RaS l
j D ]RbS 0

j 8 D
exp~2 iql!,

Fvv~q; j j 8!5(
l

]2FS l 0
j j 8 D

]v j]v j 8

exp~2 iql!,

Fww
ab ~q; j j 8!5Qab~q; j j 8!1Gab~q; j j 8!1

d j j 8dab

a j
, ~5!

Gab(q) is the matrix of the short-range part of the dipole
dipole interaction,a j is the polarizability of thej th ion,
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TABLE II. Equilibrium values of the lattice parameters, the polarizabilities of the ions, and the rf permittiv

a0, Å Polarizability, Å3 «`

Crystal Model Calc. Exp. aK8 aK aNa aAl aF Calc. Exp.

K2NaAlF6 I 8.12 8.11~Ref. 9!
II 8.12 0.696 0.122 0.034 1.123 2.27 1.79~Ref. 9!
III 7.94
IV 7.94 0.836 0.122 0.034 0.720 1.80

K3AlF6 I 8.20 8.38~Ref. 9!
II 8.20 0.696 0.696 0.034 1.123 2.23 1.80~Ref. 9!
III 8.12
IV 8.12 0.726 0.836 0.034 0.749 1.86

Na3AlF6 I 8.09 7.95~Ref. 10!
II 8.09 0.122 0.034 1.123 2.05 1.78~Ref. 9!
III 7.86
IV 7.86 0.122 0.034 0.720 1.61
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FRv
a ~q; j j 8!5(

l

]2FS l 0
j j 8 D

]RaS l
j D ]v j 8

exp~2 iql!,

FvR
b ~q; j j 8!5(

l

]2FS l 0
j j 8 D

]v j]RbS 0
j 8 D

exp~2 iql!,

FwR
ab~q; j j 8!5(

l

]Ea
shS l 0

j j 8 D
]RbS 0

j 8 D
exp~2 iql!,

Fwv
a ~q; j j 8!5(

l

]Ea
shS l 0

j j 8 D
]v j 8

exp~2 iql!,

Fvw
b ~q; j j 8!5(

l

]Eb
shS l 0

j j 8 D
]v j

exp~2 iql!,

F̂Rw5F̂wR
1 , ~6!

andEsh is the short-range crystal field created at thejth ion.
The expression for the rf permittivity«` can be written

«`
ab5dab1

4pqa

q2 (
g51

3

(
k,k851

N

qg@Fww
21#gb~0;kk8!.

The Coulomb contribution to the dynamic matr
Qab(q; j j 8) was calculated by the Ewald method. The c
culation for the ion was carried out according to Liberma
program,8 and the energy of the pairwise interaction fro
Eq. ~3! and the polarizability of the ion were calculated a
cording to Ivanov and Maksimov’s program,2 using the
Thomas–Fermi approximation for the kinetic energy and
Hedin–Lundquist approximation for the exchange ener
The technique of approximating the dependences of the
ergy on the distanceR and the potentialsv of the Watson
sphere was used to compute the partial derivatives in Eqs~5!
-

e
.
n-

and~6!, entering into the dynamic matrix of Eq.~4!. Cheby-
shev polynomials were used for the approximations.2

4. RESULTS AND DISCUSSION

This section presents the results of calculations of
total energy, the equilibrium volume, and the lattice vibr
tion spectra for three crystals and four models. The calcu
tions in Model I use the electron density of free spherica
symmetrical ions~the rigid-ion model!. Model II takes into
account the polarizability of the ions. In Model III, the effe
of the crystal environment is taken into account by using
potential of the Watson sphere when calculating the elec
density of the ions. For simplicity, we used the Watso
sphere potential for only two types of ions in the crysta
under discussion: for the K1 ion and the F2 ion. As shown
by our estimates for Al31 and Na1 ions, the electron density
of the free ions is virtually the same as the electron density
these ions in the Watson sphere. Finally, Model IV takes i
account the deformability and polarizability of the ions.

TABLE III. Limiting frequencies of the (q50) vibrations of K2NaAlF6.

Models

v i

(cm21) Degeneracy
Type of
vibration I II III IV

v1
L 1 T1u 537.9 435.7 558.5 478.6

v2
T 2 T1u 399.3 380.2 427.5 403.2

v3 1 A1g 394.9 268.9 456.4 386.6
v4

L 1 T1u 299.5 194.9 359.4 270.5
v5

T 2 T1u 279.1 194.8 356.6 265.5
v6 2 Eg 227.5 226.8 268.0 261.4
v7

L 1 T1u 197.9 176.0 213.5 202.5
v8 3 T2g 264.7 148.0 308.6 202.1
v9

T 2 T1u 150.3 146.0 178.8 173.6
v10 3 T2u 117.8 96.3 166.0 146.8
v11

L 1 T1u 124.0 102.9 120.8 108.3
v12 3 T1g 37.7i 37.7i 30.2 25.1
v13 3 T1u 0.0 0.0 0.0 0.0
v14 3 T2g 88.8 73.5i 70.7 12.1i
v15

T 2 T1u 87.8 46.7i 61.1 47.0i
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The results of the calculations are shown in Figs. 2
and in Tables II–V. The equilibrium values of the lattic
parameters were determined by minimizing the total ene
of the crystal as a function of volume~Fig. 2!. The lattice
parameters are shown in Table II along with the experim
tal values. For all three materials, the calculated lattice
rameters agree with the experimental data to within 2%. T
radii of the Watson spheres for the K1 and F2 ions, found by
minimizing the total energy, are 2.0 au and 2.2–2.3 au,
spectively.

Table II shows the calculated polarizabilities of the io
and the rf permittivities of the materials under considerati
This table also shows the experimental values of«` . As can
be seen from the table, the calculated polarizabilities of
fluorine ions are substantially different in the free-ion a
proximation~and taking into account the crystal environme
within the Watson sphere!, and this in turn results in a dif
ference in the calculated rf permittivities for all three ma
rials.

The calculated dispersion curves of the frequencies
the lattice vibrations for the three compounds are shown
Figs. 3–5. In order not to clutter the figures, we show
them the calculated results only for Model IV, since t
v(q) dependences are qualitatively the same for all f
models, while the quantitative differences in the frequenc
of the lattice vibrations calculated in Models I–IV are show
in Tables III–V, which display the limiting frequencies o
the (q50) vibrations. As can be seen from Figs. 3–5 a
Tables II–IV, there are imaginary frequencies of the latt
vibrations in all compounds under discussion; this is e
dence of structural instability of the cubic phase in the
materials. It should be emphasized that the unstable mo
occupy all the phase space in the Brillouin zone. In
K3AlF6 and Na3AlF6 crystals, there is instability of the
structure in all four models. In the K2NaAlF6 crystal, the
cubic phase is stable at zero temperature only in the mod
the deformed ion that neglects polarizability. As can be s

TABLE IV. Limiting frequencies of the (q50) vibrations of K3AlF6.

Models

v i

(cm21! Degeneracy
Type of
vibration I II III IV

v1
L 1 T1u 489.9 385.0 517.8 432.8

v2
T 2 T1u 297.8 381.3 329.4 349.5

v3 1 A1g 377.5 268.6 432.9 361.4
v4

L 1 T1u 314.8 247.9 352.2 269.8
v5

T 2 T1u 305.4 241.5 350.1 269.7
v6 2 Eg 229.4 229.1 260.6 257.7
v7

L 1 T1u 175.5 143.8 188.9 172.3
v8 3 T2g 249.0 150.6 287.6 193.8
v9

T 2 T1u 166.6 143.8 171.3 162.4
v10 3 T2u 109.9 93.1 148.4 132.8
v11

L 1 T1u 117.2 74.8 112.5 94.2
v12 3 T1g 31.6i 31.6i 24.7i 26.6i
v13 3 T1u 0.0 0.0 0.0 0.0
v14 3 T2g 66.2 85.1i 53.5 42.3i
v15

T 2 T1u 58.8 69.6i 38.8 58.2i
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from Tables III–V, taking the polarizability of the ions int
account in all the compounds under consideration redu
almost all the frequencies of the lattice vibrations, increa
the number of unstable modes, and appreciably reduces
splitting of the longitudinal and transverse vibrational fr
quencies of the polar modes.

It can be seen from Figs. 3–5 and Tables III–V that t
cubic phase in the compounds under consideration is m
unstable in the Na3AlF6 crystal and most stable in
K2NaAlF6. This conclusion qualitatively agrees with the r
sults of experimental studies of structural phase transition
these crystals.9 It has been established that the pha
transition temperature in Na3AlF6 significantly exceeds the
transition temperature in K3AlF6, while no phase transitions
are detected in the K2NaAlF6 crystal up to liquid-nitrogen
temperatures.

There are three types of instability of the cubic structu
at the center of the Brillouin zone. One is the ferroelect
instability associated with transverse vibrations of the po
mode T1u . In this mode, all the atoms in a unit cell ar
displaced from the equilibrium positions of the cubic pha
Ferroelectric phase transitions, as far as we know, have
been experimentally observed in halide crystals with the
pasolite structure. Another instability is associated with
triply degenerateT1g mode.

Only the four fluorine atoms are displaced from the eq
librium positions in this mode, and these displaceme
cause the AlF6 octahedron to rotate as a whole~see Table I!.
Finally, a third type of instability is associated with the trip
degenerateT2g mode. In one of the eigenvectors of th
mode, the displacements of the atoms cause the AlF6 octa-
hedron to rotate about the body diagonal while the potass
~sodium! atoms located on that diagonal are simultaneou
displaced toward each other. Note that there is anot
stable mode with the sameT2g symmetry in the vibrational
spectrum of the crystals under consideration~see Tables
III–V !.

TABLE V. Limiting frequencies of the (q50) vibrations of Na3AlF6.

Models

v i

(cm21! Degeneracy
Type of
vibration I II III IV

v1
L 1 T1u 487.9 380.1 579.3 513.5

v2
T 2 T1u 349.5 305.3 454.1 435.9

v3 1 A1g 335.6 215.6 480.6 400.8
v4

L 1 T1u 257.7 191.9 372.9 280.2
v5

T 2 T1u 248.4 190.0 366.0 274.0
v6 2 Eg 151.0 149.0 294.1 291.0
v7

L 1 T1u 171.5 154.5 221.6 210.4
v8 3 T2g 258.3 170.3 314.5 227.9
v9

T 2 T1u 123.2 114.4 188.7 184.3
v10 3 T2u 98.8 85.2 147.4 135.6
v11

L 1 T1u 70.3 34.0 116.7 101.9
v12 3 T1g 57.6i 58.5i 81.9i 82.1i
v13 3 T1u 0.0 0.0 0.0 0.0
v14 3 T2g 81.6i 95.3i 80.9i 64.4i
v15

T 2 T1u 90.7i 96.4i 58.1i 86.4i
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5. CONCLUSION

The static and dynamic properties of three crystals w
the elpasolite structure have thus been calculated in this
per in terms of a simple nonempirical model of an ion
crystal. The calculated equilibrium values of the lattice p
rameters and the permittivity are in good agreement with
experimental data. Unfortunately, we cannot compare
calculated frequencies of the lattice vibrations with measu
results, since such measurements have apparently not
made for the crystals considered here. Our results concer
the instability of the cubic structure and the presence of
stable modes in a large phase space of the Brillouin zone
apparently common to crystals with the given structure.
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